Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-05T12:21:40.886Z Has data issue: false hasContentIssue false

1 - Environmental Changes Impacting on, and Caused by, the Evolution of Photosynthetic Organisms

Published online by Cambridge University Press:  24 October 2024

Mario Giordano
Affiliation:
Università degli Studi di Ancona, Italy
John Beardall
Affiliation:
Monash University, Victoria
John A. Raven
Affiliation:
University of Dundee
Stephen C. Maberly
Affiliation:
UK Centre for Ecology & Hydrology, Lancaster
Get access

Summary

The origin of life could have involved autotrophy, but this is most probably chemolithotrophic rather than photolithotrophic. There is evidence, from the natural abundance of carbon isotopes, of autotrophy involving Rubisco and the Benson–Calvin–Bassham cycle from about 4 Ga. However, other autotrophic CO2 fixation pathways could also have occurred. Evidence on the evolution of photosynthetic reactions suggests an early origin of the photochemical reaction centre, with the possibility of the occurrence of two photosystems in series (photosystem II plus photosystem I) and the possibility of oxygenic photosynthesis, before the origin of the single photosystem (reaction centre I or reaction centre II) photosynthesis in the multiple clades of anoxygenic photosynthetic bacteria. The origin of photosystem II and photosystem I preceded the origin of cyanobacteria and the subsequent Great Oxidation Event at about 2.4–2.3 Ga. The occurrence of oxygenic photolithotrophy is a necessary, but not sufficient, condition for the occurrence of the Great Oxidation Event and the Neoproterozoic Oxidation Event. There is no consensus on what other factors are involved in initiating the Great Oxidation Event and the Neoproterozoic Oxidation Event.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alcott, L. J., Mills, B. J. W. & Poulton, S. W. (2019). Stepwise Earth oxygenation is an inherent property of global biogeochemical cycling. Science 366: 13331337.CrossRefGoogle ScholarPubMed
Bauer, A. M., Fisher, C. M., Vervoort, J. D. et al. (2017). Coupling zircon Lu-Hf and U-Pb isotopic analyses of the oldest terrestrial crust, the > 4.03 Ga Acasta Gneiss Complex. Earth and Planetary Science Letters 458: 3748. https://doi.org/10.1016/j.epsl.2016.10036.CrossRefGoogle Scholar
Beatty, J. T., Overmann, J., Line, M. T. et al. (2005). An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent. Proceedings of the National Academy of Science USA 102: 03060310.CrossRefGoogle ScholarPubMed
Bottke, W. F., Vosktouhlicky, D., Marche, S. et al. (2015). Dating the Moon-forming impact event with asteroidal impacts. Science 348: 321323.CrossRefGoogle Scholar
Canfield, D. E. (2014). Oxygen: A Four Billion Year History. Princeton University Press, Princeton, NJ, p. 216.Google Scholar
Cardona, T., Murray, J. W., & Rutherford, A. W. (2015). Origin and evolution of water oxidation before the last common ancestor of cyanobacteria. Molecular Biology and Evolution 32: 13101328.CrossRefGoogle ScholarPubMed
Cardona, T., Sánchez-Baracaldo, P., Rutherford, A. W. et al. (2019). Early Archean origin of photosystem II. Geobiology 17: 127150.CrossRefGoogle ScholarPubMed
Carwood, P. A., Hawkesworth, C. J., Pisorevsky, S. A. et al. (2018). Geological archive of the onset of plate tectonics. Philosophical Transactions of the Royal Society A 376: 20170405.CrossRefGoogle Scholar
Catling, D. C. & Zahnle, K. J. (2020). The Archean atmosphere. Science Advances 6: eaax1420.CrossRefGoogle ScholarPubMed
Clausen, J. & Junge, W. (2004). Detection of an intermediate of photosynthetic water oxidation. Nature 438: 10401044.Google Scholar
Clausen, J. & Junge, W. (2005). Search for intermediates of photosynthetic water oxidation. Photosynthesis Research 84: 339345.CrossRefGoogle ScholarPubMed
Clausen, J., Junge, W., Dau, H. et al. (2005). Photosynthetic water oxidation at high O2 backpressure monitored by delayed chlorophyll fluorescence. Biochemistry 44: 1277512779.CrossRefGoogle ScholarPubMed
Connelly, J. N. & Bizzarro, M. (2016). Lead isotope evidence for a young formation age of the Earth-Moon system. Earth and Planetary Science Letters 452: 3643.CrossRefGoogle Scholar
Damer, B. & Deamer, D. (2020). The host spring hypothesis for the origin of life. Astrobiology 20: 429452.CrossRefGoogle Scholar
Del Prete, S., Nocentini, A., Supuran, C. T. et al. (2020). Bacterial ι-carbonic anhydrase: A new active class of carbonic anhydrase identified in the genome of the Gram-negative bacterium Burkholderia territori. Journal of Enzyme Inhibition and Medicinal Chemistry 35: 10601068.CrossRefGoogle Scholar
Dibrova, D. V., Shalaeva, D. N., Galperin, M. Y. et al. (2017) Emergence of the cytochrome bc complexes in the context of photosynthesis. Physiologia Plantarum 161: 150170.CrossRefGoogle ScholarPubMed
Eguchi, J., Seales, J., & Dasgupta, R. (2019). Great oxidation and Lomagundi events linked by deep cycling and enhanced degassing of carbon. Nature Geosciences 13: 7176.CrossRefGoogle Scholar
Falkowski, P. G. & Raven, J. A. (2007). Aquatic Photosynthesis, 2nd ed. Princeton University Press, Princeton, NJ, p. 488.CrossRefGoogle Scholar
Fischer, W. W., Schroeder, S., Lacassie, J. P. et al. (2009). Isotopic constraints on the Late Archean carbon cycle from the Transvaal supergroup along the western margin of the Kaapvaal Craton, South Africa. Precambrian Research 169: 1527.CrossRefGoogle Scholar
Flannery, D. T., Allwood, A. C., Summons, R. E. et al. (2018). Spatially-resolved isotopic study of carbon trapped in ~3.43 Ga Strelley Pool Formation stromatolites. Geochimica et Cosmochimica Acta 223: 3155.CrossRefGoogle Scholar
Follmann, H. & Brownson, C. (2009). A carbonate-rich lake solution to the phosphate problem of the origin of life. Naturwissenschaften 96: 12651292.CrossRefGoogle Scholar
Fry, B. (1996). 13C/12C fractionation of marine diatoms. Marine Ecology Progress Series 134: 283294.CrossRefGoogle Scholar
Garcia, A. K., Cavanaugh, C. M. & Kacar, B. (2021). The curious constancy of carbon biosignatures over billions of years of Earth-life coevolution. ISME Journal 15: 21832194.CrossRefGoogle Scholar
Gates, C., Ananyev, G., Roy-Chowdhury, S. et al. (2022). Why did nature choose manganese over cobalt to make oxygen photosynthetically on Earth? Journal of Physical Chemistry B 126: 32573268.CrossRefGoogle Scholar
Goudet, M., Ort, D., Melkonian, M. et al. (2020). Rubisco and carbon concentrating mechanism co-evolution across chlorophyte and streptophyte green algae. New Phytologist 229: 810823.CrossRefGoogle Scholar
Granick, S. (1965). Evolution of heme and chlorophyll. In: Bryson, H. J. (ed.) Evolving Genes and Proteins. Academic Press, New York, NY, pp. 6788.CrossRefGoogle Scholar
Grettenberger, C. L. (2021). Novel Gloeobacterales spp. from diverse environments cross the globe. mSphere 6: e00061–21.CrossRefGoogle Scholar
Guégin, N. & Maréchal, E. (2022). Origin of cyanobacteria via a non-vesicular glycolipid phase transition and impact on the great oxidation event. Journal of Experimental Botany 75: 27212734. https://doi.org/10.1093/jxb/erab.429.CrossRefGoogle Scholar
Gumsley, A. P., Chamberlain, K. R., Bleeker, W. et al. (2017). Timing and tempo of the Great Oxidation Event. Proceedings of the National Academy of Sciences USA 114: 18111816.CrossRefGoogle ScholarPubMed
Hamilton, T. J. (2019). The trouble with oxygen: The ecophysiology of extant phototrophs and the evolution of oxygenic photosynthesis. Free Radical Biology and Medicine 140: 233249.CrossRefGoogle ScholarPubMed
Harrison, T. M. (2009). The Hadean crust: Evidence from >4 Ga zircons. Annual Review of Earth and Planetary Science 37: 279505.CrossRefGoogle Scholar
Hartman, H. (1975). Speculation on the origin and evolution of metabolism. Journal of Molecular Biology 4: 359370.Google ScholarPubMed
Hayes, J. M. (1994). Global methanotrophy at the Archean Proterozoic transition. In: Bengtson, S. (ed.) Early Life on Earth: Nobel Symposium 84. Columbia University Press, New York, NY, pp. 220236.Google Scholar
Heureux, A. M. C., Young, J. N., Whitney, S. M. et al. (2017). The role of Rubisco kinetics and pyrenoid morphology in shaping the CCM of haptophyte microalgae. Journal of Experimental Botany 68: 39593969.CrossRefGoogle ScholarPubMed
Hirakawa, Y., Senda, M., Fukuda, K. et al. (2021). Characterization of a novel type of carbonic anhydrase that acts without metal cofactors. BMC Biology 19: 105.CrossRefGoogle ScholarPubMed
Holtrop, T., Huisman, J., Stomp, M. et al. (2021). Vibrational modes of water predict spatial niches for photosynthesis in lakes and oceans. Nature Ecology and Evolution 5: 5566.CrossRefGoogle Scholar
Hudson, R., de Graaf, R., Rodin, M. S. et al. (2020). CO2 reduction by a pH gradient. Proceedings of the National Academy of Sciences USA 117: 2287322879.CrossRefGoogle ScholarPubMed
Iniguez, C., Capo-Bauça, D., Niinemets, U. et al. (2020). Evolutionary trends in Rubisco kinetics and their co-evolution with CO2 concentrating mechanisms. The Plant Journal 101: 897916.CrossRefGoogle Scholar
Jensen, E. L., Clement, R., Kosta, A. et al. (2019). A new widespread subclass of carbonic anhydrase in marine anhydrase in marine phytoplankton. ISME Journal 13: 20942106.CrossRefGoogle ScholarPubMed
Kiang, N. Y., Siefert, J., Govindjee et al. (2007a). Spectral signatures of photosynthesis. I. Review of Earth organisms. Astrobiology 7: 222251.CrossRefGoogle ScholarPubMed
Kiang, N. Y., Segura, A., Tinetti, G. et al. (2007b). Spectral signatures of photosynthesis. II. Coevolution with other stars and the atmosphere on extrasolar worlds. Astrobiology 7: 252294.CrossRefGoogle ScholarPubMed
Kirk, J. T. O. (2011). Light and Photosynthesis in Aquatic Ecosystems. 3rd ed. Cambridge University Press, Cambridge.Google Scholar
Kitadai, N. & Maruyama, S. (2018). Origins of building blocks of life: A review. Geoscience Frontiers 9: 11171153.CrossRefGoogle Scholar
Klatt, J. M., Chennu, A., Arbic, B. K. et al. (2021). Possible link between Earth’s rotation rate and oxygenation. Nature Geoscience 14: 564570.CrossRefGoogle Scholar
Knoll, A. H. & Canfield, D. E. (1998). Isotopic inferences on early ecosystems. Palaeontological Society Papers 4: 212243.CrossRefGoogle Scholar
Knoll, A. H. (2015). Life on a Young Planet: The First Three Billion Years of Evolution on Earth – Updated Edition. Princeton University Press, Princeton, NJ, p. 296.CrossRefGoogle Scholar
Knoll, A. H., Bergman, K. D. & Strauss, J. V. (2016). Life: The first two billion years. Philosophical Transactions of the Royal Society B 37: 20150493.CrossRefGoogle Scholar
Knoll, A. H. & Nowack, M. A. (2017). The timetable of evolution. Science Advances 3: e1603076.CrossRefGoogle ScholarPubMed
Kolling, D. R. J., Brown, T. S., Aranyev, G. et al. (2009). Photosynthetic oxygen evolution is not reversed at high oxygen partial pressures: Mechanistic consequences for the water-oxidising complex. Biochemistry 48: 13811389.CrossRefGoogle ScholarPubMed
Krissansen-Totton, J., Arney, G. N., & Catling, D. C. (2018). Constraining the climate and ocean pH of the early Earth with a geological carbon cycle model. Proceedings of the National Academy of Sciences USA 115: 41054110.CrossRefGoogle ScholarPubMed
Laakso, T., Sperling, E. A., Johnston, D. T. et al. (2020). Ediacaran reorganisation of the marine phosphorus cycle. Proceedings of the National Academy of Sciences USA 117: 1196111967.CrossRefGoogle Scholar
Larkum, A. W. D., Ritchie, R. J., & Raven, J. A. (2018). Living off the sun: Chlorophylls, bacteriochlorophylls and rhodopsins. Photosynthetica 56: 1143.CrossRefGoogle Scholar
Larsen, H., Yocum, C. S. & van Niel, C. B. (1952). On the energetics of the photosynthesis in green sulfur bacteria. Journal of General Physiology 36: 161171.CrossRefGoogle ScholarPubMed
Lyell, C. (1851). On fossil rain marks of the Recent, Triassic and Carboniferous periods. Quarterly Journal of the Geological Society 7: 238247.CrossRefGoogle Scholar
Macouin, M., Roquez, D., Rousse, S. et al. (2015). Is the Neoproterozoic oxygen burst a supercontinent legacy? Frontiers in Marine Science 3: article 44.Google Scholar
Martin, W. F. & Russell, M. (2007). On the origin of biochemistry at an alkaline hydrothermal vent. Philosophical Transactions of the Royal Society B 362: 18871925.CrossRefGoogle ScholarPubMed
Martin, W., Baros, J., Kelley, D. et al. (2008). Hydrothermal vents and the origin of life. Nature Reviews in Microbiology 6: 803814.CrossRefGoogle ScholarPubMed
Martin, W. F., Bryant, D. A., & Beatty, J. T. (2018). A physiological perspective on the origin and evolution of photosynthesis. FEMS Microbiology Reviews 42: 205231.CrossRefGoogle ScholarPubMed
Mills, D. B., Boyle, R. A., Daines, S. J. et al. (2022). Eukaryogenesis and oxygen in Earth history. Nature Ecology and Evolution 6: 520532. https://doi.org/10.1038/s.41559-022-01733-y.CrossRefGoogle ScholarPubMed
Molnar, G. I. & Gutowski, J. T. Jr (1995). The ‘faint young Sun paradox’: Further explanation of the role of dynamical heat-flux feed backs in maintaining global climate stability. Journal of Glaciology 41: 8790.CrossRefGoogle Scholar
Mulkidjanian, A. Y. & Galperin, M. Y. (2010). Evolutionary origins of membrane proteins. In: Fritschman, D. (ed.) Structural Bioinformatics of Membrane Proteins. Springer, Vienna, pp. 128.Google Scholar
Nielsen, S. L. (2006). Size-dependent growth rates in eukaryotic and prokaryotic algae and cyanobacteria: Comparisons between unicells and growth forms. Journal of Plankton Research 28: 489498.CrossRefGoogle Scholar
Nocentini, A., Supura, C. T., & Capasso, C. (2021). An overview on the recently-discovered iota-carbonic anhydrases. Journal of Enzyme Inhibition and Medicinal Chemistry 36: 19881993.CrossRefGoogle ScholarPubMed
Noffke, N., Christian, D., Wacey, D., et al. (2013) Microbially induce sedimentary strucures recording an ancient cosystem in the ca.3.48 billion year old Dresser Formation, Pilbara, Western Australia. Astrobiology 13: 11031124.CrossRefGoogle Scholar
Olson, J. M. (2006). Photosynthesis in the Archean era. Photosynthesis Research 88: 109117.CrossRefGoogle ScholarPubMed
Paiste, K., Lephard, A., Zerkel, A. L. et al. (2020). Identifying global vs basinal controls on Palaeoproterozoic organic carbon and sulfur isotope records. Earth Science Reviews 207: article 103239.CrossRefGoogle Scholar
Papineau, D. (2010). Global biogeochemical changes at both ends of the Proterozoic: Insights from phosphorites. Astrobiology 10: 165181.CrossRefGoogle ScholarPubMed
Payne, R. C., Brownlee, D., Kasting, J. F. (2020). Oxidised micrometorites suggest either high pCO2 or low pN2 during the Neoarchean. Proceedings of the National Academy of Sciences USA 117: 13601366.CrossRefGoogle ScholarPubMed
Perez, N., Cardenos, R., Martin, O. et al. (2013). The potential for photosynthesis in hydrothermal vents: A new avenue for life in the Universe? Astrophysics and Space Science 346: 327331.CrossRefGoogle Scholar
Poudel, S., Pike, D. H., Raanan, H. et al. (2020). Biophysical analysis of the structural evolution of substrate specificity in Rubisco. Proceedings of the National Academy of Sciences USA 117: 3045130457.CrossRefGoogle ScholarPubMed
Prave, A. R., Kirsimäe, K., Lepland, A. et al. (2021). The grandest of them all: The Lomagundi-Jatuli Event and Earth’s oxygenation. Journal of the Geological Society 179: jgs.2021-036. https://doi.org/10.1144/jgs.2021-036.Google Scholar
Raven, J. A. (2009). Contributions of anoxygnic and oxygenic phototrophy and chemolithotrophy to carbon and oxygen fluxes in aquatic environments. Aquatic Microbial Ecology 15: 177192.CrossRefGoogle Scholar
Raven, J. A. (2017). The possible roles of algae in restricting the increase in atmospheric CO2 and global temperature. European Journal of Phycology 15: 506522.CrossRefGoogle Scholar
Raven, J. A. & Larkum, A. W. D. (2007). Are there ecological implications for the proposed energetic restrictions on photosynthetic oxygen evolution at high oxygen concentrations? Photosynthesis Research 94: 3142.CrossRefGoogle ScholarPubMed
Raven, J. A. & Donnelly, S. (2013). Brown Dwarfs and Black Smokers: The potential for photosynthesis using low-temperature black bodies. In: De Vera, J.-P. & Seckbach, J. (eds.) Habitability of other Planets and Satellites, Volume 28 of Cellular Origin, Life in Extreme Habitats and Astrobiology. Springer, Switzerland, pp. 267284.Google Scholar
Raven, J. A. & Sánchez-Baracaldo, P. (2021). Gloeobacter and the implications of a freshwater origin of cyanobacteria. Phycologia 60: 402418.CrossRefGoogle Scholar
Raven, J. A., Evans, M. C. W., & Korb, R. E. (1999). The role of trace metals in photosynthetic electron transport in O2-evolving organisms. Photosynthesis Research 10: 111150.CrossRefGoogle Scholar
Raven, J. A., Beardall, J., & Sánchez-Baracaldo, P. (2017). The possible evolution, and future, of CO2-concentrating mechanisms. Journal of Experimental Botany 68: 37013716.CrossRefGoogle ScholarPubMed
Raven, J. A., Beardall, J., & Quigg, A. (2020a). Light-driven oxygen consumption in the water-water cycles and photorespiration, and light stimulated mitochondrial respiration. In: Larkum, A. W. D., Grossman, A. R. & Raven, J. A. (eds.) Photosynthesis in Algae: Biochemical and Physiological Mechanisms. Advances in Photosynthesis and Respiration (including related processes) Volume 45. Springer, Cham, pp. 161178.CrossRefGoogle Scholar
Raven, J. A., Suggett, D. J., & Giordano, M. (2020b). Inorganic carbon concentrating mechanisms in free-living and symbiotic dinoflagellates and chromerids. Journal of Phycology 46: 13771397.CrossRefGoogle Scholar
Rahmatpour, N., Hauser, J. M., Chen, P. Y. et al. (2021). A novel thylakoid-less isolate fills a billion-year gap in the evolution of cyanobacteria. Current Biology 31: 111.CrossRefGoogle ScholarPubMed
Rickaby, R. E. M. & Hubbard, M. R. E. (2019). Upper ocean oxygenation, evolution of Rubisco and the Phanerozoic succession of phytoplankton. Free Radical Biology and Medicine 140: 295304.CrossRefGoogle ScholarPubMed
Russell, M. J. & Hall, A. J. (2002). From geochemistry to biochemistry: Chemiosmotic coupling and transition element clusters in the onset of life and photosynthesis. Geochemical News 113: 612.Google Scholar
Russell, M. J. & Martin, W. (2004). The rocky roots of the acetyl-CoA pathway. Trends in Biochemical Science 29: 358363.CrossRefGoogle ScholarPubMed
Saito, M. A., Sigman, D. M., & Morel, F. M. M. (2003). The bioinorganic chemistry of the ancient ocean: Co-evolution of cyanobacterial metal requirements and biogeochemical cycles at the Archean-Proterozoic boundary. Inorganica Chimica Acta 356: 308318.CrossRefGoogle Scholar
Sánchez-Baracaldo, P. & Cardona, T. (2020). On the origin of oxygenic photosynthesis and cyanobacteria. New Phytologist 225: 14401446.CrossRefGoogle ScholarPubMed
Saw, J. H. W., Scholtz, M., Brown, M. V. et al. (2013). Cultivation and complete genome sequencing of Gloeobacter kīlauensis sp. nov. from a lava cave in Kīlauea caldera, Hawai’i. PLOS ONE 8: e76376.CrossRefGoogle ScholarPubMed
Schidlowski, M. (1988). A 3,800-million-year isotopic record of life from carbon in sedimentary rocks. Nature 333: 318.CrossRefGoogle Scholar
Schidlowski, M. (2001). Carbon isotopes as biogeochemical records of life over 3.8 Ga of Earth history: Evolution of a concept. Precambrian Research 106: 117134.CrossRefGoogle Scholar
Shevela, D., Beckman, K., Clausen, J. et al. (2011). Membrane inlet mass spectrometry reveals a high driving force for oxygen production by photosystem II. Proceedings of the National Academy of Sciences USA 108: 36023607.CrossRefGoogle ScholarPubMed
Shih, P. M., Occhialini, A., Cameron, J. C. et al. (2016). Biochemical characterisation of predicted Precambrian RuBisCO. Nature Communications 7: article 10382.CrossRefGoogle ScholarPubMed
Sleep, N. H. (2010). The Hadean-Archaean environment. Cold Spring Harbor Perspectives in Biology 2010; 2: a002527.Google ScholarPubMed
Sleep, N. H., Zahle, K. J., & Lupu, R. E. (2014). Terrestrial aftermath of the Moon-forming impact. Philosophical Transactions of the Royal Society A 372: article 20130172.Google ScholarPubMed
Som, S. M., Catling, D. C., Harnmeijer, J. P. et al. (2012). Air density 2.7 billion years ago limited to less than twice the modern value by fossil raindrop imprints. Nature 484: 359362.CrossRefGoogle ScholarPubMed
Stomp, M., Huisman, J., Stal, L. J. et al. (2007). Colorful niches of phototrophic microorganisms shaped by vibrations of the water molecule. ISME J 1: 271282.CrossRefGoogle ScholarPubMed
Swanner, E. D., Wu, W., Hao, L. et al. (2015). Physiology, Fe(II) oxidation, and Fe mineral formation by a marine planktonic cyanobacterium grown under ferruginous conditions. Frontiers in Earth Science 3: article 80.CrossRefGoogle Scholar
Swanner, E. D., Bayer, T., Wu, W. et al. (2017). Iron isotope fractionation during Fe(II) oxidation mediated by the oxygen producing cyanobacterium Synechococcus PCC7002. Environmental Science and Technology 51: 48974906.CrossRefGoogle Scholar
Tashiro, T., Ishida, A., Hori, M. et al. (2017). Early trace of life from 3.95 Ga sedimentary rocks in Labrador, Canada. Nature 549: 516518.CrossRefGoogle ScholarPubMed
Tcherkez, G. G. B., Farquhar, G. D., & Andrews, T. J. (2006). Despite slow kinetics and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimised. Proceedings of the National Academy of Sciences USA 103: 72467251.CrossRefGoogle Scholar
Thompson, K. J., Kenwara, P. A., Bauer, K. W. et al. (2019). Photoferrotrophy, deposition of banded iron formations, and methane production in Archean oceans. Science Advances 5: eaav2869.CrossRefGoogle ScholarPubMed
Toner, J. D. & Catling, D. C. (2020). A carbonate-rich lake solution to the phosphate problem of the origin of life. Proceedings of the National Academy of Sciences USA 117: 883888.CrossRefGoogle Scholar
Tyrell, T. (2013). On Gaia: A Critical Investigation of the Relationship Between Life and Earth. Princeton University Press, Princeton, NJ, p. 320.Google Scholar
Wade, J., Byrne, D. J., Ballentine, C. J. et al. (2021). Temporal variation of planetary iron as a driver of evolution. Proceedings of the National Academy of Science USA 118: 209865118.CrossRefGoogle ScholarPubMed
Wang, F., Zhou, H., Meng, J. et al. (2009). GeoChip-based analysis of metabolic diversity of microbial communities at the Juan de Fuca Ridge hydrothermal vent. Proceedings of the National Academy of Sciences USA 106: 48404845.CrossRefGoogle Scholar
Weiss, M. C., Preiser, M., Xavier, X. C. et al. (2018). The last universal common ancestor between ancient Earth chemistry and the onset of genetics. PLOS Genetics 14: article e1007518.CrossRefGoogle ScholarPubMed
Wolstencroft, R. & Raven, J. A. (2002). Photosynthesis: Likelihood of occurrence and possibility of detection on Earth-like planets. Icarus 157: 535548.CrossRefGoogle Scholar
Young, J. N., Rickaby, R. E. M., Kapralov, M. V. et al. (2012). Adaptive signals in algal Rubisco reveal a history of ancient atmospheric carbon dioxide. Philosophical Transactions of the Royal Society B 367: 483492.CrossRefGoogle ScholarPubMed
Young, J. N., Heureux, A. M. C., Dharwood, R. E. et al. (2016). Large variations in the Rubisco kinetics of diatoms reveals diversity among their carbon-concentrating mechanisms. Journal of Experimental Botany 67: 34453456.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×