Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-20T17:10:14.399Z Has data issue: false hasContentIssue false

18 - Algae: New Products and Applications

from Part III - The Future

Published online by Cambridge University Press:  24 October 2024

Mario Giordano
Affiliation:
Università degli Studi di Ancona, Italy
John Beardall
Affiliation:
Monash University, Victoria
John A. Raven
Affiliation:
University of Dundee
Stephen C. Maberly
Affiliation:
UK Centre for Ecology & Hydrology, Lancaster
Get access

Summary

In addition to the current uses of algae as food and as sources of pigments and polysaccharides, there is potential for the further use of algae as sources of additional specific biomolecules. In addition to this, there is the possibility of the use of alga in a wide variety of processes such as bioenergy (production of liquid fuels and algal biophotovoltaic generation of electricity), removing pollutants from wastewater, and the production of plant growth enhancers and crop protection materials. The eventual commercialisation of these requires the processes to be scalable and economical. The targeted use of algae, other than as food sources, is less than 100 years old and our knowledge of algal biology, physiology and chemistry is still growing and only a very small number of algal species have been studied in detail. One of the main limitations is the need for more reliable, lower cost and larger-scale algae production systems and their development, in turn, requires a good understanding of basic algal biology and life histories. In addition, more work is needed on increasing the efficiency of light utilisation in photosynthesis and hence in growth.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abouraïcha, E. F., El Alaoui-Talibi, Z., Tadlaoui-Ouafi, A. et al. (2017). Glucuronan and oligoglucuronans isolated from green algae activate natural defense responses in apple fruit and reduce postharvest blue and gray mold decay. Journal of Applied Phycology 29: 471480.CrossRefGoogle Scholar
Achitouv, E., Metzger, P., Rager, M. et al. (2004). C31–C34 methylated squalenes from a Bolivian strain of Botryococcus braunii. Phytochemistry 65: 31593165.CrossRefGoogle ScholarPubMed
Adey, W. H., Kangas, P. C. & Mulbry, W. (2011). Algal turf scrubbing: Cleaning surface waters with solar energy while producing a biofuel. BioScience 61: 434441.CrossRefGoogle Scholar
Ahmed, F., Zhou, W. & Schenk, P. M. (2015). Pavlova lutheri is a high-level producer of phytosterols. Algal Research 10: 210217.CrossRefGoogle Scholar
Angioni, S., Millia, L., Mustarelli, P. et al. (2018). Photosynthetic microbial fuel cell with polybenzimidazole membrane: Synergy between bacteria and algae for wastewater removal and biorefinery. Helion 4: e00560.Google ScholarPubMed
Araújo, M., Rema, P., Sousa-Pinto, I. et al. (2016). Dietary inclusion of IMTA-cultivated Gracilaria vermiculophylla in rainbow trout (Oncorhynchus mykiss) diets: Effects on growth, intestinal morphology, tissue pigmentation, and immunological response. Journal of Applied Phycology 28: 679689.CrossRefGoogle Scholar
Arioli, T., Mattner, S. W. & Winberg, P. C. (2015). Applications of seaweed extracts in Australian agriculture: Past, present and future. Journal of Applied Phycology 27: 20072015.CrossRefGoogle ScholarPubMed
Baxter, L., Brain, R. A., Lissemore, L. et al. (2016). Influence of light, nutrients, and temperature on the toxicity of atrazine to the algal species Raphidocelis subcapitata: Implications for the risk assessment of herbicides. Ecotoxicology and Environmental Safety 132: 250259.CrossRefGoogle Scholar
Belay, A. (2013). Biology and industrial production of Arthrospira (Spirulina). In: Richmond, A. & Hu, Q. (eds.) Handbook of Microalgal Culture: Applied Phycology and Biotechnology. Blackwell, Oxford, pp. 339358.CrossRefGoogle Scholar
Ben Ouada, S., Ben Ali, R., Leboulanger, C. et al. (2018). Effect and removal of bisphenol A by two extremophilic microalgal strains (Chlorophyta). Journal of Applied Phycology 30: 17651776.CrossRefGoogle Scholar
Bhati, R. & Mallick, N. (2015). Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer production by the diazotrophic cyanobacterium Nostoc muscorum Agardh: Process optimization and polymer characterization. Algal Research 7: 7885.CrossRefGoogle Scholar
Blanco, A. M., Moreno, J., Del Campo, J. A. et al. (2007). Outdoor cultivation of lutein-rich cells of Muriellopsis sp. in open ponds. Applied Microbiology and Biotechnology 73: 12591266.CrossRefGoogle ScholarPubMed
Bolton, J. J., Robertson-Andersson, D. V., Shuuluka, D. et al. (2009). Growing Ulva (Chlorophyta) in integrated systems as a commercial crop for abalone feed in South Africa: A SWOT analysis. Journal of Applied Phycology 21: 575583.CrossRefGoogle Scholar
Borowitzka, M. A. (1997). Algae for aquaculture: Opportunities and constraints. Journal of Applied Phycology 9: 393401.CrossRefGoogle Scholar
Borowitzka, M. A. (2013a). Dunaliella: Biology, production, and markets. In: Richmond, A. & Hu, Q. (eds.) Handbook of Microalgal Culture. John Wiley and Sons Ltd., Chichester, UK, pp. 359368.CrossRefGoogle Scholar
Borowitzka, M. A. (2013b). High-value products from microalgae – Their development and commercialisation. Journal of Applied Phycology 25: 743756.CrossRefGoogle Scholar
Borowitzka, M. A. (2018). Microalgae in medicine and human health: A historical perspective. In: Levine, I. A. & Fleurence, J. (eds.) Microalgae in Health and Disease Prevention. Academic Press, London, pp. 195210.CrossRefGoogle Scholar
Borowitzka, M. A. & Moheimani, N. R. (2013). Sustainable biofuels from algae. Mitigation and Adaptation Strategies for Global Change 18: 1325.CrossRefGoogle Scholar
Buck, B. H., Nevejan, N., Wille, M. et al. (2017). Offshore and multi-use aquaculture with extractive species: Seaweeds and bivalves. In: Buck, B. H. & Langan, R. (eds.) Aquaculture Perspective of Multi-use Sites in the Open Ocean. Springer, Dordrecht, pp 2369.CrossRefGoogle Scholar
Buck, B. H., Troell, M. F., Krause, G. et al. (2018). State of the art and challenges for offshore Integrated Multi-Trophic Aquaculture (IMTA). Frontiers in Marine Science 5: 165.CrossRefGoogle Scholar
Cabrita, A. R. J., Correia, A., Rodrigues, A. R. et al. (2017). Assessing in vivo digestibility and effects on immune system of sheep fed alfalfa hay supplemented with a fixed amount of Ulva rigida and Gracilaria vermiculophylla. Journal of Applied Phycology 29: 10571067.CrossRefGoogle Scholar
Cabrita, A. R. J., Maia, M. R. G., Oliveira, H. M. et al. (2016). Tracing seaweeds as mineral sources for farm-animals. Journal of Applied Phycology 28: 31353150.CrossRefGoogle Scholar
Casal, C., Cuaresma, M., Vega, J. M. et al. (2011). Enhanced productivity of a lutein-enriched novel acidophile microalga grown on urea. Marine Drugs 9: 2942.CrossRefGoogle Scholar
Chalifour, A. & Tam, N. F.-Y. (2016). Tolerance of cyanobacteria to the toxicity of BDE-47 and their removal ability. Chemosphere 164: 451461.CrossRefGoogle Scholar
Chatzikonstantinou, M., Vlachakis, D., Chronopoulou, E. et al. (2017). The glutathione transferase family of Chlamydomonas reinhardtii: Identification and characterization of novel Sigma class-like enzymes. Algal Research 24: 237250.CrossRefGoogle Scholar
Chen, C.-Y. & Liu, C.-C. (2018). Optimization of lutein production with a two-stage mixotrophic cultivation system with Chlorella sorokiniana MB-1. Bioresource Technology 262: 7479.CrossRefGoogle ScholarPubMed
Chen, C.-Y., Lu, I. C., Nagarajan, D. et al. (2018). A highly efficient two-stage cultivation strategy for lutein production using heterotrophic culture of Chlorella sorokiniana MB-1-M12. Bioresource Technology 253: 141147.CrossRefGoogle ScholarPubMed
Chisti, Y. (2013). Constraints to commercialization of algal fuels. Journal of Biotechnology 167: 201214.CrossRefGoogle ScholarPubMed
Cho, C.-W., Pham, T. P. T., Kim, S. et al. (2009). Toxicity assessment of common organic solvents using a biosensor based on algal photosynthetic activity measurement. Journal of Applied Phycology 21: 683689.CrossRefGoogle Scholar
Chrismadha, T. & Borowitzka, M. A. (1994). Effect of cell density and irradiance on growth, proximate composition and eicosapentaenoic acid production of Phaeodactylum tricornutum grown in a tubular photobioreactor. Journal of Applied Phycology 6: 6774.CrossRefGoogle Scholar
Chu, W.-L., See, Y.-C. & Phang, S.-M. (2008). Use of immobilised Chlorella vulgaris for the removal of colour from textile dyes. Journal of Applied Phycology 21: 641.CrossRefGoogle Scholar
Coppens, J., Grunert, O., Van Den Hende, S. et al. (2016). The use of microalgae as a high-value organic slow-release fertilizer results in tomatoes with increased carotenoid and sugar levels. Journal of Applied Phycology 28: 23672377.CrossRefGoogle Scholar
Cordero, B. F., Obraztsova, I., Couso, I. et al. (2011). Enhancement of lutein production in Chlorella sorokiniana (Chlorophyta) by improvement of culture conditions and random mutagenesis. Marine Drugs 9: 16071624.CrossRefGoogle ScholarPubMed
Craggs, R., Park, J., Heubeck, S. & Sutherland, D. (2014). High rate algal pond systems for low-energy wastewater treatment, nutrient recovery and energy production. New Zealand Journal of Botany 52: 6073.CrossRefGoogle Scholar
Craggs, R., Park, J., Sutherland, D. & Heubeck, S. (2015). Economic construction and operation of hectare-scale wastewater treatment enhanced pond systems. Journal of Applied Phycology 27: 19131922.CrossRefGoogle Scholar
Craigie, J. S. (2011). Seaweed extract stimuli in plant science and agriculture. Journal of Applied Phycology 23: 371393.CrossRefGoogle Scholar
Cui, Y., Rashid, N., Hu, N. et al. (2014). Electricity generation and microalgae cultivation in microbial fuel cell using microalgae-enriched anode and bio-cathode. Energy Conversion and Management 79: 674680.CrossRefGoogle Scholar
Czarny, K., Szczukocki, D., Krawczyk, B. et al. (2018). Inhibition of growth of Anabaena variabilis population by single and mixed steroid hormones. Journal of Applied Phycology 31: 389398.CrossRefGoogle Scholar
De Wilt, A., Butkovskyi, A., Tuantet, K. et al. (2016). Micropollutant removal in an algal treatment system fed with source separated wastewater streams. Journal of Hazardous Materials 304: 8492.CrossRefGoogle Scholar
Del Campo, J. A., Moreno, J., Rodriguez, H. et al. (2000). Carotenoid content of chlorophycean microalgae: Factors determining lutein accumulation in Muriellopsis sp. (Chlorophyta). Journal of Biotechnology 76: 5159.CrossRefGoogle ScholarPubMed
Dunn, K., Maart, B. & Rose, P. (2013). Arthrospira (Spirulina) in tannery wastewaters. Part 2: Evaluation of tannery wastewater as production media for the mass culture of Arthrospira biomass. Water SA 39: 279284.Google Scholar
Egeland, E. S. (2016). Carotenoids. In: Borowitzka, M. A., Beardall, J. & Raven, J. A. (eds.) The Physiology of Microalgae. Springer, Dordrecht, pp. 507563.CrossRefGoogle Scholar
Eilers, U., Bikoulis, A., Breitenbach, J. et al. (2016). Limitations in the biosynthesis of fucoxanthin as targets for genetic engineering in Phaeodactylum tricornutum. Journal of Applied Phycology 28: 123129.CrossRefGoogle Scholar
Elizondo-Reyna, E., Medina-González, R., Nieto-López, M. G. et al. (2016). Consumption of Ulva clathrata as a dietary supplement stimulates immune and lipid metabolism genes in Pacific white shrimp Litopenaeus vannamei. Journal of Applied Phycology 28: 36673677.CrossRefGoogle Scholar
Esserti, S., Smaili, A., Rifai, L. A. et al. (2017). Protective effect of three brown seaweed extracts against fungal and bacterial diseases of tomato. Journal of Applied Phycology 29: 10811093.CrossRefGoogle Scholar
Evans, F. D. & Critchley, A. T. (2014). Seaweeds for animal production use. Journal of Applied Phycology 26: 891899.CrossRefGoogle Scholar
Fallowfield, H. J., Young, P., Taylor, M. J. et al. (2018). Independent validation and regulatory agency approval for high rate algal ponds to treat wastewater from rural communities. Environmental Science: Water Research and Technology 4: 195205.Google Scholar
Fan, K., Aki, T., Chen, F. et al. (2010). Enhanced production of squalene in the thraustochytrid Aurantiochytrium mangrovei by medium optimization and treatment with terbinafine. World Journal of Microbiology and Biotechnology 26: 13031309.CrossRefGoogle ScholarPubMed
Fischer, F. (2018). Photoelectrode, photovoltaic and photosynthetic microbial fuel cells. Renewable and Sustainable Energy Reviews 90: 1627.CrossRefGoogle Scholar
Forootanfar, H., Shakibaie, M., Bagherzadeh, Z. et al. (2013). The removal of ρ-chlorophenol in aqueous cultures with free and alginate-immobilized cells of the microalga Tetraselmis suecica. Journal of Applied Phycology 25: 5157.CrossRefGoogle Scholar
Francis, T. L., Maneveldt, G. W. & Venter, J. (2008). Determining the most appropriate feeding regime for the South African abalone Haliotis midae Linnaeus grown on kelp. Journal of Applied Phycology 20: 597602.CrossRefGoogle Scholar
Garcia-Gonzalez, J. & Sommerfeld, M. (2016). Biofertilizer and biostimulant properties of the microalga Acutodesmus dimorphus. Journal of Applied Phycology 28: 10511061.CrossRefGoogle ScholarPubMed
García De Llasera, M. P., Olmos-Espejel, J. D. J., Díaz-Flores, G. et al. (2016). Biodegradation of benzo(a)pyrene by two freshwater microalgae Selenastrum capricornutum and Scenedesmus acutus: A comparative study useful for bioremediation. Environmental Science and Pollution Research 23: 33653375.CrossRefGoogle ScholarPubMed
Gentili, F. G. & Fick, J. (2017). Algal cultivation in urban wastewater: An efficient way to reduce pharmaceutical pollutants. Journal of Applied Phycology 29: 255262.CrossRefGoogle ScholarPubMed
Gómez-Loredo, A., Benavides, J. & Rito-Palomares, M. (2016). Growth kinetics and fucoxanthin production of Phaeodactylum tricornutum and Isochrysis galbana cultures at different light and agitation conditions. Journal of Applied Phycology 28: 849860.CrossRefGoogle Scholar
Granado-Lorencio, F., Herrero-Barbudo, C., Acién Fernández, F. G. et al. (2009). In vitro bioaccessibility of lutein and zeaxanthin in the microalgae Scenedesmus almeriensis. Food Chemistry 114: 747752.CrossRefGoogle Scholar
Green, F. B., Bernstone, L. S., Lundquist, T. J. et al. (1996). Advanced integrated wastewater pond systems for nitrogen removal. Water Science and Technology 33: 207217.CrossRefGoogle Scholar
Guiry, M. D. (2012). How many species of algae are there? Journal of Phycology 48: 10571063.CrossRefGoogle ScholarPubMed
Guo, B., Liu, B., Yang, B. et al. (2016). Screening of diatom strains and characterization of Cyclotella cryptica as a potential fucoxanthin producer. Marine Drugs 14: 125. https://doi.org/10.3390/md14070125.CrossRefGoogle ScholarPubMed
Haritash, A. K. & Kaushik, C. P. (2009). Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A review. Journal of Hazardous Materials 169: 115.CrossRefGoogle ScholarPubMed
Heo, J., Shin, D.-S., Cho, K. et al. (2018). Indigenous microalga Parachlorella sp. JD-076 as a potential source for lutein production: Optimization of lutein productivity via regulation of light intensity and carbon source. Algal Research 33: 17.CrossRefGoogle Scholar
Hernández-Herrera, R. M., Santacruz-Ruvalcaba, F., Zañudo-Hernández, J. et al. (2016). Activity of seaweed extracts and polysaccharide-enriched extracts from Ulva lactuca and Padina gymnospora as growth promoters of tomato and mung bean plants. Journal of Applied Phycology 28: 25492560.CrossRefGoogle Scholar
Huang, W., Lin, Y., He, M. et al. (2018). Induced high-yield production of zeaxanthin, lutein, and β-carotene by a mutant of Chlorella zofingiensis. Journal of Agricultural and Food Chemistry 66: 891897.CrossRefGoogle ScholarPubMed
Hurtado, A. Q. & Critchley, A. T. (2018). A review of multiple biostimulant and bioeffector benefits of AMPEP, an extract of the brown alga Ascophyllum nodosum, as applied to the enhanced cultivation and micropropagation of the commercially important red algal carrageenophyte Kappaphycus alvarezii and its selected cultivars. Journal of Applied Phycology 30: 28592873.CrossRefGoogle Scholar
Ishika, T., Moheimani, N. R., Bahri, P. A. et al. (2017). Halo-adapted microalgae for fucoxanthin production: Effect of incremental increase in salinity. Algal Research 28: 6673.CrossRefGoogle Scholar
Jin, E., Feth, B. & Melis, A. (2003). A mutant of the green alga Dunaliella salina constitutively accumulates zeaxanthin under all growth conditions. Biotechnology and Bioengineering 81: 115124.CrossRefGoogle ScholarPubMed
Kenny, P. & Flynn, K. J. (2017). Physiology limits commercially viable photoautotrophic production of microalgal biofuels. Journal of Applied Phycology 29: 27132727.CrossRefGoogle ScholarPubMed
Kim, M., Ahn, J., Jeon, H. et al. (2017). Development of a Dunaliella tertiolecta strain with increased zeaxanthin content using random mutagenesis. Marine Drugs 15: 189.CrossRefGoogle ScholarPubMed
Kim, S. M., Kang, S.-W., Kwon, O.-N. et al. (2012). Fucoxanthin as a major carotenoid in Isochrysis aff. galbana: Characterization of extraction for commercial application. Journal of the Korean Society for Applied Biological Chemistry 55: 477483.CrossRefGoogle Scholar
Koo, S., Cha, K., Song, D.-G. et al. (2012). Optimization of pressurized liquid extraction of zeaxanthin from Chlorella ellipsoidea. Journal of Applied Phycology 24: 725730.CrossRefGoogle Scholar
Kovalenko, I., Zdyrko, B., Magasinski, A. et al. (2011). A major constituent of brown algae for use in high-capacity Li-Ion batteries. Science 334: 7579.CrossRefGoogle Scholar
Leonardo, S., Prieto-Simón, B. & Campàs, M. (2016). Past, present and future of diatoms in biosensing. TrAC Trends in Analytical Chemistry 79: 276285.CrossRefGoogle Scholar
Leusch, F. D. L., Neale, P. A., Arnal, C. et al. (2018). Analysis of endocrine activity in drinking water, surface water and treated wastewater from six countries. Water Research 139: 1018.CrossRefGoogle ScholarPubMed
Li, X., Norman, H. C., Kinley, R. D. et al. (2018). Asparagopsis taxiformis decreases enteric methane production from sheep. Animal Production Science 58: 681688.CrossRefGoogle Scholar
Lin, J.-H., Lee, D.-J. & Chang, J.-S. (2015). Lutein production from biomass: Marigold flowers versus microalgae. Bioresource Technology 184: 421428.CrossRefGoogle ScholarPubMed
Lin, J., Huang, L., Yu, J. et al. (2016). Fucoxanthin, a marine carotenoid, reverses scopolamine-induced cognitive impairments in mice and inhibits acetylcholinesterase in vitro. Marine Drugs 14: 67.CrossRefGoogle ScholarPubMed
Liu, B., Zhang, S.-G. & Chang, C.-C. (2018). Emerging Pollutants – Part II: Treatment. Water Environment Research 90: 17921820.CrossRefGoogle ScholarPubMed
Longo, S., D’antoni, B. M., Bongards, M. et al. (2016). Monitoring and diagnosis of energy consumption in wastewater treatment plants. A state of the art and proposals for improvement. Applied Energy 179: 12511268.CrossRefGoogle Scholar
Luo, X., Su, P. & Zhang, W. (2015). Advances in microalgae-derived phytosterols for functional food and pharmaceutical applications. Marine Drugs 13: 42314254.CrossRefGoogle ScholarPubMed
Machado, L., Kinley, R. D., Magnusson, M. et al. (2015). The potential of macroalgae for beef production systems in Northern Australia. Journal of Applied Phycology 27: 20012005.CrossRefGoogle Scholar
Machado, L., Magnusson, M., Paul, N. A. et al. (2016a). Dose-response effects of Asparagopsis taxiformis and Oedogonium sp. on in vitro fermentation and methane production. Journal of Applied Phycology 28: 14431452.CrossRefGoogle Scholar
Machado, L., Magnusson, M., Paul, N. A. et al. (2016b). Identification of bioactives from the red seaweed Asparagopsis taxiformis that promote antimethanogenic activity in vitro. Journal of Applied Phycology 28: 31173126.CrossRefGoogle Scholar
Machado, L., Tomkins, N., Magnusson, M. et al. (2018). In vitro response of rumen microbiota to the antimethanogenic red macroalga Asparagopsis taxiformis. Microbial Ecology 75: 811818.CrossRefGoogle Scholar
Machado, M. D. & Soares, E. V. (2018). Sensitivity of freshwater and marine green algae to three compounds of emerging concern. Journal of Applied Phycology 31: 399408.CrossRefGoogle Scholar
Maeda, H., Matsumoto, M., Maeda, Y. et al. (2017). Utilization of diatom frustules for thermal management applications. Journal of Applied Phycology 29: 19071911.CrossRefGoogle Scholar
Maes, H. M., Maletz, S. X., Ratte, H. T. et al. (2014). Uptake, elimination, and biotransformation of 17α-ethinylestradiol by the freshwater alga Desmodesmus subspicatus. Environmental Science and Technology 48: 1235412361.CrossRefGoogle ScholarPubMed
Maher, S., Alsawat, M., Kumeria, T. et al. (2015). Luminescent silicon diatom replicas: Self-reporting and degradable drug carriers with biologically derived shape for sustained delivery of therapeutics. Advanced Functional Materials 25: 51075116.CrossRefGoogle Scholar
Maher, S., Kumeria, T., Aw, M. S. et al. (2018). Diatom silica for biomedical applications: Recent progress and advances. Advanced Healthcare Materials 7: 1800552.CrossRefGoogle ScholarPubMed
Mani, S. D. & Nagarathnam, R. (2018). Sulfated polysaccharide from Kappaphycus alvarezii (Doty) Doty ex P.C. Silva primes defense responses against anthracnose disease of Capsicum annuum Linn. Algal Research 32: 121130.CrossRefGoogle Scholar
Martin, L. (2015). Fucoxanthin and its metabolite fucoxanthinol in cancer prevention and treatment. Marine Drugs 13: 4784.CrossRefGoogle ScholarPubMed
Mata, L., Schuenhoff, A. & Santos, R. (2010). A direct comparison of the performance of the seaweed biofilters, Asparagopsis armata and Ulva rigida. Journal of Applied Phycology 22: 639644.CrossRefGoogle Scholar
Matthews, C. B., Wright, C., Kuo, A. et al. (2017). Reexamining opportunities for therapeutic protein production in eukaryotic microorganisms. Biotechnology and Bioengineering 114: 24322444.CrossRefGoogle ScholarPubMed
Mattner, S. W., Milinkovic, M. & Arioli, T. (2018). Increased growth response of strawberry roots to a commercial extract from Durvillaea potatorum and Ascophyllum nodosum. Journal of Applied Phycology 30: 29432951.CrossRefGoogle ScholarPubMed
McClure, D. D., Luiz, A., Gerber, B. et al. (2018). An investigation into the effect of culture conditions on fucoxanthin production using the marine microalgae Phaeodactylum tricornutum. Algal Research 29: 4148.CrossRefGoogle Scholar
McCormick, A. J., Bombelli, P., Bradley, R. W. et al. (2015). Biophotovoltaics: Oxygenic photosynthetic organisms in the world of bioelectrochemical systems. Energy and Environmental Science 8: 10921109.CrossRefGoogle Scholar
Miyashita, K. & Hosokawa, M. (2017). Fucoxanthin in the management of obesity and its related disorders. Journal of Functional Foods 36: 195202.CrossRefGoogle Scholar
Mohibbullah, M., Haque, M. N., Khan, M. N. A. et al. (2018). Neuroprotective effects of fucoxanthin and its derivative fucoxanthinol from the phaeophyte Undaria pinnatifida attenuate oxidative stress in hippocampal neurons. Journal of Applied Phycology 30: 32433252.CrossRefGoogle Scholar
Molino, J. V. D., De Carvalho, J. C. M. & Mayfield, S. P. (2018). Comparison of secretory signal peptides for heterologous protein expression in microalgae: Expanding the secretion portfolio for Chlamydomonas reinhardtii. PLOS ONE 13: e0192433.CrossRefGoogle ScholarPubMed
Muñoz, R. & Guieysse, B. (2006). Algal–bacterial processes for the treatment of hazardous contaminants: A review. Water Research 40: 27992815.CrossRefGoogle ScholarPubMed
Muradian, K., Vaiserman, A., Min, K. J. et al. (2015). Fucoxanthin and lipid metabolism: A minireview. Nutrition, Metabolism and Cardiovascular Diseases 25: 891897.CrossRefGoogle ScholarPubMed
Nakazawa, A., Kokubun, Y., Matsuura, H. et al. (2014). TLC screening of thraustochytrid strains for squalene production. Journal of Applied Phycology 26: 2941.CrossRefGoogle Scholar
Nazos, T. T., Kokarakis, E. J. & Ghanotakis, D. F. (2017). Metabolism of xenobiotics by Chlamydomonas reinhardtii: Phenol degradation under conditions affecting photosynthesis. Photosynthesis Research 131: 3140.CrossRefGoogle ScholarPubMed
Nelson, D. & Werck-Reichhart, D. (2011). A P450-centric view of plant evolution. The Plant Journal 66: 194211.CrossRefGoogle ScholarPubMed
Ng, F.-L., Phang, S.-M., Periasamy, V. et al. (2018). Algal biophotovoltaic (BPV) device for generation of bioelectricity using Synechococcus elongatus (Cyanophyta). Journal of Applied Phycology 30: 29812988.CrossRefGoogle Scholar
Norvill, Z. N., Toledo-Cervantes, A., Blanco, S. et al. (2017). Photodegradation and sorption govern tetracycline removal during wastewater treatment in algal ponds. Bioresource Technology 232: 3543.CrossRefGoogle ScholarPubMed
Oswald, W. J. (2003). My sixty years in applied algology. Journal of Applied Phycology 15: 99106.CrossRefGoogle Scholar
Otto, B., Beuchel, C., Liers, C. et al. (2015). Laccase-like enzyme activities from chlorophycean green algae with potential for bioconversion of phenolic pollutants. FEMS Microbiology Letters 362: fnv072.CrossRefGoogle ScholarPubMed
Papazi, A. & Kotzabasis, K. (2013). ‘Rational’ management of dichlorophenols biodegradation by the microalga Scenedesmus obliquus. PLOS ONE 8: e61682.CrossRefGoogle ScholarPubMed
Peng, F.-Q., Ying, G.-G., Yang, B. et al. (2014). Biotransformation of progesterone and norgestrel by two freshwater microalgae (Scenedesmus obliquus and Chlorella pyrenoidosa): Transformation kinetics and products identification. Chemosphere 95: 581588.CrossRefGoogle ScholarPubMed
Petersen, K., Heiaas, H. H. & Tollefsen, K. E. (2014). Combined effects of pharmaceuticals, personal care products, biocides and organic contaminants on the growth of Skeletonema pseudocostatum. Aquatic Toxicology 150: 4554.CrossRefGoogle ScholarPubMed
Petroutsos, D., Katapodis, P., Christakopoulos, P. et al. (2007). Removal of p-chlorophenol by the marine microalga Tetraselmis marina. Journal of Applied Phycology 19: 485490.CrossRefGoogle Scholar
Petrushkina, M., Gusev, E., Sorokin, B. et al. (2017). Fucoxanthin production by heterokont microalgae. Algal Research 24: 387393.CrossRefGoogle Scholar
Pflugmacher, S., Schröder, P. & Sandermann, H. (2000). Taxonomic distribution of plant glutathione S-transferases acting on xenobiotics. Phytochemistry 54: 267273.CrossRefGoogle ScholarPubMed
Porse, H. & Rudolph, B. (2017). The seaweed hydrocolloid industry: 2016 updates, requirements, and outlook. Journal of Applied Phycology 29: 21872200.CrossRefGoogle Scholar
Pramanick, B., Brahmachari, K., Mahapatra, B. S. et al. (2017). Growth, yield and quality improvement of potato tubers through the application of seaweed sap derived from the marine alga Kappaphycus alvarezii. Journal of Applied Phycology 29: 32533260.CrossRefGoogle Scholar
Ramkissoon, A., Ramsubhag, A. & Jayaraman, J. (2017). Phytoelicitor activity of three Caribbean seaweed species on suppression of pathogenic infections in tomato plants. Journal of Applied Phycology 29: 32353244.CrossRefGoogle Scholar
Ramos-Martinez, E. M., Fimognari, L. & Sakuragi, Y. (2017). High-yield secretion of recombinant proteins from the microalga Chlamydomonas reinhardtii. Plant Biotechnology Journal 15: 12141224.CrossRefGoogle ScholarPubMed
Rasala, B. A. & Mayfield, S. P. (2015). Photosynthetic biomanufacturing in green algae; production of recombinant proteins for industrial, nutritional, and medical uses. Photosynthesis Research 123: 227239.CrossRefGoogle ScholarPubMed
Ratledge, C. (2010). Single cell oils for the 21st century. In: Cohen, Z. & Ratledge, C. (eds.) Single Cell Oils. Microbial and Algal Oils. AOCS Press, Urbana, pp. 326.CrossRefGoogle Scholar
Righini, H., Roberti, R. & Baraldi, E. (2018). Use of algae in strawberry management. Journal of Applied Phycology 30: 35513564.CrossRefGoogle Scholar
Robert, F. O., Pandhal, J. & Wright, P. C. (2010). Exploiting cyanobacterial P450 pathways. Current Opinion in Microbiology 13: 301306.CrossRefGoogle ScholarPubMed
Robinson, N., Winberg, P. & Kirkendale, L. (2013). Genetic improvement of macroalgae: Status to date and needs for the future. Journal of Applied Phycology 25: 703716.CrossRefGoogle Scholar
Roy, J. J., Sun, L. & Ji, L. (2014). Microalgal proteins: A new source of raw material for production of plywood adhesive. Journal of Applied Phycology 26: 14151422.CrossRefGoogle Scholar
Sánchez, J., Fernández-Sevilla, J., Acién, F. et al. (2008). Biomass and lutein productivity of Scenedesmus almeriensis: Influence of irradiance, dilution rate and temperature. Applied Microbiology and Biotechnology 79: 719729.CrossRefGoogle ScholarPubMed
Saravana, P. S., Getachew, A. T., Cho, Y.-J. et al. (2017). Influence of co-solvents on fucoxanthin and phlorotannin recovery from brown seaweed using supercritical CO2. The Journal of Supercritical Fluids 120: 295303.CrossRefGoogle Scholar
Schreiber, C., Schiedung, H., Harrison, L. et al. (2018). Evaluating potential of green alga Chlorella vulgaris to accumulate phosphorus and to fertilize nutrient-poor soil substrates for crop plants. Journal of Applied Phycology 30: 28272836.CrossRefGoogle Scholar
Scodelaro Bilbao, P. G., Damiani, C., Salvador, G. A. et al. (2016). Haematococcus pluvialis as a source of fatty acids and phytosterols: Potential nutritional and biological implications. Journal of Applied Phycology 28: 32833294.CrossRefGoogle Scholar
Selvaraj, V., Muthukumar, A., Nagamony, P. et al. (2018). Detection of typhoid fever by diatom-based optical biosensor. Environmental Science and Pollution Research 25: 2038520390.CrossRefGoogle ScholarPubMed
Semple, K. T. & Cain, R. B. (1996). Biodegradation of phenols by the alga Ochromonas danica. Applied and Environmental Microbiology 62: 12651273.CrossRefGoogle ScholarPubMed
Semple, K. T., Cain, R. B. & Schmidt, S. (1999). Biodegradation of aromatic compounds by microalgae. FEMS Microbiology Letters 170: 291300.CrossRefGoogle Scholar
Shah, M. M. R., Liang, Y., Cheng, J. J. et al. (2016). Astaxanthin-producing green microalga Haematococcus pluvialis: From single cell to high value commercial products. Frontiers in Plant Science 7: 531.CrossRefGoogle ScholarPubMed
Shan, T. F., Pang, S. J., Li, J. et al. (2016). Breeding of an elite cultivar Haibao No. 1 of Undaria pinnatifida (Phaeophyceae) through gametophyte clone crossing and consecutive selection. Journal of Applied Phycology 28: 24192426.CrossRefGoogle Scholar
Shannon, E. & Abu-Ghannam, N. (2017). Optimisation of fucoxanthin extraction from Irish seaweeds by response surface methodology. Journal of Applied Phycology 29: 10271036.CrossRefGoogle Scholar
Silva Benavides, A. M., Torzillo, G., Kopecký, J. et al. (2013). Productivity and biochemical composition of Phaeodactylum tricornutum (Bacillariophyceae) cultures grown outdoors in tubular photobioreactors and open ponds. Biomass and Bioenergy 54: 115122.CrossRefGoogle Scholar
Singh, A. K. & Mallick, N. (2017). Advances in cyanobacterial polyhydroxyalkanoates production. FEMS Microbiology Letters 364: fnx189–fnx189.CrossRefGoogle ScholarPubMed
Singh, A. K., Sharma, L., Mallick, N. et al. (2017). Progress and challenges in producing polyhydroxyalkanoate biopolymers from cyanobacteria. Journal of Applied Phycology 29: 12131232.CrossRefGoogle Scholar
Singh, S., Singh, M. K., Pal, S. K. et al. (2016). Sustainable enhancement in yield and quality of rain-fed maize through Gracilaria edulis and Kappaphycus alvarezii seaweed sap. Journal of Applied Phycology 28: 20992112.CrossRefGoogle Scholar
Skulberg, O. M. (2000). Microalgae as a source of bioactive molecules – experience from cyanophyte research. Journal of Applied Phycology 12: 341348.CrossRefGoogle Scholar
Soeder, C. J., Liersch, R. & Trültzsch, U. (1969). Unterschiedliche Wirkung von Captan auf das Wachstum einiger Stämme von Chlorella und Scenedesmus. Archiv für Mikrobiologie 67: 166172.CrossRefGoogle ScholarPubMed
Stirk, W. A., Tarkowská, D., Turečová, V. et al. (2014). Abscisic acid, gibberellins and brassinosteroids in Kelpak®, a commercial seaweed extract made from Ecklonia maxima. Journal of Applied Phycology 26: 561567.CrossRefGoogle Scholar
Stravs, M. A., Pomati, F. & Hollender, J. (2017). Exploring micropollutant biotransformation in three freshwater phytoplankton species. Environmental Science: Processes and Impacts 19: 822832.Google ScholarPubMed
Suzuki, K. (2017). Large-scale cultivation of Euglena. In: Schwartzbach, S. D. & Shigeoka, S. (eds.) Euglena: Biochemistry, Cell and Molecular Biology. Springer, Cham, pp. 285293.CrossRefGoogle Scholar
Troschl, C., Meixner, K. & Drosg, B. (2017). Cyanobacterial PHA Production—Review of recent advances and a summary of three years’ working experience running a pilot plant. Bioengineering 4: 26.CrossRefGoogle Scholar
Velasquez-Orta, S. B., Curtis, T. P. & Logan, B. E. (2009). Energy from algae using microbial fuel cells. Biotechnology and Bioengineering 103: 10681076.CrossRefGoogle ScholarPubMed
Volkman, J. K. (2016). Sterols in microalgae. In: Borowitzka, M. A, Beardall, J. & Raven, J. A. (eds.) The Physiology of Microalgae. Springer, Dordrecht, pp. 485505.CrossRefGoogle Scholar
Wang, H., Zhang, Y., Chen, L. et al. (2018a). Combined production of fucoxanthin and EPA from two diatom strains Phaeodactylum tricornutum and Cylindrotheca fusiformis cultures. Bioprocess and Biosystems Engineering 41: 10611071.CrossRefGoogle ScholarPubMed
Wang, K., Mandal, A., Ayton, E. et al. (2016). Modification of protein rich algal-biomass to form bioplastics and odor removal. In: Singh Dhillon, G. (ed.) Protein Byproducts. Academic Press, Boston, MA. pp 107117.CrossRefGoogle Scholar
Wang, P., Wong, Y.-S. & Tam, N. F.-Y. (2017). Green microalgae in removal and biotransformation of estradiol and ethinylestradiol. Journal of Applied Phycology 29: 263273.CrossRefGoogle Scholar
Wang, Y., Meng, F., Li, H. et al. (2018b). Biodegradation of phenol by Isochrysis galbana screened from eight species of marine microalgae: Growth kinetic models, enzyme analysis and biodegradation pathway. Journal of Applied Phycology 31: 445455.CrossRefGoogle Scholar
Wijffels, R. H. & Barbosa, M. J. (2010). An outlook on microalgal biofuels. Science 329: 796799.CrossRefGoogle ScholarPubMed
Wite, D., Mattner, S. W., Porter, I. J. et al. (2015). The suppressive effect of a commercial extract from Durvillaea potatorum and Ascophyllum nodosum on infection of broccoli by Plasmodiophora brassicae. Journal of Applied Phycology 27: 21572161.CrossRefGoogle ScholarPubMed
Wynn, J., Behrens, P., Sundararajan, A. et al. (2010). Production of single cell oils from dinoflagellates. In: Cohen, Z. & Ratledge, C. (eds.) Single Cell Oils. Microbial and Algal Oils. AOCS Press, Urbana, pp. 115129.CrossRefGoogle Scholar
Xie, Y., Zhao, X., Chen, J. et al. (2017). Enhancing cell growth and lutein productivity of Desmodesmus sp. F51 by optimal utilization of inorganic carbon sources and ammonium salt. Bioresource Technology 244: 664671.CrossRefGoogle ScholarPubMed
Xiong, J.-Q., Kurade, M. B., Abou-Shanab, R. A. I. et al. (2016). Biodegradation of carbamazepine using freshwater microalgae Chlamydomonas mexicana and Scenedesmus obliquus and the determination of its metabolic fate. Bioresource Technology 205: 183190.CrossRefGoogle ScholarPubMed
Xiong, J.-Q., Kurade, M. B. & Jeon, B.-H. (2018). Can microalgae remove pharmaceutical contaminants from water? Trends in Biotechnology 36: 3044.CrossRefGoogle ScholarPubMed
Xiong, J.-Q., Kurade, M. B., Kim, J. R. et al. (2017). Ciprofloxacin toxicity and its co-metabolic removal by a freshwater microalga Chlamydomonas mexicana. Journal of Hazardous Materials 323: 212219.CrossRefGoogle ScholarPubMed
Yangthong, M., Hutadilok-Towatana, N., Thawonsuwan, J. et al. (2016). An aqueous extract from Sargassum sp. enhances the immune response and resistance against Streptococcus iniae in the Asian sea bass (Lates calcarifer Bloch). Journal of Applied Phycology 28: 35873598.CrossRefGoogle Scholar
Zarekarizi, A., Hoffmann, L. & Burritt, D. (2018). Approaches for the sustainable production of fucoxanthin, a xanthophyll with potential health benefits. Journal of Applied Phycology 31: 281299.CrossRefGoogle Scholar
Zhang, B.-L., Yan, X.-H. & Huang, L.-B. (2011). Evaluation of an improved strain of Porphyra yezoensis Ueda (Bangiales, Rhodophyta) with high-temperature tolerance. Journal of Applied Phycology 23: 841847.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×