Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-05T12:12:22.640Z Has data issue: false hasContentIssue false

Part I - Origins and Consequences of Early Photosynthetic Organisms

Published online by Cambridge University Press:  24 October 2024

Mario Giordano
Affiliation:
Università degli Studi di Ancona, Italy
John Beardall
Affiliation:
Monash University, Victoria
John A. Raven
Affiliation:
University of Dundee
Stephen C. Maberly
Affiliation:
UK Centre for Ecology & Hydrology, Lancaster
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Aivaliotis, M., Karas, M. & Tsiotid, G. (2007). Alternative strategy for the membrane proteome analysis of the green sulfur bacterium Chlorobium tepidum using blue native page and 2-D page on purified membranes. Journal of Proteome Research 6: 10481058.CrossRefGoogle ScholarPubMed
Algeo, T. J. & Scheckler, S. E. (1998). Terrestrial-marine teleconnections in the Devonian: Links between the evolution of land plants, weathering processes, and marine anoxic events. Philosophical Transactions of the Royal Society of London B 353: 113130.CrossRefGoogle Scholar
Arp, T. B., Kistner-Morris, J., Aji, V. et al. (2020). Quieting a noisy antenna reproduces photosynthetic light harvesting spectra. Science 368: 14901495.CrossRefGoogle ScholarPubMed
Bach, L. T., Tamsitt, V., Gower, J. et al. (2021). Testing the climate intervention potential of ocean afforestation using the Great Atlantic Sargassum Belt. Nature Communications 12: 2556.CrossRefGoogle ScholarPubMed
Bar-Even, A., Noor, E. & Milo, R. (2012). A survey of carbon fixation pathways through a quantitative lens. Journal of Experimental Botany 63: 23252342.CrossRefGoogle ScholarPubMed
Behrendt, L., Trampe, E. L., Nord, N. B. et al. (2020). Life in the dark: Far-red absorbing cyanobacteria extend photic zone deep into terrestrial caves. Environmental Microbiology 22: 952963.CrossRefGoogle Scholar
Bengtson, S., Sallstedt, T., Belivanova, V. et al. (2017). Three-dimensional preservation of cellular and subcellular structures suggests 1.6 billion-year-old crown-group red algae. PLOS Biology 15: e2000735.CrossRefGoogle ScholarPubMed
Blank, C. E. (2013). Origin and early evolution of photosynthetic eukaryotes in freshwater habitats: Reinterpreting Proterozoic palaeobiology and biogeochemical process in light of trait evolution, Journal of Phycology 49: 10401055,CrossRefGoogle Scholar
Blank, C. E. & Sánchez-Baracaldo, P. (2010). Timing of morphological and ecological innovations in the cyanobacteria – a key to understanding the rise of atmospheric oxygen. Geobiology 8: 123.CrossRefGoogle ScholarPubMed
Brown, J. W. & Sorhannus, U. (2010). A molecular genetic timescale for the diversification of autotrophic stramenoplies (Ochrophyta): Substantial underestimation of putative fossil dates. PLOS ONE 5: 12759.CrossRefGoogle Scholar
Bryant, D. A., Liu, Z., Li, T. et al. (2012). Comparative and functional genomics of anoxygenic green bacteria from the taxa Chlorobi, Chloroflexus and Acidobacteria, In: Burnap, R. & Viersma, W. (eds.), Functional Genomics and Evolution of Photosynthetic Systems. Springer, Berlin, pp. 47102.CrossRefGoogle Scholar
Burki, F., Roger, A. J., Brown, M. W. et al. (2019). The new tree of eukaryotes. Trends in Ecology and Evolution 35: 1055.Google ScholarPubMed
Camacho, A., Walter, X. A., Picazo, A. et al. (2017) Photoferrotrophy: Remains of ancient photosynthesis in modern environments. Frontiers in Microbiology 8 : 323.CrossRefGoogle ScholarPubMed
Carlisle, E. M., Jobbins, M., Pankjhania, V. et al. (2021). Experimental taphonomy of organelles and the fossil record of early eukaryote evolution. Science Advances 7: eabe9487.CrossRefGoogle ScholarPubMed
Cheuk, A. & Meier, T. (2021). Rotor subunits adaptations in ATP synthases from photosynthetic organisms. Biochemical Transactions 49: 541550.CrossRefGoogle ScholarPubMed
Chrismas, N. A. M., Allen, R., Hollingsworth, A. L. et al. (2021). Complex photobiont diversity in the marine lichen Lichina pygmaea. Journal of the Marine Biological Association 101: 667674.CrossRefGoogle Scholar
Choubeh, R. R., Koehorst, R. B. M., Bina, R. et al. (2019). Efficiency of excitation trapping in the green photosynthetic bacterium Chlorobaculum tepidum. Biochimica et Biophysica Acta Bioenergetics 1860: 147154.CrossRefGoogle Scholar
Cleland, R. E., Rees, D., Walker, D. A. et al. (1990). Photoinhibition of photosynthetic bacteria. In: Baltscheffsky, M. (ed.) Current Research in Photosynthesis. Springer, Dordrecht, pp. 14671470.CrossRefGoogle Scholar
Crowe, S. A., Jones, C., Katsev, S. et al. (2008). Photoferrotrophs thrive in an Archean Ocean analogue. Proceedings of the National Academy of Science USA 105: 1593815943.CrossRefGoogle Scholar
Danza, F., Torelli, N., Roman, S. et al. (2017). Dynamic cellular complexity of anoxygenic phototrophic sulfur bacteria in the chemocline of meromictic Lake Cadagno. PLOS ONE 12: e0189510.CrossRefGoogle ScholarPubMed
DasSarma, S. & Schwieterman, E. W. (2018). Early evolution of purple retinal pigments on Earth and implications for exoplanet biosignatures. International Journal of Astrobiology 20: 241250.CrossRefGoogle Scholar
Davis, G. A. & Kramer, D. M. (2020). Optimization of ATP synthase c-rings for oxygenic photosynthesis. Frontiers in Plant Science 10: article 1778.CrossRefGoogle ScholarPubMed
Del Cortona, A., Jackson, C. J., Bucchini, F. et al. (2020). Neoproterozoic origin and multiple transitions to macroscopic growth in green seaweeds. Proceedings of the National Academy of Sciences USA 117: 25512559.CrossRefGoogle ScholarPubMed
Eisen, J. A., Nelson, K. E., Paulsen, I. T. et al. (2002). The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium. Proceedings of the National Academy of Sciences USA 99: 95019514.CrossRefGoogle ScholarPubMed
Falkowski, P. G. & Raven, J. A. (2007). Aquatic Photosynthesis. 2nd ed. Princeton University Press, Princeton, NJ, p. 488.CrossRefGoogle Scholar
Falkowski, P. G. & Godfrey, L. V. (2008). Electrons, life and the evolution of Earth’s oxygen cycle. Philosophical Transactions of the Royal Society B 363: 27052716.CrossRefGoogle ScholarPubMed
Falkowski, P. G., Katz, M. E., Knoll, A. H. et al. (2004). The evolution of modern eukaryotic phytoplankton. Science 305: 354360.CrossRefGoogle ScholarPubMed
Frankenberg, N., Hagen-Braun, C., Feller, U. et al. (1996). P840-reaction centers from Chlorobium tepidum –quinone analysis and reconstitution into lipid vesicles. Photochemistry and Photobiology 64: 1419.CrossRefGoogle Scholar
Frigaard, N.-U., Chew, A. G. M., Li, H. et al. (2003). Chlorobium tepidum: Insights into the structure, physiology, and metabolism of a green sulfur bacterium, derived from the complete genome sequence. Photosynthesis Research 78: 93117.CrossRefGoogle Scholar
Gabr, A., Grossman, A. R. & Bhattacharya, D. (2020). Paulinella, a model for understanding plastid primary endosymbiosis. Journal of Phycology 56: 837843.CrossRefGoogle Scholar
Gao, X., Xin, Y. & Blankenship, R. E. (2009). Enzymatic activity of the alternative complex III as a menaquinne: aurocyanin oxidoreductase in the electron transport chain of Chloroflexus aurantiacus. FEBS Letters 583: 32753279.CrossRefGoogle ScholarPubMed
Gibson, T. M., Shih, P. M., Cumming, V. M. et al. (2018). Precise age of Bangiomorpha pubescens dates the origin of eukaryotic photosynthesis. Geology 46: 135138.CrossRefGoogle Scholar
Gomez-Consarneau, L., Raven, J. A., Levine, N. M. et al. (2019). Microbial rhodopsins are major contributors to solar energy capture in the sea. Science Advances 8: eaaw8855.Google Scholar
Green, B. R. (2019). What happened to the phycobilisome? Biomolecules 9: 748.CrossRefGoogle Scholar
Grim, S. L. & Dick, G. J. (2016). Photosynthetic versatility in the genome of Geitlerionema sp. PCC 9228 (formerly Oscillatoria limnentica ‘Solar Lake’), a model anoxygenic photosynthetic cyanobacterium. Frontiers in Microbiology 7: article 1546.CrossRefGoogle Scholar
Gupta, D., Guzman, M. S., Renazasamy, K. et al. (2021). Photoferrotrophy and phototrophic extracellular electron uptake is common in the marine anoxygenic phototroph Rhodofulvum sulfidophilum. ISME Journal 15: 33843398.CrossRefGoogle ScholarPubMed
Hakkila, K., Antal, K., Antal, T. et al. (2014). Oxidative stress and photoinhibition can be separated in the cyanobacterium Synechocystis sp. PCC 6803. Biochimica et Biophysica Acta 1837: 217225.CrossRefGoogle Scholar
Hamilton, T. L. (2019). The trouble with oxygen: The ecophysiology of extant phototrophs and implications for the evolution of oxygenic photosynthesis. Free Radical Biology and Medicine 140: 233249.CrossRefGoogle ScholarPubMed
Hamilton, T. L., Klatt, J. M., De Beer, D. et al. (2018). Cyanobacterial photosynthesis under sulfidic conditions: Insights from the isolate Leptolyngbya sp. strain hensonii. ISME Journal 12: 568584.CrossRefGoogle ScholarPubMed
Hauska, G., Schoerl, T., Remigy, H. et al. (2001). The reaction center of green sulfur bacteria. Biochimica et Biophysica Acta 1507: 260277.CrossRefGoogle ScholarPubMed
Hofman, P. A. G., Veldhuis, M. J. W. & van Gemerden, H. (1985). Ecological significance of acetate assimilation by Chlorobium phaeobacteroides. FEMS Microbiology Ecology 31: 271285.CrossRefGoogle Scholar
Hurd, C. L. (2000). Water movement, macroalgal physiology, and productivity. Journal of Phycology 36: 453472.CrossRefGoogle Scholar
Iñiguez, C., Capó-Bauçà, S., Niinemets, Ü. et al. (2020). Evolutionary trends in RuBisCO kinetics and their co-evolution with CO2 concentrating mechanisms. Plant Journal 101: 897891.CrossRefGoogle Scholar
Jackson, C., Knoll, A. H., Chan, C. X. et al. (2018). Plastid phylogenomics with broad taxon sampling further elucidates the distinct evolutionary origins and timing of secondary green plastids. Scientific Reports 8: 1523.CrossRefGoogle ScholarPubMed
Jensen, E., Clément, R., Maberly, S. C. et al. (2017). Regulation of the Calvin-Benson-Bassham cycle in the enigmatic diatoms: Biochemical and evolutionary variation on an original theme. Philosophical Transactions of the Royal Society B 372: 2016001.CrossRefGoogle Scholar
Johnston, D. T., Wolfe-Simon, F., Pearson, A. et al. (2009). Anoxygenic photosynthesis modulated Proterozoic oxygen and sustained Earths middle age. Proceedings of the National Academy of Science USA 106: 1692516929.CrossRefGoogle ScholarPubMed
Kanazawa, A., Davis, G. A., Fisher, N. et al. (2020). Diversity of photoprotection and energy balancing in terrestrial and aquatic photosynthesis. In: Larkum, A. W. D., Grossman, A. R. & Raven, J. A. (eds.) Photosynthesis in Algae. Springer, Dordrecht, pp. 299327.Google Scholar
Kanno, N., Haruta, S. & Hanada, S. (2019). Sulfide-dependent photoautotrophy in the filamentous anoxygenic phototrophic bacteria, Chloroflexus aggregans. Microbes and Environment 34: 304309.CrossRefGoogle Scholar
Kanso, E. A., Lopes, R. M., Strickler, J. R. et al. (2021). Team work in the viscous oceanic microscale. Proceedings of the National Academy of Sciences USA 118: e2018193118.CrossRefGoogle Scholar
Kawai, S., Nishihara, A., Matsuura, K. et al. (2019a). Hydrogen-dependent autotrophic growth in autotrophic and chemolithotrophic cultures of thermophilic bacteria, Chloroflexus aggregans and Chloroflexus aurantiacus, isolated from Nakabusa hot springs. FEMS Microbiology Letters 366: fnz 122.CrossRefGoogle ScholarPubMed
Kawai, S., Kamiya, N., Matsuura, K. et al. (2019b). Symbiotic growth of a thermophilic sulfide-oxidising photoautotroph and an elemental sulfur – disproportionating chemlithoautotroph, and cooperative dissimilatory oxidation of sulfide to sulfate. Frontiers in Microbiology 10: article 1150.CrossRefGoogle Scholar
Larkum, A. W. D., Davey, P. A., Kuo, J. et al. (2017). Carbon-concentrating mechanisms in seagrasses. Journal of Experimental Botany 68: 37733784.CrossRefGoogle ScholarPubMed
Larkum, A. W. D., Ritchie, R. J. & Raven, J. A. (2018). Living off the sun: Chlorophylls, bacteriochlorophylls and rhodopsins. Photosynthetica 56: 1143.CrossRefGoogle Scholar
Larsen, H., Yocum, C. S. & van Niel, C. B. (1952). On the energetics of the photosynthesis in green sulfur bacteria. Journal of General Physiology 36: 161171.CrossRefGoogle ScholarPubMed
Launay, H., Huang, W., Maberly, S. C. et al. (2020). Regulation of carbon metabolism by environmental conditions: A perspective from diatoms and other chromalveolates. Frontiers in Plant Science 11: 1033.CrossRefGoogle ScholarPubMed
Lehours, A. C., Enault, F., Boeuf, D. et al. (2018). Biogeographic patterns of aerobic anoxygenic phototrophic bacteria reveal an ecological consistency of phylogenetic clades in different oceanic biomes. Scientific Reports 8: 4105.CrossRefGoogle ScholarPubMed
Lenton, T. M., Crouch, M., Johnson, M. et al. (2012). First plants cooled the Ordovician. Nature Geoscience 5: 8689.CrossRefGoogle Scholar
Littler, M., Littler, D. S., Blair, S. M. et al. (1985). Deepest known plant life discovered on an uncharted seamount. Science 227: 5759.CrossRefGoogle Scholar
Liu, D., Zhang, J., , C. et al. (2020). Synechococcus strain PCC7002 uses sulfide: quinone oxidoreductase to detoxify exogenous sulfide and to convert endogenous sulfide to cellular sulfane. mBio 11: e03429–19.CrossRefGoogle ScholarPubMed
Liu, Z., Klatt, C. G., Ludwig, M. et al. (2012). Candidatus Thermochlorobacter aerophilum’: An aerobic chlorophotoheterotrophic member of the phylum Chlorobi defined by metagenomics and metatranscriptomics. ISME J 6: 18691892.CrossRefGoogle ScholarPubMed
Llirós, M., Garcia-Armisen, T., Darchambeau, F. et al. (2015). Phytoferrotrophy and iron cycling in a modern ferruginous basin. Scientific Reports 5: article 1383.CrossRefGoogle Scholar
Luo, G., Ono, S., Beukes, N. J. et al. (2016). Rapid oxygenation of Earth’s atmosphere 2.33 billion years ago. Science Advances 2: e1600134.CrossRefGoogle ScholarPubMed
Maberly, S. C. (2014). The fitness of the environment of air and water for photosynthesis, growth, reproduction and dispersal of phototrophs: An evolutionary and biogeochemical perspective. Aquatic Botany 118: 413.CrossRefGoogle Scholar
Maberly, S. C. & Gontero, B. (2018). Trade-offs and synergies in the structural and functional characteristics of leaves photosynthesising in aquatic environments. In: Adams III, W. W. & Terashima, I. (eds.) The Leaf: A Platform for Performing Photosynthesis, Springer, Cham, pp. 307343.CrossRefGoogle Scholar
MacFarlane, J. J. & Raven, J. A. (1990). C, N and P nutrition of Lemanea mamillosa Kutz. (Batrachospermales, Rhodophyta) in the Dighty Burn, Angus, UK. Plant Cell and Environment 13: 113.CrossRefGoogle Scholar
Magdaong, N. C. M., Niedzwiedzki, D. M., Saer, R. G. et al. (2018). Excitation energy transfer kinetics of phototrophic green sulfur bacteria. Biochimica et Biophysica Acta Bioenergetics 1859: 11801190.CrossRefGoogle ScholarPubMed
Majumdar, E. L. W., King, J. D. & Blankenship, R. E. (2013). Alternative Complex III from phototrophic bacteria and its electron acceptor auracyanin. Biochimica et Biophysica Acta 1827: 13831391.CrossRefGoogle Scholar
Manske, A. K., Glaeser, K., Kuypers, M. M. M. et al. (2005). Physiology and phylogeny of green sulfur bacteria forming a monospecific assemblage at a depth of 100 m in the Black Sea. Applied and Environmental Microbiology 71: 80498060.CrossRefGoogle Scholar
Mass, T., Genin, A., Shavit, U. et al. (2010). Flow enhances photosynthesis in marine benthic autotrophs by increasing the efflux of oxygen from the organism by the water. Proceedings of the National Academy of Sciences USA 107: 25272531.CrossRefGoogle ScholarPubMed
Medlin, L. K. (2016). Evolution of the diatom: Major steps in their evolution and a review of the supporting molecular and morphological evidence. Phycologia 55: 79103.CrossRefGoogle Scholar
Mills, D. B., Boyle, R. A., Daines, S. J. et al. (2022). Eukaryogenesis and oxygen in Earth history. Nature Ecology and Evolution 6: 520532.CrossRefGoogle ScholarPubMed
Morozov, A., & Galachyants, Y. P. (2019). Diatom genes originating from red and green algae: implications for the secondary endosymbiosis models. Marine Genomics 45: 7278.CrossRefGoogle ScholarPubMed
Nagy, C. I., Vass, I., Rákherly, G. et al. (2014). Coregulated genes link sulphide: quinone oxidoreductase and arsenic metabolism in Synechocystis sp. strain PCC 6803. Journal of Bacteriology 196: 34203440.CrossRefGoogle Scholar
Nakov, T., Boyko, J. D., Averson, A. J. et al. (2017). Models with unequal transition rates favor marine origins of cyanobacteria and photosynthetic eukaryotes. Proceedings of the National Academy of Science USA 114: E10606E10607.CrossRefGoogle ScholarPubMed
Oberleitner, L., Poschman, C., Macorano, L. et al. (2020). The puzzle of metabolite exchange and identification of a putative octitrico peptide repeat expression regulators in the nascent photosynthetic organelles of Paulinella chromatophora. Frontiers in Microbiology 11: article 607182.CrossRefGoogle ScholarPubMed
Obornik, H., Modry, D., Lukeš, M. et al. (2012). Morphology, ultrastructure and life cycle of Vitrella brassicaformis n.sp, n.gen, a novel chromerid from the Great Barrier Reef. Protist 163: 306323.CrossRefGoogle Scholar
Oliver, T., Sánchez-Baracaldo, P., Larkum, A. W. D. et al. (2021). Time-resolved comparative evolution of oxygenic photosynthesis. Biochimica et Biophysica Acta 1862: 8400.Google ScholarPubMed
Orf, G. S. & Blankenship, R. E. (2013). Chlorosome antenna complexes from green photosynthetic bacteria. Photosynthesis Research 116: 316313.CrossRefGoogle ScholarPubMed
Parfrey, L. W., Lahr, D. J. G., Knoll, A. H. et al. (2011). Estimating the timing of the early eukaryotic diversification with multigene molecular clocks. Proceedings of the National Academy of Sciences USA 108: 1362413629.CrossRefGoogle ScholarPubMed
Ponce-Toledo, R., Deschamps, P., López-García, P. et al. (2017). An early-branching freshwater cyanobacterium at the origin of plastids. Current Biology 27: 386391.CrossRefGoogle ScholarPubMed
Ponce-Toledo, R. I., Moreira, D., López-García, P. et al. (2018). Secondary plastids of euglenids and chlorarachniophytes function with a mix of genes of red and green alga ancestry. Molecular Biology and Evolution 35: 21982204.CrossRefGoogle Scholar
Puttick, M. N., Morris, J. L., Williams, T. A. et al. (2018). The interrelationships of land plants and the nature of the ancestral Embryophyte. Current Biology 28: 733745.CrossRefGoogle ScholarPubMed
Quigg, A., Irwin, A. J. & Finkel, Z. V. (2011). Evolutionary inheritance of elemental stoichiometry in phytoplankton. Proceedings of the Royal Society B 278: 15261534.Google ScholarPubMed
Raven, J. A. (1984). A cost-benefit analysis of photon absorption by photosynthetic unicells. New Phytologist 98: 593625.CrossRefGoogle Scholar
Raven, J. A. (1996). The bigger the fewer: Size, taxonomic diversity and the range of chlorophyll(ide) pigments in oxygen-evolving marine photolithotrophs. Journal of the Marine Biological Association 76: 211217.CrossRefGoogle Scholar
Raven, J. A. (2009a). Phagotrophy in phototrophs. Limnology and Oceanography 42: 198205.CrossRefGoogle Scholar
Raven, J. A. (2009b). Contribution of anoxygenic and oxygenic phototrophy and chemolithotrophy to carbon and oxygen fluxes in aquatic photosynthesis. Microbial Ecology 56: 177192.CrossRefGoogle Scholar
Raven, J. A. (2011). The cost of photoinhibition. Physiologia Plantarum 152: 87104.CrossRefGoogle Scholar
Raven, J. A. (2015). Implication of mutations of organelle genomes for organelle function and evolution. Journal of Experimental Botany 66: 53395650.CrossRefGoogle ScholarPubMed
Raven, J. A. (2018). Blue carbon: Past, present and future, with emphasis on macroalgae. Biology Letters 14: 20180336.CrossRefGoogle ScholarPubMed
Raven, J. A. & Smith, F. A. (1981). H+ transport and the evolution of photosynthesis. Biosystems 14: 95111.CrossRefGoogle ScholarPubMed
Raven, J. A., Kübler, J. E. & Beardall, J. (2000). Put out the light, and then put out the light. Journal of the Marine Biological Association of the UK 80: 125.CrossRefGoogle Scholar
Raven, J. A., Beardall, J. & Sánchez-Baracaldo, P. (2017). The possible evolution and future of CO2-concentrating mechanisms. Journal of Experimental Botany 68: 37013716.CrossRefGoogle ScholarPubMed
Raven, J. A. & Beardall, J. (2020). Energizing the plasmalemma of marine photosynthetic organisms: The role of primary active transport. Journal of the Marine Biological Association UK 100: 333346.CrossRefGoogle Scholar
Raven, J. A. & Sánchez-Baracaldo, P. (2021). Gloeobacter and the implications of a freshwater origin of cyanobacteria. Phycologia 60: 402418.CrossRefGoogle Scholar
Raven, J. A. & Beardall, J. (2022). Evolution of phytoplankton in relation their physiological traits. Journal of Marine Science and Engineering 10: 194.CrossRefGoogle Scholar
Raven, J. A. & Lavoie, M. (2023). Movement of aquatic oxygenic photosynthetic organisms. In: Luttge, U., Canovas, P. M., Risueno, M. C., Leuscher, C., Pretzsch, H. (eds.), Progress in Botany Volume 83. Springer, Heidelberg, pp. 315343.Google Scholar
Raven, J. A., Beardall, J. & Giordano, M. (2014). Energy cost of carbon dioxide concentrating mechanisms in aquatic photosynthesis. Photosynthesis Research 121: 111124.CrossRefGoogle Scholar
Raven, J. A., Knight, C. A. & Beardall, J. (2019a). Genome and cell size variation across algal taxa. Perspectives of Phycology 6: 5980.CrossRefGoogle Scholar
Raven, J. A., Knight, C. A. & Beardall, J. (2019b). Cell size has gene expression and biophysical consequences for cellular function. Perspectives of Phycology 6: 8194.CrossRefGoogle Scholar
Raven, J. A., Suggett, D. J. & Giordano, M. (2020). Inorganic carbon concentrating mechanisms in free-living and symbiotic dinoflagellates and chromerids. Journal of Phycology 46: 13771397. https://doi.org/10.1111/jpy.13050.CrossRefGoogle Scholar
Refojo, P. N., Sousa, F. L., Texeira, M., Pereira, M. M. (2010). The alternative complex III: A different architecture using known building modules. Biochimica et Biophysica Acta Bioenergetics 1797: 18691876.CrossRefGoogle ScholarPubMed
Rejofo, P. N., Teixeira, M. & Pereira, M. M. (2012). The alternative complex III: Properties and possible mechanisms for electron transfer and energy conservation. Biochimica et Biophysica Acta 1817: 18521859.Google Scholar
Rickaby, R. E. M. & Hubbard, M. R. E. (2019). Upper ocean oxygenation, evolution of RuBisCO and the Phanerozoic succession of phytoplankton. Free Radical Biology and Medicine 140: 295304.CrossRefGoogle ScholarPubMed
Ritchie, R. J. (2013). The use of solar radiation by the photosynthetic bacterium, Rhodopseudomonas palustris: Model simulation of conditions found in a shallow pond or a flatbed reactor. Photochemistry and Photobiology 89: 11431162.CrossRefGoogle ScholarPubMed
Ritchie, R. J. & Mekjinda, N. (2015). Measurements of photosynthesis using PAM technology in a purple sulfur bacterium Thermochromatium tepidum (Chromatiaceae). Photochemistry and Photobiology 91: 350358.CrossRefGoogle Scholar
Rogers, S. O. (2021). Photosynthetic systems suggest an evolutionary path to diderms. Acta Biotheoretica 69: 347358CrossRefGoogle Scholar
Sánchez-Baracaldo, P., Raven, J. A., Pisani, D. et al. (2017a). Early photosynthetic eukaryotes inhabited low-salinity habitats. Proceedings of the National Academy of Sciences USA 114: E7737E7745.CrossRefGoogle ScholarPubMed
Sánchez-Baracaldo, P., Bianchi, G., Huesenbach, J. P. et al. (2017b). Model choice requires biological insight when studying the ancestral habitat of photosynthetic eukaryotes. Proceedings of the National Academy of Sciences USA 114: E10608E10609.CrossRefGoogle ScholarPubMed
Schagerl, M. & Donabaum, K. (2003). Patterns of major photosynthetic pigments of freshwater algae. I. Cyanoprokaryota, Rhodophyta and Cryptophyta. Annals of Limnology – International Journal of Limnology 39: 3547.CrossRefGoogle Scholar
Schanz, F., Fischer-Romero, C. & Bachofen, R. (1998). Photo-synthetic production and photoadaptation of phototrophic sulfur bacteria in Lake Cadagno (Switzerland). Limnology and Oceanography 43: 12621269. https://doi.org/10.4319/lo.1998.43.6.1262.CrossRefGoogle Scholar
Schoepp-Cathenet, B., Lieutaud, C., Baymann, F. et al. (2009). Menaquinone as a pool quinone in a purple bacterium. Proceedings of the National Academy of Sciences USA 106: 85498554.CrossRefGoogle Scholar
Sharoni, S. & Halevey, I. (2022). Geological controls on phytoplankton elemental composition. Proceedings of the National Academy of Sciences USA 119: e2113263118.CrossRefGoogle ScholarPubMed
Sørensen, K. (1988). The distribution and biomass of phytoplankton and phototrophic bacteria in Framvaren, a permanently anoxic fjord in Norway. Marine Chemistry 23: 229241.CrossRefGoogle Scholar
Stoecker, D. K., Hansen, P. J., Caron, D. A. et al. (2017). Mixotrophy in the marine plankton. Annual Review of Marine Science 9: 311385.CrossRefGoogle ScholarPubMed
Swanner, E. D., Wu, W., Hao, L. et al. (2015). Physiology, Fe(II) oxidation, and Fe mineral formation by a marine planktonic cyanobacterium grown under ferruginous conditions. Frontiers in Earth Science 3: article 80.CrossRefGoogle Scholar
Swanner, E. D., Bayer, T., Wu, W. et al. (2017). Iron isotope fractionation during Fe(II) oxidation mediated by the oxygen producing cyanobacterium Synechococcus PCC7002. Environmental Science and Technology 51: 48974906.CrossRefGoogle Scholar
Takahashi, M. & Ichimura, S. E. (1970). Photosythetic properties and growth of photosynthetic sulfur bacteria in lakes. Limnology and Oceanography 15: 929944.CrossRefGoogle Scholar
Tang, K.-H., Barry, K., Chertkov, O. et al. (2011). Complete genome sequence of the filamentous anoxygenic phototrophic bacterium Chloroflexus aurianticus. BMC genomics 12: 334.CrossRefGoogle Scholar
Tichy, J., Gardian, Z., Bina, D. et al. (2013). Light-harvesting complexes of Chromera velia, photosynthetic relative of apicomplexan parasites. Biochimica et Biophysica Acta 827: 723729.CrossRefGoogle Scholar
Ting, C. S., Rocap, G., King, J. et al. (2002). Cyanobacterial photosynthesis in the oceans: The origins of divergent light-harvesting strategies. Trends in Microbiology 10: 134147.CrossRefGoogle ScholarPubMed
Van Tussenbroek, B. I. (1993). Plant and frond dynamics of the giant kelp, Macrocystis pyrifera, forming fringing zone in the Falkland Islands. European Journal of Phycology 28: 181185.CrossRefGoogle Scholar
Veldhuis, M. J. W. & van Germoden, H. (1986). Competition between purple and brown phototrophic bacteria in stratified lakes: Sulfide, acetate, and light as limiting bacteria. FEMS Microbiology Ecology 38: 3138.CrossRefGoogle Scholar
Wade, J., Byrne, D. J., Ballerfine, C. J. et al. (2021). Temporal variation of planetary iron as a driver of evolution. Proceedings of the National Academy of Sciences USA 118: e2109865118.CrossRefGoogle ScholarPubMed
Ward, L. M., Hemp, J., Shih, P. M. et al. (2018). Evolution of phototrophy in the Chloroflexi phylum driven by horizontal gene transfer. Frontiers in Microbiology 9: article 260.CrossRefGoogle ScholarPubMed
Ward, L. M. & Shih, P. M. (2021). Granick revisited: Synthesising evolutionary and ecological evidence for the late origin of bacteriochlorophyll via ghost lineages. PLOS ONE 16: e0239248.CrossRefGoogle ScholarPubMed
Ward, L. M., Rasmussen, B. & Fischer, W. W. (2018). Primary productivity was limited by electron donors prior to the advent of oxygenic photosynthesis. Journal of Geophysical Research: Biogeosciences 124: 211226.CrossRefGoogle Scholar
Ward, L. M., Cardona, T. & Holland-Moritz, H. (2019). Evolutionary implications of anoxygenic phototrophy in the bacteria phylum Candidatus Eremiobacterota (WPS-2). Frontiers in Microbiology 10: article 1658.CrossRefGoogle Scholar
Wen, J., Zhang, H., Gross, M. L. et al. (2011). Native electrospray mass spectrometry of pigments of the FMO photosynthetic antenna protein. Biochemistry 50: 35023511.CrossRefGoogle ScholarPubMed
Westacott, S., Planavsky, N. J., Zhao, M.-Y. et al. (2021). Revisiting the sedimentary record of the rise of diatoms. Proceedings of the National Academy of Sciences USA 118: e2103517118.CrossRefGoogle ScholarPubMed
Williams, J. J., Mills, B. J. W. & Lenton, T. M. (2019). Tectonically driven Ediacaran oxygenation event. Nature Communications 10: 2690.CrossRefGoogle ScholarPubMed
Xia, M., Li, M. & Reynolds, C. S. (2018). Colony formation in the cyanobacterium Microcystis. Biological Reviews 93: 13991429.CrossRefGoogle Scholar
Yang, Y., Matsuzaki, M., Takahashi, F. et al. (2014). Phylogenetic analyses of ‘red’ genes from two divergent species of the ‘green’ secondary phototrophs, the chlorarachniophytes, suggests multiple horizontal gene transfers from the red lineage before the divergence of extant chlorarachniophytes. PLOS ONE 8: 10158.Google Scholar
Zapata, M., Jeffrey, S. W., Wright, S. W. et al. (2004). Photosynthetic pigments in 37 species (65 strains) of Haptophyta: Implications for oceanography and chemotaxonomy. Marine Ecology Progress Series 270: 83102.CrossRefGoogle Scholar

References

Amoroso, G., Sültemeyer, D. F., Thyssen, C. et al. (1998). Uptake of HCO3 and CO2 in cells and chloroplasts from the microalgae Chlamydomonas reinhardtii and Dunaliella tertiolecta. Plant Physiology 116: 193201.CrossRefGoogle Scholar
Anbar, A. D. & Knoll, A. H. (2002). Proterozoic ocean chemistry and evolution: A bioinorganic bridge? Science 297: 11371142.CrossRefGoogle ScholarPubMed
Anderson, L. E. (1971). Chloroplast and cytoplasmic enzymes. II. Pea leaf triose phosphate isomerases. Biochimica et Biophysica Acta 235: 237–44.Google ScholarPubMed
Aono, R., Sato, T., Imanaka, T. et al. (2015). A pentose bisphosphate pathway for nucleoside degradation in Archaea. Nature Chemical Biology 11: 355–360.CrossRefGoogle ScholarPubMed
Aubry, S., Brown, N. J. & Hibberd, J. M. (2011). The role of proteins in C3 plants prior to their recruitment into the C4 pathway. Journal of Experimental Botany 62: 30493059.CrossRefGoogle Scholar
Badger, M. R., Andrews, T. J., Whitney, S. M. et al. (1998). The diversity and coevolution of Rubiscos, plastids, pyrenoids and chloroplast-based CO2-concentrating mechanisms in algae. Canadian Journal of Botany 76: 10521071.CrossRefGoogle Scholar
Badger, M. R., Hanson, D. T. & Price, G. D. (2002). Evolution and diversity of CO2 concentrating mechanisms in cyanobacteria. Functional Plant Biology 29: 407416.CrossRefGoogle ScholarPubMed
Bathellier, C., Tcherkez, G., Lorimer, G. H. et al. (2018). Rubisco is not really so bad. Plant, Cell & Environment 41: 705716.CrossRefGoogle Scholar
Beardall, J. & Raven, J. A. (2020). Structural and biochemical features of carbon acquisition in algae. In: Larkum, A. W. D., Grossman, A. & Raven, J. A. (eds.) Photosynthesis in Algae: Biochemical and Physiological Mechanisms. Advances in Photosynthesis and Respiration, Vol. 45. Springer, Cham, pp. 141160. https://doi.org/10.1007/978-3-030-33397-3_7.CrossRefGoogle Scholar
Beardall, J., Mukerji, D., Glover, H. E. et al. (1976). The path of carbon in photosynthesis by marine phytoplankton. Journal of Phycology 12: 409417.CrossRefGoogle Scholar
Bhatti, S. & Colman, B. (2008). Inorganic carbon acquisition in some synurophyte algae. Physiologia Plantarum 133: 3340.CrossRefGoogle ScholarPubMed
Blanc, G., Agarkova, I., Grimwood, J. et al. (2012). The genome of the polar eukaryotic microalga Coccomyxa subellipsoidea reveals traits of cold adaptation. Genome Biology 13: R39. https://doi.org/10.1186/gb-2012–13-5-r39.CrossRefGoogle ScholarPubMed
Boller, A. J., Thomas, P. J., Cavenaugh, C. M. et al. (2011). Low stable isotope fractionation by coccolithophore RuBISCO. Geochimica Cosmochimica Acta 75: 72007207.CrossRefGoogle Scholar
Bonar, P. T. & Casey, J. R. (2008). Plasma membrane Cl/HCO3 exchangers: Structure, mechanism and physiology. Channels 2: 337345.CrossRefGoogle ScholarPubMed
Borkhsenious, O. N., Mason, C. B. & Moroney, J. V. (1998). The intracellular localization of ribulose-1,5-bisphosphate carboxylase/oxygenase in Chlamydomonas reinhardtii. Plant Physiology 116: 15851591.CrossRefGoogle ScholarPubMed
Bowes, G., Ogren, W. L. & Hageman, R. H. (1971). Phosphoglycolate production catalyzed by ribulose diphosphate carboxylase. Biochemical and Biophysical Research Communications 45: 716722.CrossRefGoogle ScholarPubMed
Bowes, G. (2011). Single-cell C4 photosynthesis in aquatic plants. In: Raghevendra, A. S. & Sage, R. (eds.) C4 Photosynthesis and Related CO2 Concentrating Mechanisms. Springer, Berlin, pp. 6380.Google Scholar
Bowes, G., Holaday, A. S., Van, T. K. et al. (1978). Photosynthetic and photorespiratory carbon metabolism in aquatic plants. In: Hall, D. O., Coombs, J. & Goodwin, T. W. (eds.) Photosynthesis 77, Proceedings of the Fourth International Congress on Photosynthesis. The Biochemical Society, London, pp. 289298.Google Scholar
Bowes, G., Rao, S. K., Estavillo, G. M. et al. (2002). C4 mechanisms in aquatic angiosperms: A comparison with terrestrial C4 systems. Functional Plant Biology 29: 379392.CrossRefGoogle ScholarPubMed
Burkhardt, S., Amoroso, G., Riebesell, U. et al. (2001). CO2 and HCO3 uptake in marine diatoms acclimated to different CO2 concentrations. Limnology and Oceanography 46: 13781391.CrossRefGoogle Scholar
Campbell, W. J. & Ogren, W. L. (1990). Glyoxylate inhibition of ribulose bisphosphate carboxylase/oxygenase activation in intact, lysed, and reconstituted chloroplasts. Photosynthesis Research 23: 257. https://doi.org/10.1007/BF00034856.CrossRefGoogle ScholarPubMed
Canfield, D. E. (2004). The evolution of the Earth surface sulfur reservoir. American Journal of Science 304: 839861.CrossRefGoogle Scholar
Chi, S., Wu, S., Yu, J. et al. (2014). Phylogeny of C4-photosynthesis genes based on algal and genomic data supports an archaeal/proteobacterial origin and multiple duplications for most C4-related genes. PLOS ONE 9: e110154.CrossRefGoogle ScholarPubMed
Colman, B. & Rotatore, C. (1995). Photosynthetic inorganic carbon uptake and accumulation in two marine diatoms. Plant, Cell & Environment 18: 919924.CrossRefGoogle Scholar
Cook, C. M., Mulligan, R. M. & Tolbert, N. E. (1985). Inhibition and stimulation of ribulose-1,5-bisphosphate carboxylase-oxygenase by glyoxylate. Archives of Biochemistry and Biophysics 240: 392401.CrossRefGoogle ScholarPubMed
Dellero, Y., Jossier, M., Glab, N. et al. (2016). Decreased glycolate oxidase activity leads to altered carbon allocation and leaf senescence after a transfer from high CO2 to ambient air in Arabidopsis thaliana. Journal of Experimental Botany 67: 3149–63.CrossRefGoogle ScholarPubMed
DiMario, R. J., Machingura, M. C., Waldrop, G. L. et al. (2017). The many types of carbonic anhydrases in photosynthetic organisms. Plant Science 268: 1117.CrossRefGoogle ScholarPubMed
Dodge, J. D. (1973). The Fine Structure of Algal Cells. Academic Press, London, p 261.Google Scholar
Eisenhut, M., Ruth, W., Haimovitch, M. et al. (2008). The photorespiratory glycolate metabolism is essential for cyanobacteria and may have been conveyed endosymbiotically to plants. Proceedings of the National Academy of Sciences USA 105: 1719917204.CrossRefGoogle Scholar
Flynn, K. J., Blackford, J. C., Baird, M. E. et al. (2012). Changes in pH at the exterior surface of plankton with ocean acidification. Nature Climate Change 2: 510513.CrossRefGoogle Scholar
Frolov, E. N., Kublanov, I. V., Toshchakov, S. V. et al. (2019). Form III RubisCO-mediated transaldolase variant of the Calvin cycle in a chemolithoautotrophic bacterium. Proceedings of the National Academy of Sciences USA 116(37): 1863818646.CrossRefGoogle Scholar
Fukuzawa, H., Miura, K., Ishizaki, K. et al. (2001). Ccm1, a regulatory gene controlling the induction of a carbon concentrating mechanism in Chlamydomonas reinhardtii by sensing CO2 availability. Proceedings of the National Academy of Sciences USA 98: 53475352.CrossRefGoogle ScholarPubMed
Gee, C. W. & Niyogi, K. K. (2017). The carbonic anhydrase CAH1 is an essential component of the carbon-concentrating mechanism of Nannochloropsis oceanica. Proceedings of the National Academy of Sciences USA 114: 45374547.CrossRefGoogle ScholarPubMed
Gill, B. C., Lyons, T. W. & Saltzman, M. R. (2007). Parallel, high resolution carbon and sulfur isotope records of the evolving Palaeozoic marine sulfur reservoir. Palaeogeography, Palaeoclimatology, Palaoecology 256: 156173.CrossRefGoogle Scholar
Gill, B. C., Lyons, T. W. & Jenkyns, H. C. (2011). A global perturbation to the sulfur cycle during the Toarcian Ocean Anoxic Event. Earth and Planetary Science Letters 312: 484496.CrossRefGoogle Scholar
Giordano, M. & Raven, J. A. (2014). Nitrogen and sulfur assimilation in plants and algae. Aquatic Botany 118: 4561.CrossRefGoogle Scholar
Giordano, M., Beardall, J. & Raven, J. A. (2005a). CO2 concentrating mechanisms in algae: Mechanisms, environmental modulation, and evolution. Annual Review of Plant Biology 6: 99131.CrossRefGoogle Scholar
Giordano, M., Norici, A. & Hell, R. (2005b). Sulfur and phytoplankton: Acquisition, metabolism and impact on the environment. New Phytologist 166(2), 371382.CrossRefGoogle ScholarPubMed
Giordano, M., Pezzoni, V. & Hell, R. (2000). Strategies for the allocation of resources under sulfur limitation in the green alga Dunaliella salina. Plant Physiology 124, 857864.CrossRefGoogle ScholarPubMed
Holaday, A. S. & Bowes, G. (1980). C4 acid metabolism and dark CO2 fixation in a submersed aquatic macrophyte (Hydrilla verticillata). Plant Physiology 65: 331335.CrossRefGoogle Scholar
Hopkinson, B. M., Meile, C. & Shen, C. (2013). Quantification of extracellular carbonic anhydrase in two marine diatoms and investigation of its role. Plant Physiology 162: 11421152.CrossRefGoogle ScholarPubMed
Huertas, I. E., Colman, B. & Espie, G. S. (2002). Inorganic carbon acquisition and its energization in eustigmatophyte algae. Functional Plant Biology 29: 271–77.CrossRefGoogle ScholarPubMed
Janouškovec, J., Gavelis, G. S., Burki, F. et al. (2017). Major transitions in dinoflagellate evolution unveiled by phylotranscriptomics. Proceedings of the National Academy of Sciences, USA 114(2): E171E180. https://doi.org/10.1073/pnas.1614842114.CrossRefGoogle ScholarPubMed
Janouškovec, J., Paskerova, G. G., Miroliubova, T. S. et al. (2019). Apicomplexan-like parasites are polyphyletic and widely but selectively dependent on cryptic plastid organelles. eLife 8: e49662. https://doi.org/10.7554/eLife.49662.CrossRefGoogle ScholarPubMed
John-McKay, M. & Colman, B. (1997). Variation in the occurrence of external carbonic anhydrase among strains of the marine diatom Phaeodactylum tricornutum (Bacillariophyceae). Journal of Phycology 33: 988990.CrossRefGoogle Scholar
Johnston, A. M. & Raven, J. A. (1996). Inorganic carbon accumulation by the marine diatom Phaeodactylum tricornutum. European Journal of Phycology 31: 285290.CrossRefGoogle Scholar
Johnston, A. M., Raven, J. A., Beardall, J. & Leegood, R. C. (2001). Photosynthesis in a marine diatom. Nature 412: 4041.CrossRefGoogle Scholar
Kah, L. C., Lyons, T. W. & Frank, T. D. (2004). Low marine sulphate and protracted oxygenation of the Proterozoic biosphere. Nature 431: 834838.CrossRefGoogle ScholarPubMed
Kaldenhoff, R., Kai, L. & Uehlein, N. (2014). Aquaporins and membrane diffusion of CO2 in living organisms. Biochimica et Biophysica Acta 1840: 15921595.CrossRefGoogle ScholarPubMed
Karsten, U., Kück, K., Vogt, C. et al. (1996). Dimethylsulfoniopropionate production in phototrophic organisms and its physiological functions as a cryoprotectant. In Kiene, R. P., Visscher, P. T., Keller, M. D. & Kirst, G. O., (eds.) Biological and Environmental Chemistry of DMSP and Related Sulfonium Compounds. Springer, New York, NY, pp. 143153.CrossRefGoogle Scholar
Keeley, J. E. (1998). CAM photosynthesis in submerged aquatic plants. Botanical Reviews 64: 121175. https://doi.org/10.1007/BF02856581.CrossRefGoogle Scholar
Keeley, J. E. & Rundel, P. W. (2003). Evolution of CAM and C4 carbon-concentrating mechanisms. International Journal of Plant Science 8: 683690.Google Scholar
Keller, M. D., Kiene, R. P., Matrai, P. A. et al. (1999). Production of glycine betaine and dimethylsulfoniopropionate in marine phytoplankton. II. N-limited chemostat cultures. Marine Biology 135: 249257.CrossRefGoogle Scholar
Kerfeld, C. & Melnicki, M. R. (2016). Assembly, function and evolution of cyanobacterial carboxysomes. Current Opinion in Plant Biology 31: 6675.CrossRefGoogle ScholarPubMed
Kevekordes, K., Holland, D., Jenkins, S. et al. (2006). Inorganic carbon acquisition by eight species of Caulerpa. Phycologia 45: 442449.CrossRefGoogle Scholar
Kikutani, S., Nakajima, K., Nagasato, C. et al. (2016). Thylakoid luminal θ-carbonic anhydrase critical for growth and photosynthesis in the marine diatom. Phaeodactylum tricornutum. Proceedings of the National Academy of Sciences USA 113: 98289833.CrossRefGoogle ScholarPubMed
Koch, M., Bowes, G., Ross, C. et al. (2013). Climate change and ocean acidification effects on seagrasses and marine macroalgae. Global Change Biology 19: 103132.CrossRefGoogle ScholarPubMed
Korb, R. E., Saville, P. J., Johnston, A. M. et al. (1997). Sources of inorganic carbon for photosynthesis by three species of marine diatoms. Journal of Phycology 33: 433440.CrossRefGoogle Scholar
Kroth, P. G. (2015). The biodiversity of carbon assimilation. Journal of Plant Physiology 172: 7681.CrossRefGoogle ScholarPubMed
Kübler, J. E. & Raven, J. A. (1994). Consequences of light limitation for carbon acquisition in three rhodophytes. Marine Ecology Progress Series 110: 203209.CrossRefGoogle Scholar
Kübler, J. E. & Raven, J. A. (1995). The interaction between inorganic carbon supply and light supply in Palmaria palmata (Rhodophyta). Journal of Phycology 31: 369375.CrossRefGoogle Scholar
Lapointe, M., MacKenzie, T. D. B. & Morse, D. (2008). An external δ-carbonic anhydrase in a free-living marine dinoflagellate may circumvent diffusion-limited carbon acquisition. Plant Physiology 147: 14271436.CrossRefGoogle Scholar
Larkum, A. W. D., Davey, P. A., Kuo, J. et al. (2017). Carbon-concentrating mechanisms in seagrasses. Journal of Experimental Botany 68: 37733784.CrossRefGoogle ScholarPubMed
Leggat, W., Badger, M. R. & Yellowlees, D. C. (1999). Evidence for an inorganic carbon-concentrating mechanism in the symbiotic dinoflagellate Symbiodinium sp. Plant Physiology 121: 12471255.CrossRefGoogle ScholarPubMed
Lenton, T. M., Crouch, M., Johnson, M. et al. (2012). First plants cooled the Ordovician. Nature Geoscience 5: 8689.CrossRefGoogle Scholar
Maberly, S. C., Ball, L. A., Raven, J. A. et al. (2009). Inorganic carbon acquisition by chrysophytes. Journal of Phycology 45: 10571061.CrossRefGoogle ScholarPubMed
Maberly, S. C. & Madsen, T. V. (2002). Freshwater angiosperms carbon concentrating mechanisms: Processes and patterns. Functional Plant Biology 29: 393405.CrossRefGoogle ScholarPubMed
Machingura, M. C., Bajsa-Hirschel, J., Laborde, S. M. et al. (2017). Identification and characterization of a solute carrier, CIA8, involved in inorganic carbon acclimation in Chlamydomonas reinhardtii. Journal of Experimental Botany 68: 38793890.CrossRefGoogle ScholarPubMed
Mackinder, L. C. M. (2018). The Chlamydomonas CO2-concentrating mechanism and its potential for engineering photosynthesis in plants. New Phytologist 217: 5461.CrossRefGoogle ScholarPubMed
Mackinder, L., Chen, C., Leib, R. et al. (2017). A spatial interactome reveals the protein organization of the algal CO2 concentrating mechanism. Cell 171: 133147.CrossRefGoogle Scholar
Magnin, N. C., Cooley, B. A., Reiskind, J. B. et al. (1997). Regulation and localization of key enzymes during the induction of Kranz-less, C4-type photosynthesis in Hydrilla verticillata. Plant Physiology 115: 16811689.CrossRefGoogle ScholarPubMed
Matsuda, Y., Hopkinson, B. M., Nakajima, K. et al. (2017). Mechanisms of carbon dioxide acquisition and CO2 sensing in marine diatoms: A gateway to carbon metabolism. Philosophical Transactions of the Royal Society B 372: 20160403.CrossRefGoogle ScholarPubMed
McKay, R. M. L. & Gibbs, S. P. (1991). Composition and function of pyrenoids: Cytochemical and immunocytochemical approaches. Canadian Journal of Botany 69: 10401052.CrossRefGoogle Scholar
Meyer, M. T., Genkov, T., Skepper, J. N. et al. (2012). Rubisco small-subunit α-helices control pyrenoid formation in Chlamydomonas. Proceedings of the National Academy of Sciences USA 109: 1947419479.CrossRefGoogle ScholarPubMed
Meyer, M. T. & Griffiths, H. (2013). Origins and diversity of eukaryotic CO2-concentrating mechanisms: Lessons for the future. Journal of Experimental Botany 64: 769786.CrossRefGoogle ScholarPubMed
Meyer, M. T., Whittaker, C. & Griffiths, H. (2017). The algal pyrenoid: Key unanswered questions. Journal of Experimental Botany 68: 37393749.CrossRefGoogle ScholarPubMed
Mitchell, C. & Beardall, J. (1996). Inorganic carbon uptake by an Antarctic sea-ice diatom, Nitzschia frigida. Polar Biology 21: 310315.Google Scholar
Mitchell, M. C., Metodieva, G., Metodiev, M. V. et al. (2017). Pyrenoid loss impairs carbon-concentrating mechanism induction and alters primary metabolism in Chlamydomonas reinhardtii. Journal of Experimental Botany 68: 38913902.CrossRefGoogle ScholarPubMed
Morita, E., Abe, T., Tsuzuki, M. et al. (1998). Presence of the CO2-concentrating mechanism in some species of the pyrenoid-less free-living algal genus Chloromonas (Volvocales, Chlorophyta). Planta 204: 269276.CrossRefGoogle ScholarPubMed
Morita, E., Abe, T., Tsuzuki, M. et al. (1999). Role of pyrenoids in the CO2-concentrating mechanism: Comparative morphology, physiology and molecular phylogenetic analysis of closely related strains of Chlamydomonas and Chloromonas (Volvocales). Planta 208: 365372.CrossRefGoogle Scholar
Morris, I., Beardall, J. & Mukerji, D. (1978). The mechanisms of carbon fixation in phytoplankton. Mitteilungen. Internationale Vereiningung für Theoretische und Angewandte Limnologie 21: 174–83.Google Scholar
Mukherjee, A., Lau, C. S., Walker, C. E. et al. (2019). Thylakoid localized bestrophin-like proteins are essential for the CO2 concentrating mechanism of Chlamydomonas reinhardtii. Proceedings of the National Academy of Sciences USA 116: 1691516920.CrossRefGoogle ScholarPubMed
Munoz, J. & Merrett, M. J. (1989). Inorganic carbon transport in some marine eukaryotic microalgae. Planta 178: 450455.CrossRefGoogle ScholarPubMed
Nakajima, K., Tanaka, A. & Matsuda, Y. (2013). SLC4 family transporters in a marine diatom directly pump bicarbonate from seawater. Proceedings of the National Academy of Sciences USA 110: 17671772.CrossRefGoogle Scholar
Obornik, M., Vancová, M., Lai, D.-H. et al. (2011). Morphology and ultrastructure of multiple life cycle stages of the photosynthetic relative of Apicomplexa, Chromera velia. Protist 162: 115130.CrossRefGoogle ScholarPubMed
Ogawa, T., Miyano, A. & Inoue, Y. (1985). Photosystem-I-driven inorganic carbon transport in the cyanobacterium, Anacystis nidulans. Biochimica et Biophysica Acta. 808: 7475.Google Scholar
Ogawa, T. & Ogren, W. L. (1985). Action spectra for accumulation of inorganic carbon in the cyanobacterium, Anabaena variabilis. Photochemistry and Photobiology 41: 583587.CrossRefGoogle Scholar
Ohnishi, N., Mukherjee, B., Tsujikawa, T. et al. (2010). Expression of a low CO2-inducible protein, LCI1, increases inorganic carbon uptake in the green alga Chlamydomonas reinhardtii. Plant Cell 22: 3105–311.CrossRefGoogle ScholarPubMed
Omata, T., Price, G. D., Badger, M. R. et al. (1999). Identification of an ATP-binding cassette transporter involved in bicarbonate uptake in the cyanobacterium Synechococcus sp. strain PCC 7942. Proceedings of the National Academy of Sciences USA 96: 1357113576.CrossRefGoogle Scholar
Palmqvist, K., Sundblad, L.-G., Wingsle, G. et al. (1990). Acclimation of photosynthetic light reactions during induction of inorganic carbon accumulation in the green alga Chlamydomonas reinhardtii. Plant Physiology 94: 357–66.CrossRefGoogle ScholarPubMed
Patel, B. N. & Merrett, M. J. (1986). Regulation of carbonic anhydrase activity, inorganic carbon uptake and photosynthetic biomass yield in Chlamydomonas reinhardtii. Planta 169: 8186.CrossRefGoogle Scholar
Price, G. D., Badger, M. R., Woodger, F. J. et al. (2008). Advances in understanding the cyanobacterial CO2- concentrating-mechanism (CCM): Functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants. Journal of Experimental Botany 59: 14411461.CrossRefGoogle ScholarPubMed
Price, G. D., Maeda, S., Omata, T. et al. (2002). Modes of active inorganic carbon uptake in the cyanobacterium Synechococcus sp. PCC7942. Functional Plant Biology 29: 131149.CrossRefGoogle Scholar
Price, G. D., Woodger, F. J., Badger, M. R. et al. (2004). Identification of a SulP-type bicarbonate transporter in marine cyanobacteria. Proceedings of the National Academy of Sciences USA 101: 1822818233.CrossRefGoogle ScholarPubMed
Pronina, N. A. & Borodin, V. V. (1993). CO2-stress and CO2 concentrating mechanism: Investigation by means of photosystem-deficient and carbonic anhydrase-deficient mutants of Chlamydomonas reinhardtii. Photosynthetica 28: 515522.Google Scholar
Pronina, N. A. & Semenenko, V. E. (1992). Pyrenoid role in CO2 concentration and fixation in microalga chloroplasts. Russian Journal of Plant Physiology 73: 723730.Google Scholar
Quigg, A., Finkel, Z. V., Irwin, A. J. et al. (2003). The evolutionary inheritance of elemental marine stoichiometry in marine phytoplankton. Nature 425: 291294.CrossRefGoogle ScholarPubMed
Quigg, A., Irwin, A. J. & Finkel, Z. V. (2011). Evolutionary inheritance of elemental stoichiometry in phytoplankton. Proceedings of the Royal Society of London B 278: 526534.Google ScholarPubMed
Ratti, S., Morse, D. & Giordano, M. (2007). CO2 concentrating mechanism of the potentially toxic dinoflagellate Protoceratium reticulatum (Dinophyceae, Gonyaulacales). Journal of Phycology 43: 693701.CrossRefGoogle Scholar
Ratti, S. & Giordano, M. (2008). Allocation of sulfur to sulfonium compounds in microalgae. In: Khan, N. A., Singh, S. & Umar, S. (eds.) Sulfur Assimilation and Abiotic Stress in Plants. Springer-Verlag, Berlin, pp. 317333.CrossRefGoogle Scholar
Ratti, S., Knoll, A. H. & Giordano, M. (2011). Did sulfate availability facilitate the evolutionary expansion of chlorophyll a+c phytoplankton in the oceans? Geobiology 9: 301312.CrossRefGoogle ScholarPubMed
Ratti, S., Knoll, A. H. & Giordano, M. (2013). Grazers and phytoplankton growth in the oceans: An experimental and evolutionary perspective. PLOS ONE 8: e77349.CrossRefGoogle ScholarPubMed
Raven, J. A. (1997a). Inorganic carbon acquisition by marine autotrophs. Advances in Botanical Research 27: 85209.CrossRefGoogle Scholar
Raven, J. A. (1997b). Putting the C in Phycology. European Journal of Phycology 32: 319333.CrossRefGoogle Scholar
Raven, J. A. (1997c). CO2 concentrating mechanisms: A role for thylakoid lumen acidification. Plant, Cell & Environment 20: 147154.CrossRefGoogle Scholar
Raven, J.A. (2009) Contribution of anoxygenic phototrophs and chemolithotrophs to carbon and oxygen fluxes in aquatic environments. Aquatic Microbial Ecology 56 : 177192.CrossRefGoogle Scholar
Raven, J. A. (2013). Half a century of pursuing the pervasive proton. Progress in Botany 74: 334.CrossRefGoogle Scholar
Raven, J. A. (2017). The possible roles of algae in restricting the increase in atmospheric CO2 and global temperature. European Journal of Phycology 52: 506522.CrossRefGoogle Scholar
Raven, J. A., Ball, L., Beardall, J. et al. (2005). Algae lacking CCMs. Canadian Journal of Botany 83: 879890.CrossRefGoogle Scholar
Raven, J. A. & Beardall, J. (2005). Respiration in aquatic photolithotrophs. In: del Giorgio, P. A. & Williams, P. J. le B. (eds.) Respiration in Aquatic Ecosystems. Oxford University Press, Oxford, UK. pp. 3646.CrossRefGoogle Scholar
Raven, J. A. & Beardall, J. (2003). CO2 acquisition mechanisms in algae: Carbon dioxide diffusion and carbon dioxide concentrating mechanisms. In: Larkum, A. W. D., Douglas, S. E. & Raven, J. A. (eds.) Photosynthesis in the Algae, Advances in Photosynthesis (Series Editor, Govindjee). Kluwer, Dordrecht/Boston/London. pp. 225244.CrossRefGoogle Scholar
Raven, J. A. & Beardall, J. (2016). The ins and outs of CO2. Journal of Experimental Botany 67: 113.CrossRefGoogle ScholarPubMed
Raven, J. A. & Beardall, J. (2017). Genotypic loss and phenotypic regulation of Complex I in mitochondria. Journal of Experimental Botany 68: 26832692.CrossRefGoogle Scholar
Raven, J. A., Beardall, J. & Giordano, M. (2014). Energy costs of carbon dioxide concentrating mechanisms. Photosynthesis Research 121: 111124.CrossRefGoogle ScholarPubMed
Raven, J. A., Beardall, J. & Griffiths, H. (1982). Inorganic C sources for Lemanea, Cladophora and Ranunculus in a fast-flowing stream: Measurements of gas exchange and of carbon isotope ratio and their ecological significance. Oecologia 53: 6878.CrossRefGoogle Scholar
Raven, J. A., Beardall, J. & Sánchez-Baracaldo, P. (2017). The possible evolution and future of CO2-concentrating mechanisms. Journal of Experimental Botany 68: 37013716.CrossRefGoogle ScholarPubMed
Raven, J. A., Cockell, C. S. & De La Rocha, C. L. (2008). The evolution of inorganic carbon concentrating mechanisms in photosynthesis. Philosophical Transactions of the Royal Society B 363: 26412650.CrossRefGoogle ScholarPubMed
Raven, J. A. & Colmer, T. D. (2016). Life at the boundary: Photosynthesis at the soil-liquid interface. A synthesis focusing on mosses. Journal of Experimental Botany 67: 16131623.CrossRefGoogle Scholar
Raven, J. A. & Giordano, M. (2017). Acquisition and metabolism of carbon in the Ochrophyta other than diatoms. Philosophical Transactions of the Royal Society B 372: 20160400.CrossRefGoogle ScholarPubMed
Raven, J. A., Giordano, M., Beardall, J. et al. (2011). Algal and aquatic plant carbon concentrating mechanisms in relation to environmental change. Photosynthesis Research 109: 281296.CrossRefGoogle ScholarPubMed
Raven, J. A., Giordano, M., Beardall, J. et al. (2012). Algal evolution in relation to atmospheric CO2: Carboxylases, carbon concentrating mechanisms and carbon oxidation cycles. Philosophical Transactions of the Royal Society B 367: 493507.CrossRefGoogle ScholarPubMed
Raven, J. A. & Hurd, C. J. (2012). Ecophysiology of photosynthesis in macroalgae. Photosynthesis Research 113: 105125CrossRefGoogle ScholarPubMed
Raven, J. A., Kübler, J. & Beardall, J. (2000). Put out the light, and then put out the light. Journal of the Marine Biological Association UK 80 (1): 125.CrossRefGoogle Scholar
Raven, J. A., Suggett, D. J. & Giordano, M. (2020). Inorganic carbon concentrating mechanisms in free-living and symbiotic dinoflagellates and chromerids. Journal of Phycology 56: 13771397.CrossRefGoogle ScholarPubMed
Reinfelder, J. R., Kraepiel, A. M. L. & Morel, F. M. M. (2000). Unicellular C4 photosynthesis in a marine diatom. Nature 407: 996999.CrossRefGoogle Scholar
Reinfelder, J. R., Milligan, A. J. & Morel, F. M. M. (2004). The role of C4 photosynthesis in carbon accumulation and fixation in a marine diatom. Plant Physiology 135: 21062111.CrossRefGoogle Scholar
Reiskind, J. B., Madsen, T. V., Van Ginke, L. C. et al. (1997). Evidence that inducible C4-like photosynthesis is a chloroplastic CO2-concentrating mechanism in Hydrilla, a submersed monocot. Plant, Cell & Environment 20: 211220.CrossRefGoogle Scholar
Reiskind, J. B., Seaman, P. T. & Bowes, G. (1988). Alternative methods of photosynthetic carbon assimilation in marine macroalgae. Plant Physiology 87: 686–92.CrossRefGoogle ScholarPubMed
Riding, R. (2006). Cyanobacterial calcification, carbon dioxide concentrating mechanisms, and Proterozoic–Cambrian changes in atmospheric composition. Geobiology 4: 299316.CrossRefGoogle Scholar
Roberts, K. Granum, E., Leegood, R. C. et al. (2007a). C3 and C4 pathways of photosynthetic carbon assimilation in marine diatoms are under genetic, not environmental, control. Plant Physiology 145 : 230235.CrossRefGoogle Scholar
Roberts, K., Granum, E., Leegood, R. C. et al. (2007b). Carbon acquisition by diatoms. Photosynthesis Research 93: 7988.CrossRefGoogle ScholarPubMed
Rost, B., Riebesell, U., Burkhardt, S. et al. (2003). Carbon acquisition of bloom-forming marine phytoplankton. Limnology and Oceanography 48: 5567.CrossRefGoogle Scholar
Rotatore, C. & Colman, B. (1990). Uptake of inorganic carbon by isolated chloroplasts of the unicellular green alga Chlorella ellipsoidea. Plant Physiology 93: 1597–600.CrossRefGoogle ScholarPubMed
Rotatore, C. & Colman, B. (1991). The localization of active carbon transport at the plasma membrane in Chlorella ellipsoidea. Canadian Journal of Botany 69: 1025–31.CrossRefGoogle Scholar
Salvucci, M. E. & Bowes, G. (1983). Two photosynthetic mechanisms mediating the low photorespiratory state in submersed aquatic angiosperms. Plant Physiology 73: 488496.CrossRefGoogle Scholar
Schopf, J. W. (2011). The paleobiological record of photosynthesis. Photosynthesis Research 107: 87101.CrossRefGoogle Scholar
Scott, K. M., Henn-Sax, M., Harmer, T. L. et al. (2007). Kinetic isotope effect and biochemical characterization of form IA RubisCO from the marine cyanobacterium Prochlorococcus marinus MIT9313. Limnology and Oceanography 52(5): 21992204.CrossRefGoogle Scholar
Sharaf, A., Füssy, Z., Tomčala, A. et al. (2019). Isolation of plastids and mitochondria from Chromera velia. Planta 250: 17311741.CrossRefGoogle ScholarPubMed
Shen, Y., Canfield, D. E. & Knoll, A. H. (2002). Middle Proterozoic ocean chemistry: Evidence from the McArthur Basin, Northern Australia. American Journal of Science 302: 81109.CrossRefGoogle Scholar
Shibata, M., Katoh, H., Sonoda, M. et al. (2002). Genes essential to sodium-dependent bicarbonate transport in cyanobacteria: Function and phylogenetic analysis. Journal of Biological Chemistry 277: 1865818664.CrossRefGoogle ScholarPubMed
Shiraiwa, Y., Danbara, A. & Yoke, K. (2004). Characterization of highly oxygen-sensitive photosynthesis in coccolithophorids. Japanese Journal of Phycology 52(Supplement): 8794.Google Scholar
Sinetova, M. A., Kupiyanova, E. V., Mankelova, A. G. et al. (2012). Identification and functional role of the carbonic anhydrase Cah3 in thylakoid membranes of pyrenoid of Chlamydomonas reinhardtii. Biochimica et Biophysica Acta 1817: 12481255.CrossRefGoogle ScholarPubMed
Smith, K. S. & Ferry, J. G. (2000). Prokaryotic carbonic anhydrases. FEMS Microbiology Reviews 24: 335366.CrossRefGoogle ScholarPubMed
Smith-Harding, T. J., Mitchell, J. G. & Beardall, J. (2017). The role of external carbonic anhydrase in photosynthesis during growth of the marine diatom Chaetoceros muelleri. Journal of Phycology 53: 11591170.CrossRefGoogle ScholarPubMed
Spalding, M. H., Critchley, C., Govindjee et al. (1984). Influence of carbon dioxide concentration during growth on fluorescence induction characteristics of the green alga Chlamydomonas reinhardtii. Photosynthesis Research 5: 169–76.CrossRefGoogle Scholar
Stefels, J. (2000). Physiological aspects of the production and conversion of DMSP in marine algae and higher plants. Journal of Sea Research 43: 183197.CrossRefGoogle Scholar
Sunda, W. K. D. J., Kieber, D. J., Kiene, R. P. & Huntsman, S. (2002). An antioxidant function for DMSP and DMS in marine algae. Nature, 418: 317320.CrossRefGoogle ScholarPubMed
Suzuki, K., Onodera, H. (2005). Adaptation of a Chlamydomonas mutant with reduced rate of photorespiration to different concentrations of CO2. Canadian Journal of Botany 83: 834841.CrossRefGoogle Scholar
Tcherkez, G. G. B., Farquhar, G. D. & Andrews, T. J. (2006). Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized. Proceedings of the National Academy of Science USA 103: 7246–725.CrossRefGoogle ScholarPubMed
Tchernov, D., Silverman, J., Luz, B. et al. (2003). Massive light-dependent cycling of inorganic carbon between oxygenic photosynthetic microorganisms and their surroundings. Photosynthesis Research 77: 95103.CrossRefGoogle ScholarPubMed
Tortell, P. (2000). Evolutionary and ecological perspectives on carbon acquisition in phytoplankton. Limnology and Oceanography 45: 744750.CrossRefGoogle Scholar
Trimborn, S., Lundholm, N., Thoms, S. et al. (2008). Inorganic carbon acquisition in potentially toxic and non-toxic diatoms: The effect of pH-induced changes in seawater carbonate chemistry. Physiologia Plantarum 133: 92105.CrossRefGoogle ScholarPubMed
Tsuji, Y., Mahardika, A. & Matsuda, Y. (2017a). Evolutionarily distinct strategies for the acquisition of inorganic carbon from seawater in marine diatoms. Journal of Experimental Botany 68: 39493958.CrossRefGoogle ScholarPubMed
Tsuji, Y., Nakajima, K. & Matsuda, Y. (2017b). Molecular aspects of the biophysical CO2-concentrating mechanism and its regulation in marine diatoms. Journal of Experimental Botany 68: 37633772.CrossRefGoogle ScholarPubMed
van Hunnik, E., Amoroso, G. & Sültemeyer, D. (2002). Uptake of CO2 and bicarbonate by intact cells and chloroplasts of Tetraedon minimum and Chlamydomonas noctigama. Planta 215: 763769.CrossRefGoogle ScholarPubMed
Vance, P. & Spalding, M. H. (2005). Growth, photosynthesis, and gene expression in Chlamydomonas over a range of CO2 concentrations and CO2/O2 ratios: CO2 regulates multiple acclimation states. Canadian Journal of Botany 83: 796809.CrossRefGoogle Scholar
Wang, Y., Stessman, D. J. & Spalding, M. H. (2015). The CO2 concentrating mechanism and photosynthetic carbon assimilation in limiting CO2: How Chlamydomonas works against the gradient. Plant Journal 82: 429448.CrossRefGoogle ScholarPubMed
Whitney, S., Shaw, D. & Yellowlees, D. (1995). Evidence that some dinoflagellates contain a ribulose-1,5-bisphosphate carboxylase/oxygenase related to that of the α–proteobacteria. Proceedings of the Royal Society of London B 259: 271275.Google ScholarPubMed
Whitney, S. M. & Andrews, T. J. (1998). The CO2/O2 specificity of single-subunit ribulose-bisphosphate carboxylase from the dinoflagellate, Amphidinium carterae. Australian Journal of Plant Physiology 25: 131138.Google Scholar
Yamano, T., Sato, E., Iguchi, H. et al. (2015). Characterization of cooperative bicarbonate uptake into chloroplast stroma in the green alga. Chlamydomonas reinhardtii. Proceedings of the National Academy of Sciences USA 112: 73157320.CrossRefGoogle ScholarPubMed
Young, J. N., Heureux, A. M., Sharwood, R. E. et al. (2016). Large variation in the Rubisco kinetics of diatoms reveals diversity among their carbon-concentrating mechanisms. Journal of Experimental Botany 67: 34453456.CrossRefGoogle ScholarPubMed

References

Allen, J. F., de Paula, W. B., Puthiyaveetil, S. et al. (2011). A structural phylogenetic map for chloroplast photosynthesis. Trends in Plant Science. 16: 645655.CrossRefGoogle ScholarPubMed
Archibald, J. M. (2015). Genomic perspectives on the birth and spread of plastids. Proceedings of the National Academy of Sciences USA 112:1014710153.CrossRefGoogle ScholarPubMed
Bar-On, Y. M., Phillips, R. & Milo, R. (2018). The biomass distribution on Earth. Proceedings of the National Academy of Sciences USA 115: 65066511.CrossRefGoogle ScholarPubMed
Badger, M. R. & Price, G. D. (2003). CO2 concentrating mechanisms in cyanobacteria: Molecular components, their diversity and evolution. Journal of Experimental Botany 54: 609622.CrossRefGoogle ScholarPubMed
Bell, G. (1988). Sex and Death in Protozoa: The History of Obsession. Cambridge University Press, Cambridge. 216 pp.Google Scholar
Bengtson, S., Dallstedt, T., Belivaera, V. et al. (2017). Three-dimensional preservation of cellular and subcellular structures suggest 1.6 billion-year-old crown group red algae. PLOS Biology 15: e20000735. https://doi.org/10.1371/journalpbio.2000735.CrossRefGoogle ScholarPubMed
Bhattacharya, D., Yoon, H. S. & Hackett, J. D. (2004). Photosynthetic eukaryotes unite: Endosymbiosis connects the dots. Bioessays 26: 5060. https://doi.org/10.1002/bies.10376.CrossRefGoogle ScholarPubMed
Bhattacharya, D., Qiu, H., Lee, J. M. et al. (2018.). When less is more: Red algae as models for studying gene loss and genome evolution in eukaryotes. Critical Reviews in Plant Sciences 37: 8199.CrossRefGoogle Scholar
Blanc, G., Duncan, G., Agarkova, I. et al. (2010). The Chlorella variabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex. Plant Cell 22: 29432955.CrossRefGoogle ScholarPubMed
Blank, C. E. (2013). Origin and early evolution of photosynthetic eukaryotes in freshwater environments: Reinterpreting Proterozoic palaeobiology and biogeochemical processes in light of trait evolution. Journal of Phycology 49: 10401055.CrossRefGoogle Scholar
Bock, R. & Timmis, J. N. (2008). Reconstructing evolution: Gene transfer from plastids to the nucleus. Bioessays 30: 556566.CrossRefGoogle ScholarPubMed
Brasier, M. D. (2013). Green algae (Chlorophyta) and the question of freshwater symbiogenesis in the early Proterozoic. Journal of Phycology 49: 10361039.CrossRefGoogle ScholarPubMed
Brown, J. E. & Sorhannus, U. (2010). A molecular genetic timescale for the diversification of autotrophic stramenopiles (Ochrophyta): Substantive underestimation of putative fossil ages. PLOS ONE 9: e12759.Google Scholar
Butterfield, N. J., Knoll, A. H. & Swett, T. (1994). Palaeobiology of the Neoproterozoic Svanbergfyllet formation, Spitzbergen. Fossils and Strata 34: 134.CrossRefGoogle Scholar
Butterfield, N. J. (2000). Bangiomorpha pubescens n.gen. n.sp: Implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Palaeobiology 26: 368404.2.0.CO;2>CrossRefGoogle Scholar
Butterfield, N. J. (2004). A vaucheriacean alga from the middle Neoproterozoic of Spitsbergen: Implications for the evolution of Proterozoic eukaryotes and the Cambrian explosion. Palaeobiology 30: 231252.2.0.CO;2>CrossRefGoogle Scholar
Butterfield, N. J. (2015). Early evidence of the Eukaryota. Palaeobology 58: 517.Google Scholar
Cavalier-Smith, T. (2000). Membrane heredity and early chloroplast evolution. Trends in Plant Science 5: 174182.CrossRefGoogle ScholarPubMed
Cavalier-Smith, T. (2018). Kingdom Chromista and its eight phyla: A new synthesis emphasising periplastid protein targeting, cytoskeletal and periplastid evolution, and ancient divergence. Protoplasma 255: 297357.CrossRefGoogle Scholar
Crowel, R. M., Nienow, J. A. & Cahoon, A. B. (2019). The complete chloroplast and mitochondrial genomes in the genome Nitzschia palea (Bacillariophyceae) demonstrate high sequence similarity to the endosymbiont organelles of the dinotom Durinskia baltica. Journal of Phycology 55: 352364.CrossRefGoogle Scholar
Curtis, B. A., Tanifuji, G., Burki, F. et al. (2012). Algal genomes reveal evolutionary mosaicism and the fate of the nucleomorph. Nature 492: 5965.CrossRefGoogle Scholar
Dacks, J. B., Field, M. C., Buick, R. et al. (2016). The changing view of eukaryogenesis – fossils, cells, lineages and how they all come together. Journal of Cell Science 129: 36953703.CrossRefGoogle ScholarPubMed
Davy, S. K., Allemand, D. & Weis, V. M. (2012). Cell biology of cnidarian-dinoflagellate symbiosis. Microbiology and Molecular Biology Reviews 76: 229261.CrossRefGoogle ScholarPubMed
De Clerck, O., Bogaert, K. A. & Leliaert, F. (2012). Diversity and evolution of algae: Primary endosymbiosis. Advances in Botanical Research 64: 5586.CrossRefGoogle Scholar
Delaye, L., Valadez-Cano, C. & Pérez-Zamorano, B. (2016). How really ancient is Paulinella chromatophora. PLOS Currents Tree of Life 2016 March 15 Edition 1. https://doi.org/10.1371/currents.tol.e68a68a099364bb1a129a17b4e06cbb.Google ScholarPubMed
Del Cortona, A., Jackson, C. J., Bucchini, F. et al. (2020). Neoproterozic orgin and multiple transitions to macroscopic growth in green seaweeds. Proceedings of the National Academy of Sciences USA 117: 25512559.CrossRefGoogle Scholar
Delwiche, C. F. (1999). Tracing the thread of plastid diversity through the tapestry of life. American Naturalist 154: S164S177. https://doi.org/10.1086/303291.CrossRefGoogle ScholarPubMed
Derelle, R., López-Garcia, P., Timpano, H. et al. (2016). A phylogenomic framework to study the diversity and evolution of stramenopiles (= heterokonts). Molecular Biology and Evolution 33: 28902898.CrossRefGoogle Scholar
Deschamps, P. & Moreira, D. (2012). Reevaluating the green contribution to diatom genomes. Genome Biology and Evolution 4: 683688.CrossRefGoogle ScholarPubMed
Dorrell, R. G. & Howe, C. J. (2015). Integration of plastids with their hosts: Lessons learned from dinoflagellates. Proceedings of the National Academy of Sciences USA 112: 1024710254.CrossRefGoogle ScholarPubMed
Dorrell, R. G., Gile, G., McCallum, G. et al. (2016a). Chimeric origins of ochrophytes and haptophytes revealed through an ancient plastid proteome. eLife 6 : article e23717.CrossRefGoogle Scholar
Dorrell, R. G., Klinger, C. M., Newby, R. J. et al. (2016b). Progressive and biased divergent evolution underpins the origin and diversification of peridinin dinoflagellate plastids. Molecular Biology and Evolution 34: 361379.Google Scholar
Edwards, D., Cherns, L. & Raven, J. A. (2015). Could land-based early photosynthesizing ecosystems have bioengineered the planet in mid-Palaeozoic times? Palaeontology 58: 803837.CrossRefGoogle Scholar
Falkowski, P. G., Katz, M. E., Knoll, A. H. et al. (2004). The evolution of modern eukaryotic phytoplankton. Science 305: 354360.CrossRefGoogle ScholarPubMed
Falkowski, P. G. & Raven, J. A. (2007). Aquatic Photosynthesis. Princeton University Press, Princeton, NJ.CrossRefGoogle Scholar
Field, C. B., Behrenfeld, M. J., Randerson, J. T. et al. (1998). Primary production of the biosphere of the biosphere: Integrating terrestrial and oceanic components. Science 251: 237240.CrossRefGoogle Scholar
Figueroa-Martinez, F., Jackson, C. & Reyes-Prieto, A. (2018). Plastid genomes from diverse glaucophyte genera reveal a largely conserved gene content and limited architectural diversity. Genome Biology and Evolution 11: 174188.CrossRefGoogle Scholar
Fisher, R. A. (1930). The Genetical Theory of Natural Selection. Clarendon, Oxford.CrossRefGoogle Scholar
Flombaum, P., Gallegas, J. L., Gordillo, R. A. et al. (2013). Present and future global distribution of the marine cyanobacteria Prochlorococcus and Synechococcus. Proceedings of the National Academy of Sciences USA 110: 98249829.CrossRefGoogle ScholarPubMed
Flynn, K. J., Stoecker, D. E., Mitra, A. et al. (2013). Misuse of the phytoplankton – zooplankton dichotomy: The need to assign organisms as mixotrophs within phytoplankton functional types. Journal of Plankton Research 35: 511.CrossRefGoogle Scholar
Font-Muñoz, J. S., Jeanneret, R., Arrieta, J. et al. (2019). Collective sinking promotes selective cell pairing in planktonic pennate diatoms. Proceedings of the National Academy of Sciences USA 116: 1599716002.CrossRefGoogle ScholarPubMed
Fučiková, K., Paźioutová, M. & Rindi, F. (2015). Meiotic genes and sexual reproduction in the green algal class Trebouxiophyceae (Chlorophyta). Journal of Phycology 51: 419430.CrossRefGoogle ScholarPubMed
Gabr, A., Grossman, A. R. & Bhattacharya, D. (2020). Paulinella, a model for understanding plastid primary endosymbiosis. Journal of Phycology 56: 837843.CrossRefGoogle Scholar
Gold, D. A., Grubenstater, J., de Mendoza, A. et al. (2016). Sterol and genomic analyses validate the sponge biomarker hypothesis. Proceedings National Academy of Sciences USA 113: 26842689.CrossRefGoogle ScholarPubMed
Grimsley, N., Péquin, B., Nachy, C. et al. (2010). Cryptic sex in the smallest eukaryotic marine green algae. Molecular Biology and Evolution 27: 4754.CrossRefGoogle Scholar
Hickey, D. A. & Golding, G. B. (2018). The advantages of recombination when selection is acting on many genetic loci. Journal of Theoretical Biology 442: 123138.CrossRefGoogle ScholarPubMed
Hovde, B. T., Hanschen, E. R., Steadman Tyler, C. R. et al. (2018). Genomic characterisation reveals significant divergence within Chlorella sorokiniana (Chlorellales, Trebouxiophyceae). Algal Research 35: 449461.CrossRefGoogle Scholar
Imanian, B., Pombeet, J.-F., Dorrell, R. G. et al. (2012). Tertiary endosymbiosis in two dinotoms has generated little change in the mitochondrial genomes of their dinoflagellate hosts and diatom endosymbionts. PLOS ONE 7: article e43763.CrossRefGoogle ScholarPubMed
Jackson, C., Knoll, A. H., Chan, C. X. et al. (2018). Plastid phylogenomics with broad taxon sampling further elucidates the distinct evolutionary origins and timing of secondary green plastids. Scientific Reports 8: article 1523.CrossRefGoogle ScholarPubMed
Janouškovec, J., Gavelis, G. S., Burki, F. et al. (2017). Major transitions in dinoflagellate evolution unveiled by phylotranscriptomics. Proceedings of the National Academy of Sciences USA 114: E1711180.CrossRefGoogle ScholarPubMed
Janouškovec, J., Paskerova, G. G., Miroliubova, T. S. et al. (2019). Apicomplexan-like parasites are polyphyletic and widely but selectively dependent on cryptic plastid organelles. eLife 8: e49662.CrossRefGoogle ScholarPubMed
Johnson, P. W., Hargraves, P. E. & Sieburth, J. M. (1988). Ultrastructure and ecology of Calycomonas ovalis Wulff, 1919 (Chrysophyceae) and its redescription as a testate Rhizopod, Paulinella ovalis N. Comb. (Filosea: Euglyphina). Journal of Protozoology 35: 618626. https://doi.org/10.1111/j.1550–7408.1988.tb04160.x.CrossRefGoogle Scholar
Kamikawa, R., Tanifuji, G., Kawachi, M. et al. (2015). Plastid genome-based phylogeny pinpointed the origin of the green-colored plastid in the dinoflagellate Lepidodinium chlorophorum. Genome Biology and Evolution 7: 11331140.CrossRefGoogle ScholarPubMed
Keeling, P. J. (2013). The number, speed and impact of plastid endosymbiosis in eukaryotic evolution. Annual Review of Plant Biology 64: 593607.CrossRefGoogle ScholarPubMed
Kooistra, W. H. C. F., Gersonde, R., Medlin, L. K. et al. (2007). The origin and evolution of the diatoms: Their adaptation to a planktonic existence. In: Falkowski, P. G. & Knoll, A. H. (eds.) Evolution of Primary Producers in the Sea. Elsevier/Academic Press, Amsterdam, Heidelberg, pp. 207249.CrossRefGoogle Scholar
Krasovec, M., Eyre-Walker, A., Sanchez-Freandin, S. et al. (2017). Spontaneous mutation rate in the smallest photosynthetic eukaryotes. Molecular Biology and Evolution 34: 17701779.CrossRefGoogle ScholarPubMed
Kwong, W. K., del Campo, J., Mathur, V. et al. (2019). A widespread coral-infecting apicomplexan with chlorophyll biosynthesis genes. Nature 568: 103107.CrossRefGoogle ScholarPubMed
Larkum, A. W. D., Lockhart, P. J. & Howe, C. J. (2007). Shopping for plastids. Trends in Plant Science 12: 189195.CrossRefGoogle ScholarPubMed
Law, R. & Lewis, D. H. (1983). Biotic environments and the maintenance of sex – some evidence from mutualistic symbioses. Biological Journal of the Linnean Society 20: 249276.CrossRefGoogle Scholar
Lax, G., Eglit, Y., Eme, L. et al. (2018). Hemimastigophora is a novel supra-kingdom level lineage of eukaryotes. Nature 564: 410414.CrossRefGoogle ScholarPubMed
Lee, J., Cho, C. H., Park, S. I. et al. (2016). Parallel evolution of highly conserved plastid genome architecture in red seaweeds and seed plants. BMC Biology 14: article 75.CrossRefGoogle ScholarPubMed
Lemieux, C., Otis, C. & Turmel, M. (2014). Chloroplast phylogenomic analysis resolves deep-level relationships in the green algal class Trebouxiophyceae. BMC Evolutionary Biology 14: article 211.CrossRefGoogle ScholarPubMed
Lhee, D., Ha, J.-S., Kim, S. et al. (2019). Evolutionary dynamics of the chromatophore genome in three photosynthetic Paulinella species. Scientific Reports 9: article number 2560.CrossRefGoogle ScholarPubMed
Liu, H., Probert, I., Claustre, H. et al. (2009). Extreme diversity in non-calcifying haptophytes explains a major pigment paradox in open oceans. Proceedings of the National Academy of. Sciences USA 106: 1280312808.CrossRefGoogle Scholar
Liu, H., Aris-Brosou, S., Probert, I. et al. (2010). A time line of the environmental genetics of the haptophytes. Molecular Biology and Evolution 27: 161176.CrossRefGoogle ScholarPubMed
Mann, D. G. & Vanormelingen, P. (2013). An inordinate fondness? The number, distributions and origins of diatom species. Journal of Eukaryotic Microbiology 60: 411420.CrossRefGoogle ScholarPubMed
Marin, B., Nowack, E. C. M. & Melkonian, M. (2005). A plastid in the making: Evidence for a second primary endosymbiosis. Protist 156: 425432.CrossRefGoogle ScholarPubMed
Maruyama, S. & Kim, E. (2013). A modern descendant of early green algal phagotrophs. Current Biology 23: 10511054.CrossRefGoogle ScholarPubMed
Matsumoto, T., Shinozaki, F., Chikuni, T. et al. (2011). Green-coloured plastids in the dinoflagellate Lepidodinium are of core chlorophyte origin. Protist 162: 268276.CrossRefGoogle Scholar
McGhee, G. R. Jr (2019). Convergent Evolution on Earth. Lessons for the Search for Extraterrestrial Life. MIT Press, Cambridge, MA. ISBN 9780262042734.CrossRefGoogle Scholar
Minge, M. A., Shatchian-Tabrizi, K., Tøttesen, O. K. et al. (2010). A phylogenetic mosaic plastid proteome and unusual plastid-targetting signals in the green-colored dinoflagellate Lepidodinium chlorophorum. BMS Evolutionary Biology 10: article 191.CrossRefGoogle ScholarPubMed
Muller, H. (1932). Some genetic aspects of sex. American Naturalist 66: 118138.CrossRefGoogle Scholar
Muller, H. J. (1964). The relation of recombination to mutational advance. Mutation Research 1: 29.CrossRefGoogle Scholar
Muñoz-Gómez, S. A., Mejia-Franco, F. G., Durnin, K. et al. (2017). The new red algal subphylum Proteorhodophytina comprises the largest and most divergent plastid genomes known. Current Biology 27: 16771684.CrossRefGoogle ScholarPubMed
Nakov, T., Beaulieu, J. M. & Alverson, A. J. (2018). Accelerated diversification is related to life history and locomotion in a hyperdiverse lineage of microbial eukaryotes (Diatoms, Bacillariophyta). New Phytologist 219: 462473.CrossRefGoogle Scholar
Novák Vaneclová, A. M. G., Zoltner, M., Kelly, S. (2020). Metabolic quirks and the colourful history of the Euglena gracilis secondary plastids. New Phytologist 225: 15781592.CrossRefGoogle Scholar
Nowack, E. C., Melkonian, M. & Glockner, G. (2008). Chromatophore genome sequence of Paulinella sheds light on acquisition of photosynthesis by eukaryotes. Current Biology 18:410418.CrossRefGoogle ScholarPubMed
Nowack, E. C., Price, D. C., Bhattacharya, D. et al. (2016). Gene transfers from diverse bacteria compensate for reductive genome evolution in the chromatophore of Paulinella chromatophora. Proceedings of the National Academy of Sciences USA 113: 1221412219.CrossRefGoogle ScholarPubMed
Pochon, X., Wecker, P., Stot, M. et al. (2019). Towards an in-depth characterization of Symbiodiniaceae in tropical clams via metabarcoding of pooled multigene amplicons. PeerJ 7: article e6898.CrossRefGoogle ScholarPubMed
Ponce-Toledo, R. I., Deschamps, P., López-Garcia, P. et al. (2017). An early-branching freshwater cyanobacterium at the origin of plastids. Current Biology 27: 386391.CrossRefGoogle ScholarPubMed
Ponce-Toledo, R. I., López-Garcia, P. & Moreira, D. (2019). Horizontal and endosymbiotic gene transfer in early plastid evolution. New Phytologist 224: 618624. https://doi.org/10.1111/nph.15965.CrossRefGoogle ScholarPubMed
Price, D. C., Goodenough, G. W., Roth, R. et al. (2019). Analysis of an improved Cyanophora paradoxa assembly. DNA Research 26: 287299.CrossRefGoogle ScholarPubMed
Qiu, H., Price, D. C., Weber, A. P. et al. (2013a). Assessing the bacterial contribution to the plastid proteome. Trends in Plant Science 18:680687.CrossRefGoogle Scholar
Qiu, H., Yoon, H. S. & Bhattacharya, D. (2013b). Algal endosymbionts as vectors of horizontal gene transfer to photosynthetic eukaryotes. Frontiers in Plant Science 4: article 366.CrossRefGoogle ScholarPubMed
Raven, J. A. & Waite, A. M. (2004). The evolution of silicification in diatoms: Inescapable sinking and sinking as escape? New Phytologist 162: 4561.CrossRefGoogle Scholar
Raven, J. A., Beardall, J., Flynn, K. J. et al. (2009). Phagotrophy in the origins of photosynthesis in eukaryotes and as a complementary mode of nutrition in phototrophs: Relation to Darwin’s Insectivorous Plants. Journal of Experimental Botany 60: 39753987.CrossRefGoogle ScholarPubMed
Reyes-Prieto, A., Weber, A. P. & Bhattacharya, D. (2007). The origin and establishment of the plastid in algae and plants. Annual Review of Genetics 41 : 147168.CrossRefGoogle ScholarPubMed
Rigby, S. (1997). A comparison of colonization of the planktic realm and the land. Lethaia 30: 1117.CrossRefGoogle Scholar
Rigby, S. & Milsom, C. (1996). Benthic origins of zooplankton: An environmentally determined macroevolutionary effort. Geology 24: 5254.2.3.CO;2>CrossRefGoogle Scholar
Rigby, S. & Milsom, C. (2000). Origins, evolution and diversification of zooplankton. Annual Review of Ecology and Evolution 31: 293313.CrossRefGoogle Scholar
Sánchez-Baracaldo, P. (2015). Origin of planktonic marine cyanobacteria. Scientific Reports 5: 17418.CrossRefGoogle Scholar
Sánchez-Baracaldo, P., Ridgwell, A. & Raven, J. A. (2014). A Neoproterozoic transition in the marine nitrogen cycle. Current Biology 24: 652657.CrossRefGoogle ScholarPubMed
Sánchez-Baracaldo, P., Raven, J. A., Pisani, D. et al. (2017). Early photosynthetic eukaryotes inhabited low-salinity habitats. Proceedings of the National Academy of Sciences USA 114: E7737E7745. https://doi.org/10.1073/pnas.1620089114.CrossRefGoogle ScholarPubMed
Sims, P. A., Mann, D. G. & Medlin, L. K. (2006). Evolution of the diatoms: Insight from fossil, biological and molecular data. Phycologia 45: 361402.CrossRefGoogle Scholar
Speijer, D., Lukeš, J. & Elias, M. (2015). Sex is a ubiquitous, ancient, and inherent attribute of eukaryotic life. Proceedings of the National Academy of Sciences USA 112: 88278834.CrossRefGoogle ScholarPubMed
Stoecker, D. K., Hanson, P. J., Caron, D. A. et al. (2017). Mixotrophy in the marine plankton. Annual Review of Marine Science 9: 311335.CrossRefGoogle ScholarPubMed
Tang, Q., Pang, K., Yuan, X. et al. (2020). A one billion year old multicellular chlorophyte. Nature Ecology and Evolution 4:543549.CrossRefGoogle ScholarPubMed
Taylor, T. N., Taylor, E. L. & Kring, M. (2009). Palaeobotany: The Biology and Evolution of Fossil Plants, 2nd ed. Academic Press, Burlington, MA.Google Scholar
Watanabe, M. M., Suda, S., Inoya, I. et al. (1990). Lepidodinium viride Gen. et Sp. Nov. (Gymnodiniales), a green dinoflagellate with a chlorophyll a- and b-containing endosymbiont. Journal of Phycology 26: 741751.CrossRefGoogle Scholar
Wetherbee, R., Jackson, C. J. & Repetti, S. I. (2019). The golden paradox – a new heterokont lineage with chloroplasts surrounded by two membranes. Journal of Phycology 55: 257278. https://doi.org/10.1111/jpy.12822.CrossRefGoogle ScholarPubMed
Yang, E. C., Boo, S. M., Bhatacharya, D. et al. (2016). Divergence time estimates and the evolution of lineages in the floridiophyte red algae. Scientific Reports 6: article 21361.CrossRefGoogle Scholar
Yoon, H. S., Hackett, J. D., Ciniglia, C. et al. (2004). A molecular timeline for the origin of photosynthetic eukaryotes. Molecular Biology and Evolution 21: 809818.CrossRefGoogle ScholarPubMed
Young, J. N., Rickaby, R. E. M., Kapralov, M. V. et al. (2012). Adaptive signals in Rubisco reveal a history of ancient atmospheric carbon dioxide. Philosophical Transactions of the Royal Society B 367: 483492.CrossRefGoogle ScholarPubMed
Zhang, R., Nowack, E. C., Price, D. C. et al. (2017). Impact of light intensity and quality on chromatophore and nuclear gene expression in Paulinella chromatophora, an amoeba with nascent photosynthetic organelles. Plant Journal 90: 221234.CrossRefGoogle ScholarPubMed

References

Aguirre, J., Perfectti, F. & Braga, J. C. (2010). Integrating phylogeny, molecular clocks, and the fossil record in the evolution of coralline algae (Corallinales and Sporolithales, Rhodophyta). Paleobiology 36: 519533.CrossRefGoogle Scholar
Aguirre, J., Riding, R. & Braga, J. C. (2000). Diversity of coralline red algae: Origination and extinction patterns from the Early Cretaceous to the Pleistocene. Paleobiology 26: 651667.2.0.CO;2>CrossRefGoogle Scholar
Bartsch, I., Wiencke, C., Bischof, K. et al. (2008). The genus Laminaria sensu lato: Recent insights and developments. European Journal of Phycology 43: 186.CrossRefGoogle Scholar
Beardall, J., Allen, D., Bragg, J. et al. (2009). Allometry and stoichiometry of unicellular, colonial and multicellular phytoplankton. New Phytologist 181: 295309.CrossRefGoogle ScholarPubMed
Bengtson, S., Sallstedt, T., Belivanova, V. et al. (2017). Three-dimensional preservation of cellular and subcellular structures suggests 1.6 billion-year-old crown-group red algae. PLOS Biology 15: e2000735.CrossRefGoogle ScholarPubMed
Berney, C. & Pawlowski, J. (2006). A molecular time-scale for eukaryote evolution recalibrated with the continuous microfossil record. Proceedings of the Royal Society of London B: Biological Sciences 273: 18671872.Google ScholarPubMed
Black, W. á. (1950). The seasonal variation in weight and chemical composition of the common British Laminariaceae. Journal of the Marine Biological Association U. K. 29: 4572.CrossRefGoogle Scholar
Boller, M. L. & Carrington, E. (2006). The hydrodynamic effects of shape and size change during reconfiguration of a flexible macroalga. Journal of Experimental Biology 209: 18941903.CrossRefGoogle ScholarPubMed
Brooke, C. & Riding, R. (1998). Ordovician and Silurian coralline red algae. Lethaia 31: 185195.CrossRefGoogle Scholar
Brown, J. W. & Smith, S. A. (2018). The past sure is tense: On interpreting phylogenetic divergence time estimates. Systematic Biology 67: 340353.CrossRefGoogle ScholarPubMed
Brown, J. W. & Sorhannus, U. (2010). A molecular genetic timescale for the diversification of autotrophic stramenopiles (Ochrophyta): Substantive underestimation of putative fossil ages. PLOS ONE 5: e12759.CrossRefGoogle ScholarPubMed
Buggeln, R. G. (1983). Photoassimilate translocation in brown algae. Progress in Phycological Research 2: 282332.Google Scholar
Butterfield, N. J. (2000). Bangiomorpha pubescens n. gen., n. sp.: Implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology 26: 386404.2.0.CO;2>CrossRefGoogle Scholar
Butterfield, N. J. (2004). A vaucheriacean alga from the middle Neoproterozoic of Spitsbergen: Implications for the evolution of Proterozoic eukaryotes and the Cambrian explosion. Paleobiology 30: 231252.2.0.CO;2>CrossRefGoogle Scholar
Cavalier-Smith, T. (2006). Cell evolution and Earth history: Stasis and revolution. Philosophical Transactions of the Royal Society B 361:9691006.CrossRefGoogle ScholarPubMed
Chapman, A. & Craigie, J. (1977). Seasonal growth in Laminaria longicruris: Relations with dissolved inorganic nutrients and internal reserves of nitrogen. Marine Biology 40: 197205.CrossRefGoogle Scholar
Chisholm, J. R. M., Dauga, C., Ageron, E. et al. (1996). ‘Roots’ in mixotrophic algae. Nature 381: 382382.CrossRefGoogle Scholar
Choi, S.W., Graf, L., Choi, J.W. et al. (2024). Ordovician origin and subsequent diversification of the brown algae. Current Biology 10:1016/j.cub.2023.12.069.Google Scholar
Claessen, D., Rozen, D. E., Kuipers, O. P., Søgaard-Andersen, L. & Van Wezel, G. P. (2014). Bacterial solutions to multicellularity: A tale of biofilms, filaments and fruiting bodies. Nature Reviews Microbiology 12: 115124.CrossRefGoogle ScholarPubMed
Coneva, V. & Chitwood, D. H. (2015). Plant architecture without multicellularity: Quandaries over patterning and the soma-germline divide in siphonous algae. Frontiers in Plant Science 6: 287. https://doi.org/10.3389/fpls.2015.00287.CrossRefGoogle ScholarPubMed
Cornwall, C. E., Boyd, P. W., McGraw, C. M. et al. (2014). Diffusion boundary layers ameliorate the negative effects of ocean acidification on the temperate coralline macroalga Arthrocardia corymbosa. PLOS ONE 9: e97235.CrossRefGoogle ScholarPubMed
Cornwall, C. E., Revill, A. T. & Hurd, C. L. (2015). High prevalence of diffusive uptake of CO2 by macroalgae in a temperate subtidal ecosystem. Photosynthesis Research 124: 181190.CrossRefGoogle Scholar
Del Cortona, A., Jackson, C. J., Van Bel, M. et al. (2020). Neoproterozoic origin and multiple transitions to macroscopic growth in green seaweeds. Proceedings of the National Academy of Sciences USA 117: 25512559.CrossRefGoogle ScholarPubMed
Deloffre, R. (1988). Nouvelle taxonomie des algues Dasycladales. Bulletin des centres de recherches exploration-production Elf-Aquitaine 12: 165217.Google Scholar
Deniaud-Bouët, E., Kervarec, N., Michel, G. et al. (2014). Chemical and enzymatic fractionation of cell walls from Fucales: Insights into the structure of the extracellular matrix of brown algae. Annals of Botany 114: 12031216.CrossRefGoogle ScholarPubMed
Denny, M. W. & King, F. A. (2016). The extraordinary joint material of an articulated coralline alga. II. Modeling the structural basis of its mechanical properties. Journal of Experimental Biology 219: 18431850.CrossRefGoogle ScholarPubMed
Domozych, D. S. & Domozych, C. E. (2014). Multicellularity in green algae: Upsizing in a walled complex. Frontiers in Plant Science 5: 649.CrossRefGoogle Scholar
Dragastan, O. N. & Schlagintweit, F. (2005). Mesozoic algae of family Protohalimedaceae Dragastan, Littler & Littler, 2002 (Chlorophycota): A critical review. Acta Palaeontologica Romaniae 5: 107140.Google Scholar
Eme, L., Sharpe, S. C., Brown, M. W. et al. (2014). On the age of eukaryotes: Evaluating evidence from fossils and molecular clocks. Cold Spring Harbor Perspectives in Biology 6: 165180.CrossRefGoogle ScholarPubMed
Floc’h, J. (1982). Uptake of inorganic ions and their long distance transport in Fucales and Laminariales. In: Srivastava, L. M. (ed.) Synthetic and Degradative Processes in Marine Macrophytes: Proceedings of a Conference Held at Bamfield Marine Station, Bamfield, Vancouver Island, British Columbia, May 16–18. W. de Gruyter. Berlin; New York, NY, pp. 139166.Google Scholar
Flores, E. & Herrero, A. (2010). Compartmentalized function through cell differentiation in filamentous cyanobacteria. Nature Reviews Microbiology 8: 3950.CrossRefGoogle ScholarPubMed
Gibson, T. M., Shih, P. M., Cumming, V. M. et al. (2017). Precise age of Bangiomorpha pubescens dates the origin of eukaryotic photosynthesis. Geology 46: 135138.CrossRefGoogle Scholar
Harder, D. L., Speck, O., Hurd, C. L. et al. (2004). Reconfiguration as a prerequisite for survival in highly unstable flow-dominated habitats. Journal of Plant Growth Regulation 23: 98107.CrossRefGoogle Scholar
Haug, A. & Jensen, A. (1954). Seasonal Variations in the Chemical Composition of Alaria Esculenta, Laminaria Saccharina, Laminaria Hyperborea and Laminaria Digitata From Northern Norway. Akademisk Trykningssentral, Oslo, Norway, p. 14.Google Scholar
Hein, M., Pedersen, M. F. & Sand-Jensen, K. (1995). Size-dependent nitrogen uptake in micro-and macroalgae. Marine Ecology Progress Series 118: 247253.CrossRefGoogle Scholar
Hepburn, C. D., Frew, R. D. & Hurd, C. L. (2012). Uptake and transport of nitrogen derived from sessile epifauna in the giant kelp Macrocystis pyrifera. Aquatic Biology 14: 121128.CrossRefGoogle Scholar
Herron, M. D., Hackett, J. D., Aylward, F. O. et al. (2009). Triassic origin and early radiation of multicellular volvocine algae. Proceedings of the National Academy of Sciences USA 106: 32543258.CrossRefGoogle ScholarPubMed
Hillis-Colinvaux, L. (1980). Ecology and taxonomy of Halimeda: Primary producer of coral reefs. Advances in Marine Biology 17: 1327.CrossRefGoogle Scholar
Hurd, C. L. (2000). Water motion, marine macroalgal physiology, and production. Journal of Phycology 36: 453472.CrossRefGoogle ScholarPubMed
Hurd, C. L., Harrison, P. J., Bischof, K. et al. (2014). Seaweed Ecology and Physiology. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Hurd, C. L., Lenton, A., Tilbrook, B. et al. (2018). Current understanding and challenges for oceans in a higher-CO2 world. Nature Climate Change 8: 686694.CrossRefGoogle Scholar
Jackson, C., Knoll, A. H., Chan, C. X. et al. (2018). Plastid phylogenomics with broad taxon sampling further elucidates the distinct evolutionary origins and timing of secondary green plastids. Scientific Reports 8: 1523.CrossRefGoogle ScholarPubMed
Jacobs, W. P. (1994). Caulerpa. Scientific American 271: 100105.CrossRefGoogle Scholar
Knoll, A. H. (2011). The multiple origins of complex multicellularity. Annual Review of Earth and Planetary Science. 39: 217239.CrossRefGoogle Scholar
Knoll, A. H. (2014). Paleobiological perspectives on early eukaryotic evolution. Cold Spring Harb. Perspectives in Biology 6: a016121.CrossRefGoogle ScholarPubMed
Koehl, M., Silk, W. K., Liang, H. et al. (2008). How kelp produce blade shapes suited to different flow regimes: A new wrinkle. Integrative and Comparative Biology 48: 834851.CrossRefGoogle ScholarPubMed
Kordé, K. B. (1973). Cambrian algae. Nauka, Moscow.Google Scholar
Kraemer, G. P. & Chapman, D. J. (1991). Effects of tensile force and nutrient availability on carbon uptake and cell wall synthesis in blades of juvenile Egregia menziesii (Turn.) Aresch. (Phaeophyta). Journal of Experimental Marine Biology and Ecology 149: 267277.CrossRefGoogle Scholar
Lee, W.-K., Lim, Y.-Y., Leow, A. T.-C. et al. (2017). Biosynthesis of agar in red seaweeds: A review. Carbohydrate Polymers 164: 2330.CrossRefGoogle ScholarPubMed
LoDuca, S., Bykova, N., Wu, M. et al. (2017). Seaweed morphology and ecology during the great animal diversification events of the early Paleozoic: A tale of two floras. Geobiology. 15: 588616.CrossRefGoogle ScholarPubMed
LoDuca, S. T., Kluessendorf, J. & Mikulic, D. G. (2003). A new noncalcified dasycladalean alga from the Silurian of Wisconsin. Journal of Paleontology 77: 11521158.2.0.CO;2>CrossRefGoogle Scholar
Mach, K. J., Nelson, D. V. & Denny, M. W. (2007). Techniques for predicting the lifetimes of wave-swept macroalgae: A primer on fracture mechanics and crack growth. Journal of Experimental Biology 210: 22132230.CrossRefGoogle ScholarPubMed
Magallón, S., Gómez-Acevedo, S., Sánchez-Reyes, L. L. et al. (2015). A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. New Phytologist 207: 437453.CrossRefGoogle ScholarPubMed
Meredith, R. W., Janecka, J. E., Gatesy, J. et al. (2011). Impacts of the cretaceous terrestrial revolution and KPg extinction on mammal diversification. Science 334: 521524.CrossRefGoogle ScholarPubMed
Miller, S. M., Wing, S. R. & Hurd, C. L. (2006). Photoacclimation of Ecklonia radiata (Laminariales, Heterokontophyta) in Doubtful Sound, Fjordland, Southern New Zealand. Phycologia 45: 4452.CrossRefGoogle Scholar
Monro, K. & Poore, A. G. (2009). Performance benefits of growth-form plasticity in a clonal red seaweed. Biological Journal of the Linnean Society 97: 8089.CrossRefGoogle Scholar
Mullineaux, C. W., Mariscal, V., Nenninger, A. et al. (2008). Mechanism of intercellular molecular exchange in heterocyst-forming cyanobacteria. The EMBO journal 27: 12991308.CrossRefGoogle ScholarPubMed
Nash, M. C., Martin, S. & Gattuso, J.-P. (2016). Mineralogical response of the Mediterranean crustose coralline alga Lithophyllum cabiochae to near-future ocean acidification and warming. Biogeosciences 13: 59375945.CrossRefGoogle Scholar
Niklas, K. J. (2000). The evolution of plant body plans: A biomechanical perspective. Annals of Botany 85: 411438.CrossRefGoogle Scholar
Niklas, K. J. (2013). Biophysical and size-dependent perspectives on plant evolution. Journal of Experimental Botany 64: 48174827.CrossRefGoogle ScholarPubMed
Niklas, K. J. & Newman, S. A. (2013). The origins of multicellular organisms. Evolution & Development 15: 4152.CrossRefGoogle ScholarPubMed
Parfrey, L. W., Lahr, D. J. G., Knoll, A. H. et al. (2011). Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proceedings of the National Academy of Sciences USA 108: 1362413629.CrossRefGoogle ScholarPubMed
Peña, V., Vielera, C., Braga, J. C. et al. (2020). Radiation of the coralline red algae (Corallinophycideae, Rhodophyta) crown group as inferred from a multilocus time-calibrated phylogeny. Molecular Phylogenetics and Evolution 150: 106845.CrossRefGoogle Scholar
Porter, S. M. (2004). The fossil record of early eukaryotic diversification. The Paleontological Society Papers 10: 3550.CrossRefGoogle Scholar
Prajapati, V. D., Maheriya, P. M., Jani, G. K. et al. (2014). Carrageenan: A natural seaweed polysaccharide and its applications. Carbohydrate Polymers 105: 97112.CrossRefGoogle ScholarPubMed
Pritchard, D. W., Hurd, C. L., Beardall, J. et al. (2015). Restricted use of nitrate and a strong preference for ammonium reflects the nitrogen ecophysiology of a light-limited red alga. Journal of Phycology 51: 277287.CrossRefGoogle Scholar
Pueschel, C. M. & Cole, K. M. (1982). Rhodophycean pit plugs: An ultrastructural survey with taxonomic implications. American Journal of Botany 69: 703720.CrossRefGoogle Scholar
Rajanikanth, A. (1989). A fossil marine brown alga from the Gangapur formation, Pranhita-Godavari graben. Current Science (Bangalore) 58: 7880.Google Scholar
Raven, J. A. (1997). Miniview: Multiple origins of plasmodesmata. European Journal of Phycology 32: 95101.CrossRefGoogle Scholar
Raven, J. A. (2003). Long-distance transport in non-vascular plants. Plant, Cell & Environment 26: 7385.CrossRefGoogle Scholar
Riding, R. & Braga, J. C. (2005). Halysis Høeg, 1932 – An Ordovician coralline red alga? Journal of Paleontology 79: 835841.CrossRefGoogle Scholar
Riding, R., Cope, J. C. W. & Taylor, P. D. (1998). A coralline-like red alga from the lower Ordovician of Wales. Palaeontology 41: 10691076.Google Scholar
Roberson, J. A. & Coyer, L. M. (2004). Variation in blade morphology of the kelp Eisenia arborea: Incipient speciation due to local water motion? Marine Ecology Progress Series 282: 115128.CrossRefGoogle Scholar
Rösler, A., Perfectti, F., Peña, V. et al. (2017). Timing of the evolutionary history of Corallinaceae (Corallinales, Rhodophyta). Journal of Phycology 53: 567576.CrossRefGoogle ScholarPubMed
Sánchez-Baracaldo, P., Raven, J. A., Pisani, D. et al. (2017). Early photosynthetic eukaryotes inhabited low-salinity habitats. Proceedings of the National Academy of Sciences USA 114: E7737E7745.CrossRefGoogle ScholarPubMed
Schirrmeister, B. E., Antonelli, A. & Bagheri, H. C. (2011). The origin of multicellularity in cyanobacteria. BMC Evolutionary Biology 11: 45.CrossRefGoogle ScholarPubMed
Schirrmeister, B. E., de Vos, J. M., Antonelli, A. et al. (2013). Evolution of multicellularity coincided with increased diversification of cyanobacteria and the Great Oxidation Event. Proceedings of the National Academy of Sciences USA 110: 17911796.CrossRefGoogle ScholarPubMed
Silberfeld, T., Leigh, J. W., Verbruggen, H. et al. (2010). A multi-locus time-calibrated phylogeny of the brown algae (Heterokonta, Phaeophyceae): Investigating the evolutionary nature of the ‘Brown Algal Crown Radiation’. Molecular Phylogenetics and Evolution 56: 659674.CrossRefGoogle ScholarPubMed
Steneck, R. (1985). Adaptations of crustose coralline algae to herbivory: Patterns in space and time. In Toomey, D. F. & Nitecki, M. H. (eds.) Paleoalgology. Springer, Berlin, Heidelberg, pp. 352366.CrossRefGoogle Scholar
Steneck, R. S. (1986). The ecology of coralline algal crusts: Convergent patterns and adaptative strategies. Annual Review of Ecology and Systematics 17: 273303.CrossRefGoogle Scholar
Tang, Q., Pang, K., Yuan, X. & Xiao, S. (2020). A one-billion-year-old multicellular chlorophyte. Nature Ecology and Evolution 10: 1038/s41559-020-1122-9.Google Scholar
Taylor, R. & Rees, T. A. V. (1998). Excretory products of mobile epifauna as a nitrogen source for seaweeds. Limnology and Oceanography 43: 600606.CrossRefGoogle Scholar
Terauchi, A. M. (2011). Ultrastructural Study on Plasmodesmata in the Brown Alga Dictyota dichotoma (Dictyotales, Phaeophyceae). Master, Hokkaido University, p. 62.Google Scholar
Terauchi, M., Nagasato, C. & Motomura, T. (2015). Plasmodesmata of brown algae. Journal of Plant Research 128: 715.CrossRefGoogle ScholarPubMed
Tomitani, A., Knoll, A. H., Cavanaugh, C. M. et al. (2006). The evolutionary diversification of cyanobacteria: Molecular-phylogenetic and paleontological perspectives. Proceedings of the National Academy of Sciences USA 103: 54425447.CrossRefGoogle ScholarPubMed
van den Hoek, C., Mann, D. G. & Jahns, H. M. (1995). Algae: An Introduction to Phycology. Cambridge University Press, Cambridge, p. 640.Google Scholar
Verbruggen, H., Ashworth, M., LoDuca, S. T. et al. (2009). A multi-locus time-calibrated phylogeny of the siphonous green algae. Molecular Phylogenetics and Evolution 50: 642653.CrossRefGoogle ScholarPubMed
Wallentinus, I. (1984). Comparisons of nutrient uptake rates for Baltic macroalgae with different thallus morphologies. Marine Biology 80: 215225.CrossRefGoogle Scholar
Warnock, R. C. M., Parham, J. F., Joyce, W. G. et al. (2015). Calibration uncertainty in molecular dating analyses: There is no substitute for the prior evaluation of time priors. Proceedings of the Royal Society B 282: 20141013. https://doi.org/10.1098/rspb.2014.1013.CrossRefGoogle ScholarPubMed
Wood, R., Liu, A. G., Bowyer, F. et al. (2019). Integrated records of environmental change and evolution challenge the Cambrian Explosion. Nature Ecology and Evolution 3: 528538.CrossRefGoogle ScholarPubMed
Xiao, S. H., Knoll, A. H., Yuan, X. L. et al. (2004). Phosphatized multicellular algae in the Neoproterozoic Doushantuo Formation, China, and the early evolution of florideophyte red algae. American Journal of Botany 91: 214227.CrossRefGoogle ScholarPubMed
Xiao, S. H., Zhang, Y. & Knoll, A. H. (1998). Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature 391: 553558.CrossRefGoogle Scholar
Yang, E. C., Boo, S. M., Bhattacharya, D. et al. (2016). Divergence time estimates and the evolution of major lineages in the florideophyte red algae. Scientific Reports 6: 21361.CrossRefGoogle ScholarPubMed
Yang, Z., Ma, X., Wang, Q. et al. (2023). Phylotranscriptomics unveil a Paleoproterozoic-Mesoproterozoic origin and deep relationships of the Viridiplantae. Nature Communications 14: 10.1038/s41467-023-41137-5.Google ScholarPubMed
Ye, Q., Tong, J., Xiao, S. et al. (2015). The survival of benthic macroscopic phototrophs on a Neoproterozoic snowball Earth. Geology 43: 507510.CrossRefGoogle Scholar
Yoon, H. S., Hackett, J. D., Ciniglia, C. et al. (2004). A molecular timeline for the origin of photosynthetic eukaryotes. Molecular Biology and Evolution 21: 809818.CrossRefGoogle ScholarPubMed

References

Albayrak, I., Nikora, V., Miler, O. et al. (2012). Flow-plant interactions at a leaf scale: Effects of leaf shape, serration, roughness and flexural rigidity. Aquatic Sciences 74: 267286.CrossRefGoogle Scholar
Aulio, K. (1985). Differential expression of diel acid metabolism in two life forms of Littorella uniflora (L.) Aschers. New Phytologist 100: 533536.CrossRefGoogle Scholar
Bagger, J. & Madsen, T. V. (2004). Morphological acclimation of aquatic Littorella uniflora to sediment CO2 concentration and wave exposure. Functional Ecology 18: 946951.CrossRefGoogle Scholar
Binzer, T., Sand-Jensen, K. & Middelboe, A.-L. (2006). Community photosynthesis of aquatic macrophytes. Limnology and Oceanography 51: 27222733.CrossRefGoogle Scholar
Black, C. C. & Osmond, C. B. (2003). Crassulacean acid metabolism: ‘Working the night shift’. Photosynthesis Research 76: 329341.CrossRefGoogle ScholarPubMed
Borum, J., Pedersen, O., Kotula, L. et al. (2016). Photosynthetic response to globally increasing CO2 of co-occurring temperate seagrass species. Plant Cell and Environment 39: 12401250.CrossRefGoogle ScholarPubMed
Bowes, G., Rao, S. K., Estavillo, G. M. et al. (2002). C4 mechanisms in aquatic angiosperms: Comparisons with terrestrial C4 systems. Functional Plant Biology 29: 379392.CrossRefGoogle ScholarPubMed
Bräutigam, A., Schliesky, S., Kuelahoglu, C. et al. (2014). Towards an integrative model of C4 photosynthetic subtypes: Insights from comparative transcriptome analysis of NAD-ME, NADP-ME, and PEP-CK C4 species. Journal of Experimental Botany 65: 35793593.CrossRefGoogle ScholarPubMed
Carr, H. & Axelsson, L. (2008). Photosynthetic utilization of bicarbonate in Zostera marina is reduced by inhibitors of mitochondrial ATPase and electron transport. Plant Physiology 147: 879885.CrossRefGoogle ScholarPubMed
Casati, P., Lara, M. V. & Andreo, C. S. (2000). Induction of a C4-like mechanism of CO2 fixation in Egeria densa, a submersed aquatic species. Plant Physiology 123: 16111621.CrossRefGoogle Scholar
Chambers, P. A. & Maberly, S. C. (2023). Freshwater plants. In: Jones, I. D. and Smol, J. P. (eds.) Wetzel’s Limnology: Lake and River Ecosystems. Academic Press, Amsterdam, pp. 759816.Google Scholar
Chen, L. Y., Chen, J. M., Gituru, R. W. et al. (2012). Generic phylogeny, historical biogeography and character evolution of the cosmopolitan aquatic plant family Hydrocharitaceae. BMC Evolutionary Biology 12: 30. https://doi.org/10.1186/1471–2148–12–30.CrossRefGoogle ScholarPubMed
Christenhusz, M. J. M. & Byng, J. W. (2016). The number of known plants species in the world and its annual increase. Phytotaxa 261: 201207.CrossRefGoogle Scholar
Christin, P.-A., Besnard, G., Samaritani, E. et al. (2008). Oligocene CO2 decline promoted C4 photosynthesis in grasses. Current Biology 18: 3743.CrossRefGoogle ScholarPubMed
Cox, C., Goffinet, B., Wickett, N. et al. (2010). Moss diversity: A molecular phylogenetic analysis of genera. Phytotaxa 9: 175195.CrossRefGoogle Scholar
Crandall-Stotler, B., Stotler, R. E. & Long, D. G. (2009). Phylogeny and classification of the Marchantiophyta. Edinburgh Journal of Botany 66: 155198.CrossRefGoogle Scholar
den Hartog, C. & Kuo, J. (2006). Taxonomy and biogeography of seagrasses. In: Larkum, A. W. D., Orth, R. J. & Duarte, C. M. (eds.) Seagrasses: Biology, Ecology and Conservation. Springer, Dordrecht, The Netherlands, pp. 123.Google Scholar
den Hartog, C. & Triest, L. (2020). A profound view and discourse on the typification and status of three confused taxa: Ruppia maritima, R. spiralis and R. cirrhosa. Botanica Marina 63: 229239.CrossRefGoogle Scholar
Denny, M. W. (1993). Air and Water: The Biology and Physics of Life’s Media, Princeton University Press, Princeton, NJ.CrossRefGoogle Scholar
Du, Z.-Y. & Wang, Q.-F. (2014). Correlations of life form, pollination mode and sexual system in aquatic angiosperms. PLOS ONE 9: e115653.CrossRefGoogle ScholarPubMed
Duarte, C. M. (2016). Reviews and syntheses: Hidden Forests, the role of vegetated coastal habitats on the ocean carbon budget. Biogeosciences 14: 301310.CrossRefGoogle Scholar
Duarte, C. M., Losada, I. J., Hendriks, I. E. et al. (2013). The role of coastal plant communities for climate change mitigation and adaptation. Nature Climate Change 3: 961968.CrossRefGoogle Scholar
Edwards, E. J. (2019). Evolutionary trajectories, accessibility and other metaphors: The case of C4 and CAM photosynthesis. New Phytologist 223: 17421755.CrossRefGoogle ScholarPubMed
Enriquez, S. (2005). Light absorption efficiency and the package effect in the leaves of the seagrass Thalassia testudinum. Marine Ecology Progress Series 289: 141150.CrossRefGoogle Scholar
Friis, E. M., Pedersen, K. R. & Crane, P. R. (2001). Fossil evidence of water lilies (Nymphaeales) in the Early Cretaceous. Nature 410: 357360.CrossRefGoogle ScholarPubMed
Frost-Christensen, H., Jørgensen, L. B. & Floto, F. (2003). Species specificity of resistance to oxygen diffusion in thin cuticular membranes from amphibious plants. Plant Cell and Environment 26: 561569.CrossRefGoogle Scholar
Glime, J. M. (2021). Aquatic and wet anthocerotophyta. In Bryophyte Ecology, Vol. 4. Habitats and roles, eBook available at http://digitalcommons.mtu.edu/bryophyte-ecology.Google Scholar
Gomez, B., Daviero-Gomez, V., Coiffard, C. et al. (2015). Montsechia, an ancient aquatic angiosperm. Proceedings of the National Academy of Sciences USA 112: 1098510988.CrossRefGoogle ScholarPubMed
Gontero, B. & Maberly, S. C. (2022). Biochemical carbon dioxide concentrating mechanisms. In: Maberly, S. C. & Gontero, B. (eds.) Blue Planet, Red and Green Photosynthesis: Productivity and Carbon Cycling in Aquatic Ecosystems. ISTE-Wiley, London, pp. 133166.CrossRefGoogle Scholar
Graham, L., Lewis, L. A., Taylor, W. et al. (2014). Early terrestrialization: Transition from algal to bryophyte grade. In: Hanson, D. T. & Rice, S. K. (eds.) Photosynthesis in Bryophytes and Early Land Plants, Vol. 37. Springer Science +Business Media, Dordercht, The Netherlands, pp. 928.CrossRefGoogle Scholar
Griffiths, H. (1992). Carbon isotope discrimination and the integration of carbon assimilation pathways in terrestrial CAM plants. Plant, Cell and Environment 15: 10511062.CrossRefGoogle Scholar
Hetherington, A. J., DiMichele, W. A., Lucas, S. G. et al. (2019). Tiny Rhizomorphic Rooting Systems from the Early Permian Abo Formation of New Mexico, USA. International Journal of Plant Sciences 180: 504512.CrossRefGoogle Scholar
Hilt, S., Brothers, S., Jeppesen, E. et al. (2017). Translating regime shifts in shallow lakes into changes in ecosystem functions and services. BioScience 67: 928936.CrossRefGoogle Scholar
Holaday, A. S. & Bowes, G. (1980). C4 acid metabolism and dark CO2 fixation in a submersed aquatic macrophyte (Hydrilla verticillata). Plant Physiology 65: 331335.CrossRefGoogle Scholar
Huang, W., Han, S., Jiang, H. et al. (2020a). External α-carbonic anhydrase and solute carrier 4 are required for bicarbonate uptake in a freshwater angiosperm. Journal of Experimental Botany 71: 60046014.CrossRefGoogle Scholar
Huang, W. M., Han, S. J., Xing, Z. F. et al. (2020b). Responses of leaf anatomy and CO2 concentrating mechanisms of the aquatic plant Ottelia cordata to variable CO2. Frontiers in Plant Science 11. 1261. https://doi.org/10.3389/fpls.2020.01261.CrossRefGoogle Scholar
Ito, Y., Tanaka, N., Barfod, A. S. et al. (2017). From terrestrial to aquatic habitats and back again: Molecular insights into the evolution and phylogeny of Callitriche (Plantaginaceae). Botanical Journal of the Linnean Society 184: 4658.CrossRefGoogle Scholar
Iversen, L. L., Winkel, A., Baastrup-Spohr, L. et al. (2019). Catchment properties and the photosynthetic trait composition of freshwater plant communities. Science 366: 878881.CrossRefGoogle ScholarPubMed
Keeley, J. E. (1981). Isoetes howelli – A submerged aquatic CAM plant. American Journal of Botany 68: 420424.CrossRefGoogle Scholar
Keeley, J. E. (1998a). C4 photosynthetic modifications in the evolutionary transition from land to water in aquatic grasses. Oecologia 116: 8597.CrossRefGoogle ScholarPubMed
Keeley, J. E. (1998b). CAM photosynthesis in submerged aquatic plants. Botanical Review 64: 121175.CrossRefGoogle Scholar
Keeley, J. E. & Busch, G. (1984). Carbon assimilation characteristics of the aquatic CAM plant, Isoetes howellii. Plant Physiology 76: 525530.CrossRefGoogle ScholarPubMed
Kirk, J. T. O. (2010). Light and Photosynthesis in Aquatic Environments, 3rd ed., Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Klančnik, K., Pančić, M. & Gaberščik, A. (2014). Leaf optical properties in amphibious plant species are affected by multiple leaf traits. Hydrobiologia 737: 121130.CrossRefGoogle Scholar
Klavsen, S. K. & Maberly, S. C. (2009). Crassulacean acid metabolism contributes significantly to the in situ carbon budget in a population of the invasive aquatic macrophyte Crassula helmsii. Freshwater Biology 54: 105118.CrossRefGoogle Scholar
Klavsen, S. K., Madsen, T. V. & Maberly, S. C. (2011). Crassulacean acid metabolism in the context of other carbon-concentrating mechanisms in freshwater plants: A review. Photosynthesis Research 109: 269279.CrossRefGoogle ScholarPubMed
Koch, M., Bowes, G., Ross, C. et al. (2013). Climate change and ocean acidification effects on seagrasses and marine macroalgae. Global Change Biology 19: 103132.CrossRefGoogle ScholarPubMed
Krause-Jensen, D. & Sand-Jensen, K. (1998). Light attenuation and photosynthesis of aquatic plant communities. Limnology and Oceanography 43: 396407.CrossRefGoogle Scholar
Kuo, J. (2011). Cymodoceaceae. In Wilson, A. (ed.) Flora of Australia, Vol. 39, Australian Biological Resources Study, Canberra, pp. 120134.Google Scholar
Kuo, J. (2020). Taxonomy of the genus Halophila thouars (Hydocharitaceae): A review. Plants 9: 1732.CrossRefGoogle ScholarPubMed
Lamb, J. B., van de Water, J. A. J. M., Bourne, D. G. et al. (2017). Seagrass ecosystems reduce exposure to bacterial pathogens of humans, fishes, and invertebrates. Science 355: 731733.CrossRefGoogle ScholarPubMed
Larkum, A. W. D., Davey, P. A., Kuo, J. et al. (2017). Carbon-concentrating mechanisms in seagrasses. Journal of Experimental Botany 68: 37733784.CrossRefGoogle ScholarPubMed
Larkum, A. W. D., Orth, R. J. & Duarte, C. M. (2006). Seagrasses: Biology, Ecology, and Conservation. Springer, Dordrecht, the Netherlands.Google Scholar
Les, D. H. (2015). Water from the rock: Ancient aquatic angiosperms flow from the fossil record. Proceedings of the National Academy of Sciences USA 112: 1082510826.CrossRefGoogle ScholarPubMed
Les, D. H., Cleland, M. A. & Waycott, M. (1997). Phylogenetic studies in Alismatidae, II: Evolution of marine angiosperms (seagrasses) and hydrophily. Systematic Botany 22: 443463.CrossRefGoogle Scholar
Les, D. H. & Tippery, N. (2013). In time and with water … the systematics of alismatid monocotyledons. In: Wilkin, P. & Mayo, S. J., eds., Early Events in Monocot Evolution. Cambridge University Press, Cambridge, pp. 118164.Google Scholar
Li, L., Lan, Z., Chen, J. & Song, Z. (2018). Allocation to clonal and sexual reproduction and its plasticity in Vallisneria spinulosa along a water-depth gradient. Ecosphere 9: e02070.CrossRefGoogle Scholar
Liu, Y., Johnson, M. G., Cox, C. J. et al. (2019). Resolution of the ordinal phylogeny of mosses using targeted exons from organellar and nuclear genomes. Nature Communications 10: 1485.CrossRefGoogle ScholarPubMed
Lloyd, J. & Farquhar, G. D. (1996). The CO2 dependence of photosynthesis, plant growth responses to elevated atmospheric CO2 concentrations and their interaction with soil nutrient status. 1. General principles and forest ecosystems. Functional Ecology 10: 432.CrossRefGoogle Scholar
Lucas, W. J. (1982). Mechanism of acquisition of exogenous bicarbonate by internodal cells of Chara corallina. Planta 156: 181192.CrossRefGoogle ScholarPubMed
Maberly, S. C. (1985). Photosynthesis by Fontinalis antipyretica 2. Assessment of environmental factors limiting photosynthesis and production. New Phytologist 100: 141155.CrossRefGoogle Scholar
Maberly, S. C. (1993). Morphological and photosynthetic characteristics of Potamogeton obtusifolius from different depths. Journal of Aquatic Plant Management 31: 3439.Google Scholar
Maberly, S. C. (2014). The fitness of the environments of air and water for photosynthesis, growth, reproduction and dispersal of photoautotrophs: An evolutionary and biogeochemical perspective. Aquatic Botany 118: 413.CrossRefGoogle Scholar
Maberly, S. C., Berthelot, S. A., Stott, A. W. et al. (2015). Adaptation by macrophytes to inorganic carbon down a river with naturally variable concentrations of CO2. Journal of Plant Physiology 172: 120127.CrossRefGoogle Scholar
Maberly, S. C. & Gontero, B. (2017). Ecological imperatives for aquatic CO2-concentrating mechanisms. Journal of Experimental Botany 68: 37973814.CrossRefGoogle ScholarPubMed
Maberly, S. C. & Gontero, B. (2018). Trade-offs and synergies in the structural and functional characteristics of leaves photosynthesizing in aquatic environments. In: Adams III, W. W., Terashima, I. & Eaton-Rye, J. J. (eds.) The Leaf: A Platform for Performing Photosynthesis. Springer International Publishing, Cham, pp. 307343.CrossRefGoogle Scholar
Maberly, S. C., Gontero, B., Puppo, C. et al. (2021). Inorganic carbon uptake in a freshwater diatom, Asterionella formosa (Bacillariophyceae): From ecology to genomics. Phycologia 60: 427438.CrossRefGoogle Scholar
Maberly, S. C. & Madsen, T. V. (1998). Affinity for CO2 in relation to the ability of freshwater macrophytes to use HCO3. Functional Ecology 12: 99106.CrossRefGoogle Scholar
Maberly, S. C. & Spence, D. H. N. (1989). Photosynthesis and photorespiration in fresh-water organisms – amphibious plants. Aquatic Botany 34: 267286.CrossRefGoogle Scholar
Madsen, T. V. (1987). The effect of different growth conditions on dark and light carbon assimilation in Littorella uniflora. Physiologia Plantarum 70: 183188.CrossRefGoogle Scholar
Madsen, T. V. & Breinholt, M. (1995). Effects of air contact on growth, inorganic carbon sources and nitrogen uptake by an amphibious freshwater macrophyte. Plant Physiology 107: 149154.CrossRefGoogle ScholarPubMed
Madsen, T. V., Olesen, B. & Bagger, J. (2002). Carbon acquisition and carbon dynamics by aquatic isoetids. Aquatic Botany 73: 351371.CrossRefGoogle Scholar
Magnin, N. C., Cooley, B. A., Reiskind, J. B. et al. (1997). Regulation and localization of key enzymes during the induction of Kranz-less, C4-type photosynthesis in Hydrilla verticillata. Plant Physiology 115: 16811689.CrossRefGoogle ScholarPubMed
Mendonça, R., Müller, R. A., Clow, D. et al. (2017). Organic carbon burial in global lakes and reservoirs. Nature Communications 8: 1694.CrossRefGoogle ScholarPubMed
Morris, D. P., Zagarese, H., Williamson, C. E. et al. (1995). The attentuation of solar UV radiation in lakes and the role of dissolved organic carbon. Limnology and Oceanography 40: 13811391.CrossRefGoogle Scholar
Morris, J. L., Puttick, M. N., Clark, J. W. et al. (2018). The timescale of early land plant evolution. Proceedings of the National Academy of Sciences USA 115: E2274E2283.CrossRefGoogle ScholarPubMed
Murphy, K., Efremov, A., Davidson, T. A. et al. (2019). World distribution, diversity and endemism of aquatic macrophytes. Aquatic Botany 158: 103127.CrossRefGoogle Scholar
Olsen, J. L., Rouze, P., Verhelst, B. et al. (2016). The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. Nature 530: 331335.CrossRefGoogle ScholarPubMed
Papenbrock, J. (2012). Highlights in seagrasses’ phylogeny, physiology, and metabolism: What makes them special? ISRN Botany 2012: 103892.CrossRefGoogle Scholar
Pedersen, O. (1993). Long-distance water transport in aquatic plants. Plant Physiology 103: 13691375.CrossRefGoogle ScholarPubMed
Pedersen, O., Rich, S. M., Pulido, C. et al. (2011). Crassulacean acid metabolism enhances underwater photosynthesis and diminishes photorespiration in the aquatic plant Isoetes australis. New Phytologist 190: 332339.CrossRefGoogle ScholarPubMed
Pedersen, O. & Sand-Jensen, K. (1992). Adaptations of submerged Lobelia dortmanna to aerial life form: Morphology, carbon sources and oxygen dynamics. Oikos 65: 8996.CrossRefGoogle Scholar
PPG I. (2016). A community-derived classification for extant lycophytes and ferns: PPG I. Journal of Systematics and Evolution 54: 563603.CrossRefGoogle Scholar
Prins, H. B. A. & Deguia, M. B. (1986). Carbon source of the water soldier, Stratiotes aloides L. Aquatic Botany 26: 225234.CrossRefGoogle Scholar
Prins, H. B. A., & Elzenga, J. T. M. (1989). Bicarbonate utilization: Function and mechanism. Aquatic Botany, 34: 5983.CrossRefGoogle Scholar
Prins, H. B. A., Snel, J. F. H., Helder, R. J. et al. (1980). Photosynthetic HCO3 utilization and OH excretion in aquatic angiosperms: Light induced pH changes at the leaf surface. Plant Physiology 66: 818822.CrossRefGoogle ScholarPubMed
Prins, H. B. A., Snel, J. F. H., Zanstra, P. E. et al. (1982). The mechanisms of bicarbonate assimilation by the polar leaves of Potamogeton and Elodea: CO2 concentrations at the leaf surface. Plant Cell and Environment 5: 207214.CrossRefGoogle Scholar
Raven, J. (2018). Blue carbon: Past, present and future, with emphasis on macroalgae. Biology Letters 14: 20180336.CrossRefGoogle ScholarPubMed
Raven, J. A. (2000). Land plant biochemistry. Philosophical Transactions of the Royal Society B 355: 833846.CrossRefGoogle ScholarPubMed
Raven, J. A., Beardall, J. & Giordano, M. (2014). Energy costs of carbon dioxide concentrating mechanisms in aquatic organisms. Photosynthesis Research 121: 111124.CrossRefGoogle ScholarPubMed
Reiskind, J. B., Madsen, T. V., Van Ginkel, L. C. et al. (1997). Evidence that inducible C4 type photosynthesis is a chloroplastic CO2 concentrating mechanism in Hydrilla, a submersed monocot. Plant Cell and Environment 20: 211220.CrossRefGoogle Scholar
Riederer, M. & Schreiber, L. (2001). Protecting against water loss: Analysis of the barrier properties of plant cuticles. Journal of Experimental Botany 52: 20232032.CrossRefGoogle ScholarPubMed
Robe, W. E., & Griffiths, H. (2000). Physiological and photosynthetic plasticity in the amphibious, freshwater plant, Littorella uniflora, during the transition from aquatic to dry terrestrial environments. Plant Cell and Environment, 23: 10411054.CrossRefGoogle Scholar
Rubio, L., Garcia, D., Garcia-Sanchez, M. J. et al. (2017). Direct uptake of HCO3 in the marine angiosperm Posidonia oceanica (L.) Delile driven by a plasma membrane H+ economy. Plant Cell and Environment 40: 28202830.CrossRefGoogle ScholarPubMed
Sage, R. F., Monson, R. K., Ehleringer, J. R. et al. (2018). Some like it hot: The physiological ecology of C4 plant evolution. Oecologia 187: 941966.CrossRefGoogle ScholarPubMed
Sage, R. F., Sage, T. L. & Kocacinar, F. (2012). Photorespiration and the evolution of C4 photosynthesis. Annual Review of Plant Biology 63: 1947.CrossRefGoogle ScholarPubMed
Salvucci, M. E. & Bowes, G. (1981). Induction of reduced photorespiratory activity in submersed and amphibious aquatic macrophytes. Plant Physiology 67: 335340.CrossRefGoogle ScholarPubMed
Sand-Jensen, K. (2003). Drag and reconfiguration of freshwater macrophytes. Freshwater Biology 48: 271283.CrossRefGoogle Scholar
Sand-Jensen, K., Binzer, T. & Middelboe, A. L. (2007). Scaling of photosynthetic production of aquatic macrophytes – a review. Oikos 116: 280294.Google Scholar
Scheffer, M., Hosper, S. H., Meijer, M. L. et al. (1993). Alternative equilibria in shallow lakes. Trends in Ecology & Evolution 8: 275279.CrossRefGoogle ScholarPubMed
Schuster, A.-C., Burghardt, M. & Riederer, M. (2017). The ecophysiology of leaf cuticular transpiration: Are cuticular water permeabilities adapted to ecological conditions? Journal of Experimental Botany 68: 52715279.CrossRefGoogle ScholarPubMed
Sculthorpe, C. D. (1967). The Biology of Aquatic Vascular Plants. Edward Arnold, London.Google Scholar
Shao, H., Gontero, B., Maberly, S. C. et al. (2017). Responses of Ottelia alismoides, an aquatic plant with three CCMs, to variable CO2 and light. Journal of Experimental Botany 68: 39853995.CrossRefGoogle ScholarPubMed
Silvera, K., Neubig, K. M., Whitten, W. M. et al. (2010). Evolution along the crassulacean acid metabolism continuum. Functional Plant Biology 37: 9951010.CrossRefGoogle Scholar
Spence, D. H. N. & Chrystal, J. (1970). Photosynthesis and zonation of fresh-water macrophytes. 2. Adaptability of species of deep and shallow water. New Phytologist 69: 217217.CrossRefGoogle Scholar
Steemann Nielsen, E. (1947). Photosynthesis of aquatic plants with special reference to the carbon sources. Dansk Botanisk Arkiv 12: 171.Google Scholar
Vadstrup, M. & Madsen, T. V. (1995). Growth limitation of submerged aquatic macrophytes by inorganic carbon. Freshwater Biology 34: 411419.CrossRefGoogle Scholar
van Ginkel, L. C., Bowes, G., Reiskind, J. B. et al. (2001). A CO2-flux mechanism operating via pH-polarity in Hydrilla verticillata leaves with C3 and C4 photosynthesis. Photosynthesis Research 68: 8188.CrossRefGoogle Scholar
Verpoorter, C., Kutser, T., Seekell, D. A. et al. (2014). A global inventory of lakes based on high-resolution satellite imagery. Geophysical Research Letters 41: 63966402.CrossRefGoogle Scholar
Vestergaard, O. & Sand-Jensen, K. (2000). Alkalinity and trophic state regulate aquatic plant distribution in Danish lakes. Aquatic Botany 67: 85107.CrossRefGoogle Scholar
Voznesenskaya, E. V., Franceschi, V. R., Kiirats, O. et al. (2001). Kranz anatomy is not essential for terrestrial C4 plant photosynthesis. Nature 414: 543546.CrossRefGoogle Scholar
Walker, N. A., Smith, F. A. & Cathers, I. R. (1980). Bicarbonate assimilation by fresh-water charophytes and higher plants: I. Membrane transport of bicarbonate ions is not proven. The Journal of Membrane Biology, 57: 5158.CrossRefGoogle Scholar
Wang, M., Hu, C., Barnes, B. B. et al. (2019). The great Atlantic Sargassum belt. Science 365: 8387.CrossRefGoogle ScholarPubMed
Westlake, D. F. (1963). Comparisons of plant productivity. Biological Reviews 38: 385425.CrossRefGoogle Scholar
Wickett, N. J., Mirarab, S., Nguyen, N. et al. (2014). Phylotranscriptomic analysis of the origin and early diversification of land plants. Proceedings of the National Academy of Sciences USA 111: E4859E4868.CrossRefGoogle ScholarPubMed
Winkel, A. & Borum, J. (2009). Use of sediment CO2 by submersed rooted plants. Annals of Botany 103: 10151023.CrossRefGoogle ScholarPubMed
Wium-Andersen, S. (1971). Photosynthetic uptake of free CO2 by roots of Lobelia dortmanna. Physiologia Plantarum 25: 245248.CrossRefGoogle Scholar
Yin, L., Li, W., Madsen, T. V., Maberly, S. C. et al. (2017). Photosynthetic inorganic carbon acquisition in 30 freshwater macrophytes. Aquatic Botany 140: 4854.CrossRefGoogle Scholar
Zhang, Y., Yin, L., Jiang, H.-S. et al. (2014). Biochemical and biophysical CO2 concentrating mechanisms in two species of freshwater macrophyte within the genus Ottelia (Hydrocharitaceae). Photosynthesis Research 121: 285297.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×