Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T05:34:18.916Z Has data issue: false hasContentIssue false

Works Cited

Published online by Cambridge University Press:  30 December 2019

Cara M. Wall-Scheffler
Affiliation:
Seattle Pacific University
Helen K. Kurki
Affiliation:
University of Victoria, British Columbia
Benjamin M. Auerbach
Affiliation:
University of Tennessee, Knoxville
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Evolutionary Biology of the Human Pelvis
An Integrative Approach
, pp. 145 - 171
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Works Cited

Abbate, E., Albianelli, A., Azzaroli, A., et al. (1998). A one-million-year-old Homo cranium from the Danakil (Afar) Depression of Eritrea. Nature, 393, 458460.Google Scholar
Abe, D., Muraki, S. & Yasukouchi, A. (2008). Ergonomic effects of load carriage on the upper and lower back on metabolic energy cost of walking. Applied Ergonomics, 39, 392398.Google Scholar
Abel, R., & Macho, G. A. (2011). Ontogenetic changes in the internal and external morphology of the ilium in modern humans. Journal of Anatomy, 218, 324335.Google Scholar
Abitbol, M. M. (1987). Evolution of the lumbosacral angle. American Journal of Physical Anthropology, 72, 361372.CrossRefGoogle ScholarPubMed
Abitbol, M. M. (1988). Evolution of the ischial spine and of the pelvic floor in the Hominoidea. American Journal of Physical Anthropology, 75, 5367.Google Scholar
Abitbol, M. M. (1995). Reconstruction of the STS 14 (Australopithecus africanus) pelvis. American Journal of Physical Anthropology, 96, 143158.Google Scholar
Ackermann, R. R. (2005). Ontogenetic integration of the hominoid face. Journal of Human Evolution, 48, 175197.CrossRefGoogle ScholarPubMed
Ackermann, R. R. (2009). Morphological integration and the interpretation of fossil hominin diversity. Evolutionary Biology, 36, 149156.Google Scholar
Aiello, L. C. (2010). Five years of Homo floresiensis. American Journal of Physical Anthropology, 142, 167179.CrossRefGoogle ScholarPubMed
Aiello, L. C. & Dean, C. (1990). An Introduction to Human Evolutionary Anatomy. San Diego, CA: Academic Press.Google Scholar
Aiello, L. C. & Key, C. (2002). Energetic consequences of being a Homo erectus female. American Journal of Human Biology, 14, 551565.Google Scholar
Aiello, L. C. & Wells, J. C. K. (2002). Energetics and the evolution of the genus Homo. Annual Review of Anthropology, 31, 323338.CrossRefGoogle Scholar
Akazawa, T., Muhesen, S., Dodo, Y., Kondo, O. & Mizoguchi, Y. (1995). Neanderthal infant burial. Nature, 377, 585586.Google Scholar
Alba, D. M., Almécija, S. & Moyà-Solà, S. (2010). Locomotor inferences in Pierolapithecus and Hispanopithecus: reply to Deane and Begin (2008). Journal of Human Evolution, 59, 143149.CrossRefGoogle Scholar
Albanelli, A. & Napoleone, G. (2004). Magnetostratigraphy of the Homo-bearing Dandiero Basin (Buia Region, Eritrea Danakil Depression). Rivista Italiana di Paleontologia e Stratigrafia, 110(supplement), 534.Google Scholar
Allen, J. A. (1877). The influence of physical conditions on the genesis of species. Radical Review, 1, 108140.Google Scholar
Allen, M. R. & Burr, D. B. (2013). Bone modeling and remodeling. In Burr, D. B. & Allen, M. R. (eds) Basic and Applied Bone Biology. New York, NY: Academic Press, pp. 7591.Google Scholar
Almécija, S., Alba, Dm. & Moyà-Solà, S. (2009). Pierolapithecus and the functional morphology of Miocene ape hand phalanges: paleobiological and evolutionary implications. Journal of Human Evolution, 57, 284297.Google Scholar
Alt, K. W., Pichler, S., Vach, W., et al. (1997). Twenty-five thousand-year-old triple burial from Dolnı Vestonice: an ice-age family. American Journal of Physical Anthropology, 102, 123131.Google Scholar
Antón, S. C. (2003). Natural History of Homo erectus. Yrbk Phys Anthropol, 46, 126169.Google Scholar
Antón, S. C. & Snodgrass, J. (2012). Origins and evolution of genus Homo. Current Anthropology, 53, S479S496.CrossRefGoogle Scholar
Antón, S. C. & Swisher, C. C. III. (2004). Early dispersals of Homo from Africa. Annual Review of Anthropology, 33, 271296.Google Scholar
Antón, S. C., Spoor, F., Fellmann, C. D. & Swisher, C. C. I. (2007). Defining Homo erectus: size considered. In Henke, W. & Tattersall, I. (eds) Handbook of Paleoanthropology: Volume III, Phylogeny of Hominids. Berlin: Springer, Vol. 3, pp. 16551693.Google Scholar
Antón, S. C., Potts, R. & Aiello, L. C. (2014). Evolution of early Homo: an integrated biological perspective. Science, 345, 1236828.CrossRefGoogle ScholarPubMed
Antón, S. C., Taboada, H. G., Middleton, E. R., et al. (2016). Morphological variation on Homo erectus and the origins of developmental plasticity. Philosphical Transactions of the Royal Society, Series B, 371, 20150236.CrossRefGoogle ScholarPubMed
Argue, D., Donlon, D., Groves, C. & Wright, R. (2006). Homo floresiensis: Microcephalic, pygmoid, Australopithecus, or Homo? Journal of Human Evolution, 51, 360374.Google Scholar
Argue, D., Morwood, M. J., Sutikna, T., Jatmiko, & Saptomo, E. W. (2009). Homo floresiensis: a cladistic analysis. Journal of Human Evolution, 57, 623639.Google Scholar
Argue, D., Groves, C. P., Lee, M. S. Y. & Jungers, W. L. (2017). The affinities of Homo floresiensis based on phylogenetic analyses of cranial, dental, and postcranial characters. Journal of Human Evolution, 107, 107133.Google Scholar
Arnold, A. P. (2017). A general theory of sexual differentiation. Journal of Neuroscience Research, 95(102), 291300.Google Scholar
Arnold, S. J. (1983). Morphology, performance and fitness. American Zoologist, 23, 347361.Google Scholar
Arsuaga, J. L. & Carretero, J.-M. (1994). Multivariate analysis of sexual dimorphism of the hip bone in a modern human population and in early hominids. American Journal of Physical Anthropology, 93, 241257.Google Scholar
Arsuaga, J. L., Lorenzo, C., Carretero, J. M., et al. (1999). A complete human pelvis from the Middle Pleistocene of Spain. Nature, 399, 255258.Google Scholar
Arsuaga, J. L., Martínez, I., Arnold, L. J., et al. (2014). Neandertal roots: cranial and chronological evidence from Sima de los Huesos. Science, 344, 13581363.Google Scholar
Arsuaga, J. L., Carretero, J. M., Lorenzo, C., et al. (2015). Postcranial morphology of the Middle Pleistocene humans from Sima de los Huesos, Spain. Proceedings of the National Academy of Science of the United States of America, 112, 11524–9.Google Scholar
Arthur, W. (2004). The effect of development on the direction of evolution: toward a twenty-first century consensus. Evolution and Development, 6(4), 282288.CrossRefGoogle Scholar
Auerbach, B. M. (2007). Human skeletal variation in the New World during the Holocene: effects of climate and subsistence across geography and time. PhD thesis, Johns Hopkins University School of Medicine.Google Scholar
Auerbach, B. M. (2012). Skeletal variation among early Holocene North American humans: implications for origins and diversity in the Americas. American Journal of Physical Anthropology, 149, 525536.Google Scholar
Auerbach, B. M. & Sylvester, A. D. (2011). Allometry and apparent paradoxes in human limb proportions: implications for scaling factors. American Journal of Physical Anthropology, 144, 382391.Google Scholar
Auerbach, B. M., King, K. A., Campbell, R. M., Campbell, M. L. & Sylvester, A. D. (2018). Variation in obstetric dimensions of the human bony pelvis in relation to age‐at‐death and latitude. American Journal of Physical Anthropology, 167(3), 628643.Google Scholar
Baab, K. L., McNulty, K. P. & Rohlf, F. J. (2012). The shape of human evolution: a geometric morphometrics perspective. Evolutionary Anthropology, 21, 151165.CrossRefGoogle ScholarPubMed
Badyaev, A. V. (2002). Growing apart: an ontogenetic perspective on the evolution of sexual size dimorphism. Trends in Ecology & Evolution, 17, 369378.Google Scholar
Barak, M. M., Lieberman, D. E., Raichlen, D., et al. (2013). Trabecular evidence for a human-like gait in Australopithecus africanus. PLOS ONE, 8, e77687.Google Scholar
Bar-Yosef, O. & Vandermeersch, B. (eds) (1991). Le squelette Moustérien de Kébara 2. Paris: Centre National de la Recherche Scientifique.Google Scholar
Beckmann, C. R. B. (ed.) (2013). Obstetrics and Gynecology. 7th edition. Baltimore, MD: Wolters Kluwer Health/Lippincott Williams & Wilkins.Google Scholar
Been, E., Peleg, S., Marom, A. & Barash, A. (2010). Morphology and function of the lumbar spine of the Kebara 2 Neandertal. American Journal of Physical Anthropology, 142, 549557.CrossRefGoogle ScholarPubMed
Been, E., Gomez-Olivencia, A. & Kramer, P. A. (2012). Lumbar lordosis of extinct hominins. American Journal of Physical Anthropology, 147, 6477.CrossRefGoogle ScholarPubMed
Been, E., Gomez-Olivencia, A., Shefi, S., et al. (2017). Evolution of spinopelvic alignment in hominins. Anatomical Record, 300(5), 900911.Google Scholar
Begun, D. R. (2009). Dryopithecins, Darwin, de Bonis, and the European origin of the African apes and human clade. Geodiversitas, 31, 789816.CrossRefGoogle Scholar
Begun, D. R. (2010). Miocene hominids and the origins of the African apes and humans. Annual Review of Anthropology, 39, 6784.Google Scholar
Begun, D. R. (2013). The Miocene Hominoid radiations. In Begun, D. (ed.) A Companion to Paleoanthropology. Chichester: Blackwell Publishing, pp. 398416.Google Scholar
Begun, D. R. (2015). The fossil record of Miocene Hominoids. In Henke, W. & Tattersall, I. (eds) Handbook of Paleoanthropology. Berlin: Springer-Verlag.Google Scholar
Begun, D. & Walker, A. (1993). The endocast. In Walker, A. & Leakey, R. (eds) The Nariokotome Homo erectus skeleton. Cambridge, MA: Harvard University Press, pp. 326358.CrossRefGoogle Scholar
Begun, D. R. & Ward, C. V. (2005). Comment on “Pierolapithecus catalaunicus, a new Middle Miocene great ape from Spain”. Science, 308, 203c.Google Scholar
Begun, D. R., Nargolwalla, M. C. & Kordos, L. (2012). European Miocene hominids and the origin of the African ape and human clade. Evolutionary Anthropology, 21, 1023.Google Scholar
Bennett, M. R., Harris, J. W. K., Richmond, B. G., et al. (2009). Early hominin foot morphology based on 1.5-million-year-old footprints from Ileret, Kenya. Science, 323, 11971201.Google Scholar
Bentley, G. R. (1985). Hunter–gatherer energetics and fertility: a reassessment of the !Kung San. Human Ecology, 13, 79109.Google Scholar
Bereket, S. (2005). Effects of anthropometric parameters and stride frequency on estimation of energy cost of walking. Journal of Sports Medicine and Physical Fitness, 42(2), 152161.Google Scholar
Berge, C. (1983). Spécificité du petit bassin humain (pelvis minor). Rapports entre filière génitale et volume cérébrale. In Morphologie évolutive, Morphogénèse du crane et origine de l’Homme. Table Ronde CNRS, juin 1980. Paris: CNRS.Google Scholar
Berge, C. (1994). How did the australopithecines walk? A biomechanical study of the hip and thigh of Australopithecus afarensis. Journal of Human Evolution, 26, 259273.Google Scholar
Berge, C. & Gommery, D. (1999). Le sacrum de Sterkfontein Sts 14Q (Australopithecus africanus): nouvelles données sur la croissance et sur l’âge osseux du spécimen (hommage à R. Broom et J.T. Robinson). Comptes Rendus de l’Académie des Sciences – Series III, 329, 227232.Google Scholar
Berge, C. & Goularas, D. (2010). A new reconstruction of Sts 14 pelvis (Australopithecus africanus) from computed tomography and three-dimensional modeling techniques. Journal of Human Evolution, 58, 262272.Google Scholar
Berger, L. R., de Ruiter, D. J., Churchill, S. E., et al. (2010). Australopithecus sediba: a new species of Homo-like australopith from South Africa. Science, 328, 195204.Google Scholar
Berger, L. R., Hawks, J., de Ruiter, D. J., et al. (2015). Homo naledi, a new species of the genus Homo from the Dinaledi Chamber, South Africa. Elife, 4, 135.Google Scholar
Bergmann, C. (1847). Uber die verhaltniesse der warmeokonomie der theire zu ihrer grosse. Gottingen Studien, 1, 595708.Google Scholar
Bertram, J. E. (2005). Constrained optimization in human walking: cost minimization and gait plasticity. Journal of Experimental Biology, 208, 979991.Google Scholar
Betti, L. (2014). Sexual dimorphism in the size and shape of the os coxae and the effects of microevolutionary processes, American Journal of Physical Anthropology, 153, 167177.Google Scholar
Betti, L. (2017). Human variation in pelvic shape and the effects of climate and past population history. Anatomical Record, 300, 687697.Google Scholar
Betti, L. & Manica, A. (2018). Human variation in the shape of the birth canal is significant and geographically structured. Proceedings of the Royal Society B, 285, 20181807.Google Scholar
Betti, L., Von Cramon-Taubadel, N. & Lycett, S. J. (2012). Human pelvis and long bones reveal differential preservation of ancient population history and migration out of Africa. Human Biology, 84, 139152.Google Scholar
Betti, L., Von Cramon-Taubadel, N., Manica, A. & Lycett, S. J. (2013). Global geometric morphometric analyses of the human pelvis reveal substantial neutral population history effects, even across sexes. PLoS ONE, 8, e55909.Google Scholar
Betti, L., Von Cramon-Taubadel, N., Manica, A. & Lycett, S. J. (2014). The interaction of neutral evolutionary processes with climatically-driven adaptive changes in the 3D shape of the human os coxae. Journal of Human Evolution, 73, 6474.Google Scholar
Bigazzi, G., Balestrieri, M. L., Norelli, P., Oddone, M. & Tecle, T. M. (2004). Fission-track dating of a tephra layer in the Alat Formation of the Dandiero Group (Danakil Depression, Eritrea). Rivista Italiana di Paleontologia e Stratigrafia, 110(Supplement), 4549.Google Scholar
Binford, L. R. (2001). Constructing Frames of Reference: An Analytical Method for Archaeological Theory Building using Hunter-Gatherer and Environmental Data Sets. Berkeley, CA: University of California Press.Google Scholar
Block, L. M., Chumanov, E. S., Steudel-Numbers, K. L. & Wall-Scheffler, C. M. (2009). How sexual dimorphism and kinematics interact to impact cost over variable terrain. American Journal of Physical Anthropology, S48, 94.Google Scholar
Bogin, B. (1999). Patterns of Human Growth. 2nd edition. Cambridge: Cambridge University Press.Google Scholar
Bogin, B., Smith, P., Orden, A. B., Varela Silva, M. I. & Loucky, J. (2002). Rapid change in height and body proportions of Maya American children. American Journal of Human Biology, 14, 753761.CrossRefGoogle ScholarPubMed
Bolstad, G.H., Hansen, T.F., Pélabon, C., et al. (2014). Genetic constraints predict evolutionary divergence in Dalechampia blossoms. Philosophical Transactions of the Royal Society B, 369, 20130255.Google Scholar
Bondioli, L., Coppa, A., Frayer, D. W., et al. (2006). A one-million-year-old human pubic symphysis. Journal of Human Evolution, 50, 479483.CrossRefGoogle ScholarPubMed
Bonmatí, A., Gómez-Olivencia, A., Arsuaga, J. L., et al. (2010). Middle Pleistocene lower back and pelvis from an aged human individual from the Sima de los Huesos site, Spain. Proceedings of the National Academy of Science of the United States of America, 107, 18,38618,391.Google Scholar
Bonner-Harris, A., Lee, N., Stohler, E. & Wall-Scheffler, C. M. (2018). Human walking behaviour at crosswalks. University of Washington Undergraduate Research Conference, Seattle, WA, USA.Google Scholar
Bookstein, F. L. (1998). A hundred years of morphometrics. Acta Zoologica Academiae Scientarium Hungaricae, 44(1–2), 759.Google Scholar
Boucher, B. J. (1957). Sex differences in the foetal pelvis. American Journal of Physical Anthropology, 15, 581600.Google Scholar
Boughner, J. C. & Rolian, C. (2016). Developmental Approaches to Human Evolution. New York, NY: Wiley-Blackwell.Google Scholar
Boule, M. (1912). L’homme fossile de La Chapelle-aux-Saints. Annales de Paléontologie, 7, 2156, 85–192.Google Scholar
Bouterse, L. & Wall-Scheffler, C. M. (2018). Children are not like other loads: a cross-cultural perspective on the influence of burdens and companionship on human walking. PeerJ, 6, e5547.Google Scholar
Bramble, D. M. & Lieberman, D. E. (2004). Endurance running and the evolution of Homo. Nature, 432, 345352.Google Scholar
Brightman, R. (1996). The sexual division of foraging labor: biology, taboo, and gender politics. Comparative Studies in Society and History, 38, 687729.Google Scholar
Broom, R. & Robinson, J. T. (1950). Notes on pelves of fossil ape-men. American Journal of Physical Anthropology, 8, 489.Google Scholar
Broom, R. & Robinson, J. T. (1952). Swartkrans Ape-Man. Transvaal Museum Memoir no. 6.Google Scholar
Broom, R., Robinson, J. T. & Schepers, G. W. H. (1950). Sterkontein Ape-Man Plesianthropus. Transvaal Museum Memoirs, 4, 5863.Google Scholar
Brown, F. H., Harris, J., Leakey, R. & Walker, A. (1985). Early Homo erectus from West Lake Turkana, Kenya. Nature, 316, 788792.Google Scholar
Brown, F. H., McDougall, I. & Fleagle, J. G. (2012). Correlation of the KHS Tuff of the Kibish Formation to volcanic ash layers at other sites, and the age of early Homo sapiens (Omo I and Omo II). Journal of Human Evolution, 63, 577585.Google Scholar
Brown, K. M. (2015). Selective pressures in the human bony pelvis: decoupling sexual dimorphism in the anterior and posterior spaces. American Journal of Physical Anthropology, 157, 428440.Google Scholar
Brown, P., Sutikna, T., Morwood, M. J., et al. (2004). A new small-bodied hominin from the late pleistocene of Flores, Indonesia. Nature, 431, 10551061.Google Scholar
Browning, R. C. & Kram, R. (2005). Energetic cost and preferred speed of walking in obese versus normal weight women. Obesity Research, 13, 891899.Google Scholar
Brůžek, J. A. (2002). Method for visual determination of sex, using the human hip bone. American Journal of Physical Anthropology, 117, 157168.Google Scholar
Brůžek, J. & Murail, P. (2006). Methodology and reliability of sex determination from the skeleton. In Schmitt, A., Cunha, E. & Pinheiro, J. (eds) Forensic Anthropology and Medicine. Totowa, NJ: Humana Press, pp. 225242.Google Scholar
Brůžek, J., Franciscus, R. G., Novotný, V. & Trinkaus, E. (2006). The assessment of sex. In Trinkaus, E. & Svoboda, J. (eds) Early Modern Human Evolution in Central Europe: The People of Dolní Věstonice and Pavlov: The Dolní Věstonice Studies Volume 12. Oxford: Oxford University Press, pp. 4662.Google Scholar
Bytheway, J. A. & Ross, A. H. (2010). A geometric morphometric approach to sex determination of the human adult os coxa. Journal of Forensic Science, 55, 859864.Google Scholar
Caldwell, W. & Moloy, H. (1933). Anatomical variations in the female pelvis and their effect in labor with a suggested classification. American Journal of Obstetrics and Gynecology, 26, 479505.CrossRefGoogle Scholar
Capellini, T. D., Handschuh, K., Quintana, L., et al. (2011). Control of pelvic girdle development by genes of the Pbx family and Emx2. Developmental Dynamics, 240(5), 11731189.Google Scholar
Cardoso, H. F. V. (2008). Epiphyseal union at the innominate and lower limb in a modern Portuguese skeletal sample, and age estimation in adolescent and young adult male and female skeletons. American Journal of Physical Anthropology, 135(2), 161170.Google Scholar
Cardoso, H. F. V. & Saunders, S. R. (2008). Two arch criteria of the ilium for sex determination of immature skeletal remains: a test of their accuracy and an assessment of intra- and inter-observer error. Forensic Science International, 178, 2429.CrossRefGoogle Scholar
Cardoso, H. F. V., Pereira, V. & Rios, L. (2014). Chronology of fusion of the primary and secondary ossification centers in the human sacrum and age estimation in child and adolescent skeletons. American Journal of Physical Anthropology, 153(2), 214225.Google Scholar
Carrier, D. (1984). Energetic paradox of human running and hominid evolution. Current Anthropology, 25, 483495.Google Scholar
Carroll, S. B. (2008). Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell, 134, 2536.Google Scholar
Chevallier, A. (1977). Origine des ceintures scapulaires et pelviennes chez l’embryon d’oiseau. Journal of Embryology and Experimental Morphology, 42, 275292.Google Scholar
Cheverud, J. M. (1982). Phenotypic, genetic, and environmental morphological integration in the cranium. Evolution, 36, 499516.Google Scholar
Cheverud, J. M. (1988). A comparison of genetic and phenotypic correlations. Evolution, 42, 958968.Google Scholar
Cheverud, J. M. (1996). Developmental integration and the evolution of pleiotropy. American Zoologist, 36, 4450.Google Scholar
Chumanov, E. S., Wall-Scheffler, C. M. & Heiderscheit, B. C. (2008). Gender differences in walking and running on level and inclined surfaces. Clinical Biomechanics, 23(10), 12601268.Google Scholar
Churchill, S. E. & VanSickle, C. (2017). Pelvic morphology in Homo erectus and early Homo. Anatomical Record, 300, 964977.Google Scholar
Churchill, S. E., Kibii, J. M., Schmid, P., Reed, N. D. & Berger, L. R. (2018). The pelvis of Australopithecus sediba. PaleoAnthropology, 2018, 334356. doi:10.4207/PA.2018.ART116.Google Scholar
Clarke, R. (1988). A new Australopithecus cranium from Sterkfontein and its bearing on the ancestry of Paranthropus. In Grine, F. E. (ed.) Evolutionary History of the “Robust” Australopithecines. New York, NY: Aldine de Gruyter, pp. 285292.Google Scholar
Clarke, R. (2013). Australopithecus from Sterkfontein Caves, South Africa. In Reed, K., Fleagle, J. G. & Leakey, R. E. (eds) The Paleobiology of Australopithecus. New York, NY: Springer, pp. 105123.Google Scholar
Claxton, A. G., Hammond, A. S., Romano, J., Oleinik, E. & DeSilva, J. M. (2016). Virtual reconstruction of the Australopithecus africanus pelvis Sts 65 with implications for obstetrics and locomotion. Journal of Human Evolution, 99, 1024.Google Scholar
Coleman, W. H. (1969). Sex differences in the growth of the human bony pelvis. American Journal of Physical Anthropology, 31(2), 125151.Google Scholar
Coqueugnoit, H. & Weaver, T. D. (2007). Brief communication: infracranial maturation in the skeletal collection from Coimbra, Portugal: new aging standards for epiphyseal union. American Journal of Physical Anthropology, 134(3), 424437.Google Scholar
Costa, D. P. & Sinervo, B. (2004). Field physiology: physiological insights from animals in nature. Annual Review of Physiology, 66, 209238.Google Scholar
Cowgill, L. W., Eleazer, C. D., Auerbach, B. M., Temple, D. H. & Okazaki, K. (2012). Developmental variation in ecogeographic body proportions. American Journal of Physical Anthropology, 148, 557570.Google Scholar
Crelin, E. S. (1969). The development of the bony pelvis and its changes during pregnancy and parturition. Transactions of the New York Academy of Sciences, 31, 10491058.Google Scholar
Crespi, B. & Leach, E. (2016). The evolutionary biology of human neurodevelopment: evo-neuro-devo comes of age. In Boughner, J. C. & Rolian, C. (eds) Developmental Approaches to Human Evolution. New York, NY: Wiley-Blackwell, pp. 205230.Google Scholar
Crompton, R. H., Weijie, L. Y. W., Gunther, M. & Savage, R. (1998). The mechanical effectiveness of erect and “bent-hip, bent-knee” bipedal walking in Australopithecus afarensis. Journal of Human Evolution, 35, 5574.CrossRefGoogle ScholarPubMed
Cross, A., Collard, M. & Nelson, A. (2008). Body segment differences in surface area, skin temperature and 3D displacement and the estimation of heat balance during locomotion in hominins. PLoS ONE, 3(6), e2464.Google Scholar
Cunningham, C. A. & Black, S. M. (2009). Development of the fetal ilium – challenging concepts of bipedality. Journal of Anatomy, 214, 9199.Google Scholar
Cunningham, C. A., Scheuer, L. & Black, S. (2016). Developmental Juvenile Osteology. 2nd ed. New York, NY: Academic Press.Google Scholar
Cunningham, F. G., Leveno, K. J., Bloom, S. L., et al. (2014). Williams Obstetrics. 24th ed. New York, NY: McGraw-Hill Education/Medical.Google Scholar
Dart, R. A. (1949). The first pelvic bones of Australopithecus prometheus: preliminary note. American Journal of Physical Anthropology, 7, 255257.Google Scholar
Daujeard, C. & Moncel, M.-H. (2010). On Neanderthal subsistence strategies and land use: a regional focus on the Rhone Valley area in southeastern France. Journal of Anthropological Archaeology, 29, 368391.Google Scholar
Day, M. H. (1971). Postcranial remains of Homo erectus from Bed IV, Olduvai Gorge, Tanzania. Nature, 232, 383387.CrossRefGoogle ScholarPubMed
Day, M. H. (1973). Locomotor features of the lower limb in hominids. Symposia of the Zoological Society of London, 33, 2951.Google Scholar
Day, M. H. (1982). The Homo erectus pelvis: punctuation or gradualism? L’Homo erectus et la place de l’Homme de Tautavel parmi les Hominides fossiles. Paris: Editions du CNRS. pp. 411421.Google Scholar
Day, M. H. (1984). The postcranial remains of Homo erectus from Africa, Asia, and possibly Europe. Courier Forschungsinstitut Senckenberg, 69, 113121.Google Scholar
Day, M. H. (1986). Guide to Fossil Man. Chicago, IL: University of Chicago Press.Google Scholar
Dean, M. C. & Smith, B. H. (2009). Growth and development in the Nariokotome Youth, KNM-WT 15000. In Grine, F. E., Fleagle, J.G. & Leakey, R.E. (eds) The First Humans: Origin of the Genus Homo. New York, NY: Springer, pp. 101120.Google Scholar
Dean, M. C., Stringer, C. B. & Bromage, T. G. (1986). Age at death of the Neanderthal child from Devil’s Tower, Gibraltar, and the implications for studies of general growth and development in Neanderthals. American Journal of Physical Anthropology, 70, 301309.Google Scholar
Deane, A. & Begun, D. R. (2008). Broken fingers: retesting locomotor hypotheses for fossil hominoids using fragmentary proximal phalanges and high-resolution polynomial curve fitting (HR-PCF). Journal of Human Evolution, 55, 691701. 10.1016/j.jhevol.2008.05.005.Google Scholar
Deane, A. & Begun, D. R. (2010). Pierolapithecus locomotor adaptations: a reply to Alba et al.’s comment on Deane and Begun (2008). Journal of Human Evolution, 59, 150154. 10.1016/j.jhevol.2010.04.003.Google Scholar
De Biasio, P., Ginochhio, G., Aicardi, G., et al. (2003). Ossification timing of sacral vertebrae by ultrasound in the mid‐second trimester of pregnancy. Prenatal Diagnosis, 23(13), 10561059.Google Scholar
De Ruiter, D. J., Dewitt, T. J., Carlson, K. B., et al. (2013). Mandibular remains support taxonomic validity of Australopithecus sediba. Science, 340, 1232997.Google Scholar
DeSilva, J. M. (2011). A shift toward birthing relatively large infants early in human evolution. Proceedings of the National Academy of Science of the United States of America, 108, 10221027.Google Scholar
DeSilva, J. M. & Lesnik, J. (2006). Chimpanzee neonatal brain size: implications for brain growth in Homo erectus. Journal of Human Evolution, 51, 207212.Google Scholar
DeSilva, J. M. & Lesnik, J. J. (2008). Brain size at birth throughout human evolution: a new method for estimating neonatal brain size in hominins. Journal of Human Evolution, 55, 10641074.Google Scholar
DeSilva, J. M. & Rosenberg, K. R. (2017). Anatomy, development, and function of the human pelvis. Anatomical Record, 300, 628632.Google Scholar
DeSilva, J. M., Holt, K. G., Churchill, S. E., et al. (2013). The lower limb and mechanics of walking in Australopithecus sediba. Science, 340, 1232999.Google Scholar
DeSilva, J. M., Laudicina, N. M., Rosenberg, K. R. & Trevathan, W. R. (2017). Neonatal shoulder width suggests a semirotational, oblique birth mechanism in Australopithecus afarensis. Anatomical Record, 300, 890899.Google Scholar
Diogo, R. (2016). Where is the evo in evo–devo (evolutionary developmental biology)? Journal of Experimental Zoology B: Molecular and Developmental Evolution, 326B, 918.Google Scholar
Dirks, P. H., Roberts, E. M., Hilbert-Wolf, H., et al. (2017). The age of Homo naledi and associated sediments in the Rising Star Cave, South Africa. Elife, 6, e24231.Google Scholar
Doke, J., Donelan, J. M. & Kuo, A. D. (2004). Mechanics and energetics of swinging the human leg. Journal of Experimental Biology, 208, 439445.Google Scholar
Dolea, C. & Abouzhar, C. (2003). Global Burden of Obstructed Labour in the Year 2000. Geneva: World Health Organization.Google Scholar
Dominguez-Rodrigo, M., Pickering, T. R., Baquedano, E., et al. (2013). First partial skeleton of a 1.34-million-year-old Paranthropus boisei from Bed II, Olduvai Gorge, Tanzania. PLoS ONE, 8, e80347.Google Scholar
Donelan, J. M., Kram, R. & Kuo, A. D. (2001). Mechanical and metabolic determinants of the preferred step width in human walking. Proceedings of the Royal Society of London, Series B: Biological Sciences, 268, 19851992.Google Scholar
Donelan, J. M., Kram, R. & Kuo, A. D. (2002). Mechanical work for step-to-step transitions is a major determinant of the metabolic cost of human walking. Journal of Experimental Biology, 205, 37173727.Google Scholar
Donelan, J. M., Shipman, D. W., Kram, R. & Kuo, A. D. (2004). Mechanical and metabolic requirements for active lateral stabilization in human walking. Journal of Biomechanics, 37, 827835.Google Scholar
Dunbar, R. I. M. (1992). Time: a hidden constraint on the behavioural ecology of baboons. Behavioral Ecology and Sociobiology, 31, 3549.Google Scholar
Dunsworth, H. M., Warrener, A. G., Deacon, T., Ellison, P. T. & Pontzer, H. (2012). Metabolic hypothesis for human altriciality. Proceedings of the National Academy of Sciences of the United States of America, 109, 15,21215,216.Google Scholar
Dunsworth, H. M. (2018). There is no ‘obstetrical dilemma’: towards a braver medicine with fewer childbirth interventions. Perspectives in Biology and Medicine, 61(2), 249263.Google Scholar
Eckhardt, R. B., Henneberg, M., Weller, A. S. & Hsü, K. J. (2014). Rare events in earth history include the LB1 human skeleton from Flores, Indonesia, as a developmental singularity, not a unique taxon. Proceedings of the National Academy of Science of the United States of America, 111, 11,96111,966.Google Scholar
Elewa, A. M. T. (ed.) (2010). Morphometrics for Nonmorphometricians. Berlin: Springer-Verlag.Google Scholar
Ellison, P. T. (2003). Energetics and reproductive effort. American Journal of Human Biology, 15, 342351.Google Scholar
Ellison, P. T. (2008). Energetics, reproductive ecology and human evolution. PaleoAnthropology, 2008, 172200.Google Scholar
England, M. A. (1990). A Colour Atlas of Life Before Birth. London: Wolfe.Google Scholar
Esteve-Altava, B. (2017). In search of morphological modules: a systematic review. Biological Reviews, 92, 13321347.Google Scholar
Eveleth, P. B. & Tanner, J. M. (1976). Worldwide Variation in Human Growth. International Biological Programme 8. Cambridge: Cambridge University Press.Google Scholar
Eyre, J. & Williams, S. A. (2017). A new reconstruction of the Sts 14 pelvis supports a human-like birth mechanism in Australopithecus africanus. American Journal of Physical Anthropology, 162, S175.Google Scholar
Falguères, C., Yokoyama, Y., Shen, G., et al. (2004). New U-series dates at the Caune de l’Arago, France. Journal of Archaeologic al Science, 31, 941952.Google Scholar
Fedak, M. A., Heglund, N. C. & Taylor, C. R. (1982). Energetics and mechanics of terrestrial locomotion. II. Kinetic energy changes of the limbs and body as a function of speed and body size in birds and mammals. Journal of Experimental Biology, 197(1), 2340.Google Scholar
Feldmeyer, B., Greshake, B., Funke, E., Ebersberger, I. & Pfenninger, M. (2015). Positive selection in development and growth rate regulation genes involved in species divergence of the genus Radix. Evolutionary Biology, 15, 164.Google Scholar
Fleagle, J. (2013). Primate Adaptation and Evolution 3rd Edition. New York, NY: Academic Press.Google Scholar
Fleagle, J. G., Assefa, Z., Brown, F. H. & Shea, J. J. (2008). Paleoanthropology of the Kibish Formation, Southern Ethiopia: introduction. Journal of Human Evolution, 55, 360365.Google Scholar
Foley, R. A. (1992). Evolutionary ecology of fossil hominids. In Smith, E. A. & Winterhalder, B. (eds) Evolutionary Ecology and Human Behavior. New York, NY: Aldine de Gruyter.Google Scholar
Fornai, C. & Haeusler, M. (2017). Virtual reconstruction of the pelvic remains of KNM-WT 15000 Homo erectus from Nariokotome, Kenya. American Journal of Physical Anthropology, 162(S64), 183.Google Scholar
Foster, F. & Collard, M. (2013). A reassessment of Bergmann’s rule in modern humans. PLoS ONE, 8, e72269.Google Scholar
Francis, C. C. (1951). Appearance of centers of ossification in the human pelvis before birth. American Journal of Roentgenology and Radium Therapy, 65(5), 778783.Google Scholar
Frazer, J. E. (1948). The Anatomy of the Human Skeleton. 4th ed. London: Churchill.Google Scholar
Friedlander, N. J. & Jordan, D. K. (1994). Obstetric implications of Neanderthal robusticity and bone density. Human Evolution, 9, 331342.Google Scholar
Full, R. J. (2005). The concepts of efficiency and economy in land locomotion. In Blake, R. W. (ed.) Efficiency and Economy in Animal Physiology. Cambridge: Cambridge University Press.Google Scholar
Gagnon, D. & Kenny, G. P. (2011). Sex modulates whole-body sudomotor thermosensitivity during exercise. Journal of Physiology, 589, 62056017.Google Scholar
Gagnon, D. & Kenny, G. P. (2012a). Does sex have an independent effect on thermoeffector responses during exercise in the heat? Journal of Physiology, 590, 59635973.Google Scholar
Gagnon, D. & Kenny, G. P. (2012b). Sex differences in thermoeffector responses during exericse at fixed requirements for heat loss. Journal of Applied Physiology, 113, 746757.Google Scholar
Gardberg, W., Laakkonen, E. & Sälevaara, M. (1998). Intrapartum sonography and persistant occipit posterior position: a study of 408 deliveries. Obstetrics and Gynecology, 91, 746749.Google Scholar
Garland, T. (1983). Scaling the ecological cost of transport to body mass in terrestrial mammals. The American Naturalist, 121, 571587.Google Scholar
Garofalo, E. M. (2012). Environmental and genetic effects on growth of the human skeleton – a bioarchaeological investigation. PhD thesis, Johns Hopkins University School of Medicine.Google Scholar
Gebo, D. L. (2014). Primate Comparative Anatomy. Baltimore, MD: Johns Hopkins University Press.Google Scholar
Ghinassi, M., Oms, O., Papini, M., et al. (2015). An integrated study of the Homo-bearing Aalat stratigraphic section (Eritrea): an expanded continental record at the Early–Middle Pleistocene transition. Journal of African Earth Science, 112, 163185.Google Scholar
Gibson, M. A. & Mace, R. (2006). An energy-saving development initiative increases birth rate and childhood malnutrition in rural Ethiopia. PLoS Medicine, 3, 476484.Google Scholar
Gilbert, S. F. & Barresi, M. J. F. (2016). Developmental Biology. 11th ed. New York, NY: Sinauer Associates.Google Scholar
Gordon, A. D., Nevell, L. & Wood, B. (2008). The Homo floresiensis cranium (LB1): size, scaling, and early Homo affinities. Proceedings of the National Academy of Science of the United States of America, 105, 46504655.Google Scholar
Gorjanović-Kramberger, D. (1906). Der diluviale Mensch von Krapina in Kroatien. Ein Beitrag zur Paläoanthropologie. In Walkhoff, O. (ed.) Studien über die Entwicklungsmechanik des Primatenskelletes, Volume II. Wiesbaden: Kreidel, pp. 59277.Google Scholar
Goswami, A. & Polly, P. D. (2010). The influence of modularity on cranial morphological disparity in Carnivora and Primates (Mammalia). PLoS ONE, 5, e9517.Google Scholar
Gottschall, J. S. & Kram, R. (2006). Mechanical energy fluctuations during downhill and uphill walking: alterations in inverted pendulum energy exchange. Journal of Experimental Biology, 209, 48954900.Google Scholar
Gould, S. J. & Vrba, E. S. (1982). Exaptation: a missing term in the science of form. Paleobiology, 8, 415.Google Scholar
Grabowski, M. W. (2013). Hominin obstetrics and the evolution of constraints. Evolutionary Biology, 40, 5775.Google Scholar
Grabowski, M. W. & Porto, A. (2017). How many more? Sample size determination in studies of morphological integration and evolvability. Methods in Ecology and Evolution, 8, 592603.Google Scholar
Grabowski, M. W. & Roseman, C. C. (2015). Complex and changing patterns of natural selection explain the evolution of the human hip. Journal of Human Evolution, 85, 94110.Google Scholar
Grabowski, M. W., Polk, J. D. & Roseman, C. C. (2011). Divergent patterns of integration and reduced constraint in the human hip and the origins of bipedalism. Evolution, 65, 13361356.Google Scholar
Grabowski, M., Hatala, K. G., Jungers, W. L. & Richmond, B. G. (2015). Body mass estimates of hominin fossils and the evolution of human body size. Journal of Human Evolution, 85, 7593.Google Scholar
Graves, R. R., Lupo, A. C., McCarthy, R. C., Wescott, D. J. & Cunningham, D. L. (2010). Just how strapping was KNM-WT 15000? Journal of Human Evolution, 59, 542554.Google Scholar
Green, R. E., Krause, J., Briggs, A. W., et al. (2010). A draft sequence of the Neandertal genome. Science, 328, 710722.Google Scholar
Green, R. M., Fish, J. L., Young, N. M., et al. (2017). Developmental nonlinearity drives phenotypic robustness. Nature Communications, 8, 1970.Google Scholar
Greulich, W. W. & Thoms, H. (1938). The dimensions of the pelvic inlet of 789 white females. Anatomical Record, 72, 4551.Google Scholar
Grine, F. E., Jungers, W. L., Tobias, P. V. & Pearson, O. M. (1995). Fossil Homo femur from Berg Aukas, Northern Namibia. American Journal of Physical Anthropology, 97, 151185.Google Scholar
Grün, R. & Stringer, C. B. (1991). Electron spin resonance dating and the evolution of modern humans. Archaeometry, 33, 153199.Google Scholar
Grün, R. & Stringer, C. B. (2000). Tagun revisited: revised ESR chronology and new ESR and U-series analysis of dental material from Tabun C1. Journal of Human Evolution, 39, 601612.Google Scholar
Gruss, L. T. & Schmitt, D. (2015). The evolution of the human pelvis: changing adaptations to bipedalism, obstetrics and thermoregulation. Philosophical Transactions of the Royal Society of London, Series B, 370, 20140063.Google Scholar
Gruss, L. T., Wall-Scheffler, C. M. & Malik, N. (2009). Infant carrying in humans: Interactions between morphometric and gait parameters. American Journal of Physical Anthropology, S48, 182183.Google Scholar
Gruss, L. T., Gruss, R. & Schmitt, D. (2017). Pelvic breadth and locomotor kinematics in human evolution. The Anatomical Record, 300, 739751.Google Scholar
Haeusler, M. (2002). New insights into the locomotion of Australopithecus africanus based on the pelvis. Evolutionary Anthropology, 11, 5357.Google Scholar
Haeusler, M., Frémondière, P., Fornai, C., et al. (2016). Virtual reconstruction of the MH2 pelvis (Australopithecus sediba) and obstetrical implications. American Journal of Physical Anthropology, Suppl 62, 165.Google Scholar
Haile-Selassie, Y. & Su, D. F. (2016). The Postcranial Anatomy of Australopithecus afarensis. New York, NY: Springer.Google Scholar
Haile-Selassie, Y., Latimer, B. M., Alene, M., et al. (2010a). An early Australopithecus afarensis postcranium from Woranso-Mille, Ethiopia. Proceedings of the National Academy of Science of the United States of America, 107, 12,12112,126.Google Scholar
Haile-Selassie, Y., Saylor, B. Z., Deino, A., Alene, M. & Latimer, B. M. (2010b). New hominid fossils from Woranso-Mille (Central Afar, Ethiopia) and taxonomy of early Australopithecus. American Journal of Physical Anthropology, 141, 406417.Google Scholar
Haile-Selassie, Y., Saylor, B. Z., Deino, A., et al. (2012). A new hominin foot from Ethiopia shows multiple Pliocene bipedal adaptations. Nature, 483, 565570.Google Scholar
Hall, B. K. (1999). Evolutionary Developmental Biology. Dordrecht: Kluwer.Google Scholar
Hall, B. K. (2012). Evolutionary Developmental Biology. 2nd edition. Dordrecht: Springer Science & Business Media.Google Scholar
Hall, B. K. (2014). Bones and Cartilage: Developmental and Evolutionary Skeletal Biology. 2nd ed. New York, NY: Academic Press.Google Scholar
Hallgrímsson, B., Willmore, K. & Hall, B. K. (2002). Canalization, developmental stability, and morphological integration in primate limbs. American Journal of Physical Anthropology, 45, 131158.Google Scholar
Hallgrímsson, B., Jamniczky, H., Young, N. M., et al. (2009). Deciphering the palimpsest: studying the relationship between morphological integration and phenotypic covariation. Evolutionary Biology, 36(4), 355376.Google Scholar
Hammond, A. S. & Almécija, S. (2017). Lower ilium evolution in apes and hominins. Anatomical Record, 300, 828844.Google Scholar
Hammond, A. S., Alba, D. M., Almécija, S. & Moyà-Solà, S. (2013). Middle Miocene Pierolapithecus provides a first glimpse into early hominid pelvic morphology. Journal of Human Evolution, 64, 658666.Google Scholar
Hammond, A. S., Royer, D. F. & Fleagle, J. G. (2017). The Omo-Kibish I pelvis. Journal of Human Evolution, 108, 199219. doi:10.1016/j.jhevol.2017.04.004.Google Scholar
Hammond, A. S., Almécija, S., Libsekal, Y., Rook, L. & Macchiarelli, R. (2018). A partial Homo pelvis from the Early Pleistocene of Eritrea. Journal of Human Evolution, 123, 109128. https://doi.org/10.1016/j.jhevol.2018.06.010.Google Scholar
Hansen, T. F. & Houle, D. (2008). Measuring and comparing evolvability and constraint in multivariate characters. Journal of Evolutionary Biology, 21, 12011219.Google Scholar
Hatala, K. G., Demes, B. & Richmond, B. G. (2016a). Laetoli footprints reveal bipedal gait biomechanics different from those of modern humans and chimpanzees. Proceedings of the Royal Society B Biological Sciences, 283, 20160235.Google Scholar
Hatala, K. G., Roach, N. T., Ostrofsky, K. R., et al. (2016b). Footprints reveal direct evidence of group behavior and locomotion in Homo erectus. Scientific Reports, 6, 28766.Google Scholar
Häusler, M. (1992). Rekonstruktion des Beckens von Sts 14 (Australopithecus africanus). Diplomarbeit, Anthropologisches Institut und Museum der Universitat Zurich-Irchel, Zurich.Google Scholar
Häusler, M. & Berger, L. (2001). Stw 441/465: a new fragmentary ilium of a small-bodied Australopithecus africanus from Sterkfontein, South Africa. Journal of Human Evolution, 40, 411417.Google Scholar
Häusler, M. & Schmid, P. (1995). Comparison of the pelves of Sts 14 and AL288–1: implications for birth and sexual dimorphism in australopithecines. Journal of Human Evolution, 29, 363383.Google Scholar
Hay, A. (1996). The morphology of the pre-European Maori femur and its functional significance. PhD thesis, University of Otago.Google Scholar
Heglund, N. C. & Taylor, C. R. (1988). Speed, stride frequency and energy cost per stride: how do they change with body size and gait? Journal of Experimental Biology, 138, 301318.Google Scholar
Henneberg, M., Eckhardt, R. B., Chavanaves, S. & Hsü, K. J. (2014). Evolved developmental homeostasis disturbed in LB1 from Flores, Indonesia, denotes Down syndrome and not diagnostic traits of the invalid species Homo floresiensis. Proceedings of the National Academy of Science of the United States of America, 111, 11,96711,972.Google Scholar
Herries, A. I. R., Hopley, P. J., Adams, J. W., Curnoe, D. & Maslin, M. A. (2010). Letter to the Editor: Geochronology and paleoenvironments of Southern African hominin-bearing localities – a reply to Wringham et al., 2009. “Shallow-water habitats as sources of fallback foods for hominins”. American Journal of Physical Anthropology, 143, 640646.Google Scholar
Higgins, R. W. & Ruff, C. B. (2011). The effects of distal limb segments shortening on locomotor efficiency in sloped terrain: Implications for Neandertal locomotor behavior. American Journal of Physical Anthropology, 146, 336345.Google Scholar
Hilton, C. E. (1997). Comparative locomotor kinesiology in two contemporary hominid groups: sedentary Americans and mobile Venezuelan foragers. PhD dissertation, University of New Mexico.Google Scholar
Hilton, C. E. & Greaves, R. D. (2004). Age, sex and resource transport in Venezuelan foragers. In Meldrum, D. J. & Hilton, C. E. (eds) From Biped to Strider: The Emergence of Modern Human Walking, Running and Resource Transport. New York, NY: Kluwer Academic/Plenum Publishers.Google Scholar
Hilton, C. E. & Greaves, R. D. (2008). Seasonality and sex differences in travel distance and resource transport in Venezuelan foragers. Current Anthropology, 49, 144153.Google Scholar
Hirata, S., Fuwa, K., Sugama, K., Kusunoki, K. & Takeshita, H. (2011). Mechanism of birth in chimpanzees: humans are not unique among primates. Biology Letters, 7, 686688.Google Scholar
Hodgins, J. K. (1989). Adjusting step length for rough terrain locomotion. In Raibert, M. H., Brown, H. B., Chepponis, M., et al. (eds) Dynamically Stable Legged Locomotion. Massachusetts, MA: MIT, Artificial Intelligence Laboratory.Google Scholar
Holcomb, S. M. C. & Konigsberg, L. W. (1995). Statistical study of sexual dimorphism in the human fetal sciatic notch. American Journal of Physical Anthropology, 97, 113125.Google Scholar
Holliday, T. W. (1997). Postcranial evidence of cold adaptation in European Neandertals. American Journal of Physical Anthropology, 104, 245258.Google Scholar
Holliday, T. W. (2012). Body size, body shape, and the circumscription of the genus Homo. Current Anthropology, 53, S330S345.Google Scholar
Holliday, T. W. & Hilton, C. E. (2010). Body proportions of circumpolar peoples as evidenced from skeletal data: Ipiutak and Tigara (Point Hope) versus Kodiak Island Inuit. American Journal of Physical Anthropology, 142, 287302.Google Scholar
Holliday, T. W., Churchill, S. E., Carlson, K. J., et al. (2018). Body size and proportions of Australopithecus sediba. PaleoAnthropology, 2018, 406422.Google Scholar
Houle, D., Pélabon, C., Wagner, G. P. & Hansen, T. F. (2011). Measurement and meaning in biology. Quarterly Review of Biology, 86, 334.Google Scholar
Hoyt, D. F. & Taylor, C. R. (1981). Gait and the energetics of locomotion in horses. Nature, 292, 239240.Google Scholar
Huang, T. P. & Kuo, A. D. (2014). Mechanics and energetics of load carriage during human walking. Journal of Experimental Biology, 217, 605613.Google Scholar
Hurtado, A. M., Hawkes, K., Hill, K. & Kaplan, H. (1985). Female subsistence strategies among Ache hunter-gatherers of Eastern Paraguay. Human Ecology, 13, 128.Google Scholar
Hurtado, A. M., Hill, K., Kaplan, H. & Hurtado, I. (1992). Trade-offs between female food acquisition and child care among Hiwi and Ache foragers. Human Nature, 3, 185216.Google Scholar
Huseynov, A., Zollikofer, C. P. E., Coudyzer, W., et al. (2016). Developmental evidence for obstetric adaptation of the human female pelvis. Proceedings of the National Academy of Sciences of the United States of America, 113, 52275232.Google Scholar
Huseynov, A., Ponce de León, M. S. & Zollikofer, C. P. E. (2017). Development of modular organization in the chimpanzee pelvis. Anatomical Record, 300(4), 675686.Google Scholar
Iguchi, T., Fukazawa, Y. & Bern, H. A. (1995). Effects of sex hormones on oncogene expression in the vagina and on development of sexual dimorphism of the pelvis and anococcygeus muscle in the mouse. Environmental Health Perspectives, 103(Suppl 7), 7982.Google Scholar
Ishida, H., Kunimatsu, Y., Takano, T., Nakano, Y. & Nakatsukasa, M. (2004). Nacholapithecus skeleton from the Middle Miocene of Kenya. Journal of Human Evolution, 46, 90103.Google Scholar
Itou, J., Kawakami, H., Quach, T., et al. (2012). Islet1 regulates establishment of the posterior hindlimb field upstream of the Hand2-Shh morphoregulatory gene network in mouse embryos. Development, 139, 16201629.Google Scholar
Jacob, T., Indriati, E., Soejono, R. P., et al. (2006). Pygmoid Australomelanesian Homo sapiens skeletal remains from Liang Bua, flores: population affinities and pathological abnormalities. Proceedings of the National Academy of Science of the United States of America, 103, 13,42113,426.Google Scholar
Johanson, D. C., Lovejoy, C. O., Kimbel, W. H., et al. (1982). Morphology of the Pliocene partial hominid skeleton (AL 288-1) from the Hadar Formation, Ethiopia. American Journal of Physical Anthropology, 57, 403452.Google Scholar
Jungers, W. L. (1987). Body size and morphometric affinities of the appendicular skeleton in Oreopithecus bambolii (IGF 11778). Journal of Human Evolution, 16, 445456.Google Scholar
Jungers, W. L., Falsetti, A. B. & Wall, C. E. (1995). Shape, relative size, and size-adjustments in morphometrics. American Journal of Physical Anthropology, 38, 137161.Google Scholar
Jungers, W. L., Larson, S. G., Harcourt-Smith, W., et al. (2009). Descriptions of the lower limb skeleton of Homo floresiensis. Journal of Human Evolution, 57, 538554.Google Scholar
Kaifu, Y., Baba, H., Sutikna, T., et al. (2011). Craniofacial morphology of Homo floresiensis: description, taxonomic affinities, and evolutionary implication. Journal of Human Evolution, 61, 644682.Google Scholar
Kaifu, Y., Kono, R. T., Sutikna, T., Saptomo, W. E. & Awe, R. D. (2015). Unique dental morphology of Homo floresiensis and its evolutionary implications. PLoS ONE, 10, e0141614.Google Scholar
Kibii, J. M. & Clarke, R. J. (2003). A reconstruction of the Stw 431 Australopithecus pelvis based on newly discovered fragments. South African Journal of Science, 99, 225226.Google Scholar
Kibii, J. M., Churchill, S. E., Schmid, P., et al. (2011). A partial pelvis of Australopithecus sediba. Science, 333, 14071411.Google Scholar
Kimbel, W. H. (2015). The species and diversity of australopiths. In Henke, W. & Tattersall, I. (eds) Handbook of Paleoanthropology. Berlin: Springer, pp. 20712105.Google Scholar
Kivell, T. L., Kibii, J. M., Churchill, S. E., Schmid, P. & Berger, L. R. (2011). Australopithecus sediba hand demonstrates mosaic evolution of locomotor and manipulative abilities. Science, 333, 14111417.Google Scholar
Klein, R. (2009). The Human Career: Human Biological and Cultural Origins. Chicago, IL: University of Chicago Press.Google Scholar
Klingenberg, C. P. (2008). Morphological integration and developmental modularity. Annual Review of Ecology, Evolution, and Systematics, 39, 115132.Google Scholar
Klingenberg, C. P. (2014). Studying morphological integration and modularity at multiple levels: concepts and analysis. Philosophical Transactions of the Royal Society of London B Biological Sciences, 369, 20130249.Google Scholar
Klingenberg, C. P. (2016). Size, shape, and form: concepts of allometry in geometric morphometrics. Development Genes and Evolution, 226, 113137.Google Scholar
Klingenberg, C. P., Mebus, K. & Auffray, J.-C. (2003). Developmental integration in a complex morphological structure: how distinct are the modules in the mouse mandible? Evolution and Development, 5, 522531.Google Scholar
Köhler, M. & Moyà-Solà, S. (1997). Ape-like or hominid-like? The positional behavior of Oreopithecus bambolii reconsidered. Proceedings of the National Academy of Science of the United States of America, 94, 11,74711,750.Google Scholar
Kramer, P. A. (1998). The costs of human locomotion: maternal investment in child transport. American Journal of Physical Anthropology, 107, 7185.Google Scholar
Kramer, P. A. (1999). Modeling the locomotor energetics of extinct hominids. Journal of Experimental Biology, 202, 28072818.Google Scholar
Kramer, P. A. (2004). The behavioral ecology of locomotion. In Meldrum, D. J. & Hilton, C. E. (eds) From Biped to Strider: The Emergence of Modern Human Walking, Running and Resource Transport. New York, NY: Plenum Press, pp. 101115.Google Scholar
Kramer, P. A. (2012). Could Kadanuumuu (KSD-VP-1/1) and Lucy (AL-288-1) have walked together comfortably? American Journal of Physical Anthropology, 149, 616621.Google Scholar
Kramer, P. A. & Eck, G. G. (2000). Locomotor energetics and leg length in hominid bipedality. Journal of Human Evolution, 38, 651666.Google Scholar
Kramer, P. A. & Sylvester, A. D. (2009). Bipedal form and locomotor function: understanding the effects of size and shape on velocity and energetics. PaleoAnthropology, 2009, 238251.Google Scholar
Kramer, P. A. & Sylvester, A. D. (2013). Humans, geometric similarity and the Froude number: is “reasonably close” really close enough? Biology Open, 2, 111120.Google Scholar
Krawchuk, D., Weiner, S. J., Chen, Y. T., et al. (2010). Twist1 activity thresholds define multiple functions in limb development. Developmental Biology, 347(1), 133146.Google Scholar
Krogman, W. M. (1973). The Human Skeleton in Forensic Medicine. Springfield, IL: Charles C. Thomas.Google Scholar
Kubo, D., Kono, R. T. & Kaifu, Y. (2013). Brain size of Homo floresiensis and its evolutionary implications. Proceedings of the Royal Society of London B Biological Sciences, 280, 20130338Google Scholar
Kuhn, S. L. & Stiner, M. C. (2006). What’s a mother to do? The division of labor among Neandertals and Modern Humans in Eurasia. Current Anthropology, 47(6), 953980.Google Scholar
Kuo, A. D. (1999). Stabilization of lateral motion in passive dynamic walking. International Journal of Robotics Research, 18, 917930.Google Scholar
Kuo, A. D. (2007). Choosing your steps carefully: trade-offs between economy and versatility in dynamic walking bipedal robots. IEEE Robotics & Automation Magazine, 14, 1829.Google Scholar
Kuo, A. D., Donelan, J. M. & Ruina, A. (2005). Energetic consequences of walking like an inverted pedulum: step-to-step transitions. Exercise and Sport Sciences Reviews, 33, 8897.Google Scholar
Kurki, H. K. (2007). Protection of obstetric dimensions in a small-bodied human sample. American Journal of Physical Anthropology, 133, 11521165.Google Scholar
Kurki, H. K. (2011). Pelvic dimorphism in relation to body size and body size dimorphism in humans. Journal of Human Evolution, 61, 631643.Google Scholar
Kurki, H. K. (2013a). Skeletal variability in the pelvis and limb skeleton of humans: does stabilizing selection limit female pelvic variation? American Journal of Human Biology, 25, 795802.Google Scholar
Kurki, H. K. (2013b). Bony pelvic canal size and shape in relation to body proportionality in humans. American Journal of Physical Anthropology, 151, 88101.Google Scholar
Kurki, H. K. (2017). Bilateral asymmetry in the human pelvis. Anatomical Record, 300, 653665.Google Scholar
Kurki, H. K. & Decrausaz, S. L. (2016). Shape variation in the human pelvis and limb skeleton: implications for obstetric adaptation. American Journal of Physical Anthropology, 159, 630638.Google Scholar
Kurki, K. & Wall-Scheffler, C. M. (2018). Location, location, location: sexual dimorphism of the human pelvis has no universal pattern. American Journal of Physical Anthropology, Supplement 66, 149.Google Scholar
Kurki, H. K., Ginter, J. K., Stock, J. T. & Pfeiffer, S. (2008). Adult proportionality in small-bodied foragers: a test of ecogeographic expectations. American Journal of Physical Anthropology, 136, 2838.Google Scholar
LaFiandra, M., Wagenaar, R. C., Holt, K. G. & Obusek, J. P. (2003). How do load carriage and walking speed influence trunk coordination and stride parameters? Journal of Biomechanics, 36(1), 8795.Google Scholar
Lahr, M. M. (1996). The Evolution of Modern Human Diversity: A Study of Cranial Variation. Cambridge: Cambridge University Press.Google Scholar
Lanctôt, C., Moreau, A., Chamberland, M., Tremblay, M. L. & Drouin, J. (1999). Hindlimb patterning and mandible development require the Ptx1 gene. Development, 126(9), 18051810.Google Scholar
Lande, R. (1979). Quantitative genetic analysis of multivariate evolution, applied to brain: body size allometry. Evolution, 33, 402416.Google Scholar
Lande, R. & Arnold, S. J. (1983). The measurement of selection on correlated characters. Evolution, 37, 12101226.Google Scholar
Langman, V. A., Rowe, M. F., Roberts, T. J., Langman, N. V. & Taylor, C. R. (2012). Minimum cost of transport in Asian elephants: do we really need a bigger elephant? Journal of Experimental Biology, 215, 15091514.Google Scholar
Laudicina, N. M., Rodriguez, F. & DeSilva, J. M. (2019). Reconstructing birth in Australopithecus sediba. PLoS ONE, 14(9), e0221871. https://doi.org/10.1371/journal.pone.0221871.Google Scholar
Leakey, M. D. (1971). Discovery of postcranial remains of Homo erectus and associated artefacts in Bed IV at Olduvai Gorge, Tanzania. Nature, 232, 380383.Google Scholar
Leakey, R. E. F. & Walker, A. C. (1985). Further hominids from the Plio-Pleistocene of Koobi Fora, Kenya. American Journal of Physical Anthropology, 67, 135163.Google Scholar
Leary, S., Fall, C., Osmond, C., et al. (2006). Geographical variation in relationships between parental body size and offspring phenotype at birth. Acta Obstetricia et Gynecologica Scandinavica, 85, 10661079.Google Scholar
Leonard, W. R. & Robertson, M. L. (1997). Comparative primate energetics and hominid evolution. American Journal of Physical Anthropology, 102, 265281.Google Scholar
Leutenegger, W. (1970). Das becken der rezenten Primaten. Morphologisches Jahrbuch, 115, 1101.Google Scholar
Leutenegger, W. (1972). Newborn size and pelvic dimensions in Australopithecus. Nature, 240, 568569.Google Scholar
Leutenegger, W. (1974). Functional aspects of pelvic morphology in simian primates. Journal of Human Evolution, 3, 207222.Google Scholar
Leutenegger, W. & Larson, S. (1985). Sexual dimorphism in the postcranial skeleton of New World primates. Folia Primatologia, 44, 8295.Google Scholar
Lewis, C. L., Laudicina, N. M., Khuu, A. & Loverro, K. L. (2017). The human pelvis: variation in structure and function during gait. Anatomical Record, 300, 633642.Google Scholar
Lewton, K. L. (2010). Locomotor function and the evolution of the primate pelvis. Doctor of Philosophy, Arizona State University, Tempe, AZ.Google Scholar
Lewton, K. L. (2012). Evolvability of the primate pelvic girdle. Evolutionary Biology, 39, 126139.Google Scholar
Lewton, K. L. (2015). Allometric scaling and locomotor function in the primate pelvis. American Journal of Physical Anthropology, 156, 511530.Google Scholar
Lewton, K. L. & Scott, J. E. (2017). Ischial form as an indicator of bipedal kinematics in early hominins: a test using extant anthropoids. Anatomical Record, 300, 845858. doi:10.1002/ar.23543.Google Scholar
Li, D.-K., Janevic, T., Odouli, R. & Liu, L. (2003). Hot tub use during pregnancy and the risk of miscarriage. American Journal of Epidemiology, 158, 931937.Google Scholar
Lordkipanidze, D., Jashashvili, T., Vekua, A., et al. (2007). Postcranial evidence from early Homo from Dmanisi, Georgia. Nature, 449, 305310.Google Scholar
Lovejoy, C. O. (1988). Evolution of human walking. Scientific American, 256(11), 118125.Google Scholar
Lovejoy, C. O. (2005). The natural history of human gait and posture. Part 1: Spine and pelvis. Gait and Posture, 21, 95112.Google Scholar
Lovejoy, C. O., Heiple, K. G. & Burstein, A. H. (1973). The gait of Australopithecus. American Journal of Physical Anthropology, 38, 757780.Google Scholar
Lovejoy, C. O., Suwa, G., Spurlock, L., Asfaw, B. & White, T. D. (2009a). The pelvis and femur of Ardipithecus ramidus: the emergence of upright walking. Science, 326, 7171e6.Google Scholar
Lovejoy, C. O., Suwa, G., Simpson, S. W., Matternes, J. H. & White, T. D. (2009b). The great divides: Ardipithecus ramidus reveals the post-crania of our last common ancestors with African apes. Science, 326, 100106.Google Scholar
Lovejoy, C. O., Latimer, B. M., Spurlock, L. & Haile-Selassie, Y. (2016). The pelvic girdle and limb bones of KSD-VP-1/1. In Haile-Selassie, Y. & Su, D. F. (eds) The Postcranial Anatomy of Australopithecus afarensis: New Insights from KSD-VP-1/1. Dordrecht: Springer Netherlands, pp. 155178.Google Scholar
, Z. (1990). La découverte de l’homme fossile de Jing-niu-shan: premiere étude. L’Anthropologie (Paris), 94, 899902.Google Scholar
, Z. (1995). Study of the hip bone of Jinniushan Man. Quarterly Journal of Historical Relics (English Summary), 2, 19.Google Scholar
Lycett, S. J. & Von Cramon-Taubadel, N. (2013). Understanding the comparative catarrhine context of human pelvic form: a 3D geometric morphometric analysis. Journal of Human Evolution, 64(4), 300310.Google Scholar
Lynch, M. (1990). The rate of morphological evolution in mammals from the standpoint of the neutral expectation. American Naturalist, 136, 727741.Google Scholar
Lynch, M. & Walsh, J. B. (1998). Genetics and Analysis of Quantitative Traits. Sunderland, MA: Sinauer Associates Inc.Google Scholar
Maas, P. & Friedling, L. J. (2016). Scars of parturition? Influences beyond parity. International Journal of Osteoarchaeology, 26(1), 121131.Google Scholar
Macchiarelli, R., Bondioli, L., Chech, M., et al. (2004). The late Early Pleistocene human remains from Buia, Danakil depression, Eritrea. Rivista Italiana di Paleontologia e Stratigrafia, 110, 133144.Google Scholar
Magwene, P. M. (2001). New tools for studying integration and modularity. Evolution, 55, 17341745.Google Scholar
Malashichev, Y., Christ, B. & Prols, F. (2008). Avian pelvis originates from lateral plate mesoderm and its development requires signals from both ectoderm and paraxial mesoderm. Cell & Tissue Research, 331, 595604.Google Scholar
Mallard, A. M., Savell, K. R. R. & Auerbach, B. M. (2017). Morphological integration of the human pelvis with respect to age and sex. The Anatomical Record, 300, 666674.Google Scholar
Manthi, F. K., Plavcan, J. M. & Ward, C. V. (2012). New hominin fossils from Kanapoi, Kenya, and the mosaic evolution of canine teeth in early hominins. South African Journal of Science, 108, 19.Google Scholar
Manzano, A., Abdala, V., Ponssa, M. L. & Soliz, M. (2013). Ontogeny and tissue differentiation of the pelvic girdle and hind limbs of anurans. Acta Zoologica, 94(4), 420436.Google Scholar
Marchini, M. & Rolian, C. (2018). Artificial selection sheds light on developmental mechanisms of limb elongation. Evolution, 72(4), 825837.Google Scholar
Marlowe, F. W. (2010). The Hadza: Hunter-gatherers of Tanzania. Berkeley, CA: University of California Press.Google Scholar
Marsh, R. L., Ellerby, D. J., Carr, H. T., Henry, H. T. & Buchanan, C. I. (2004). Partitioning the energetics of walking and running: swinging the limbs is expensive. Science, 303, 8083.Google Scholar
Marsh, R. L., Ellerby, D. J., Henry, H. T. & Rubenson, J. (2006). The energetic costs of trunk and distal limb loading during walking and running in guinea fowl Numida meleagris. Journal of Experimental Biology, 209, 20502063.Google Scholar
Martin, R. D. (1983). Human Brain Evolution in an Ecological Context. Fifty-second James Arthur Lecture on the Evolution of the Human Brain. New York, NY: American Museum of Natural History.Google Scholar
Mays, S. (1999). Linear and appositional long bone growth in earlier human populations: a case study from Medieval England. In Hoppa, R. & Fitzgerald, C. (eds) Human Growth in the Past: Studies from Bone and Teeth. Cambridge: Cambridge University Press, pp. 290312.Google Scholar
McCown, T. D. & Keith, A. (1939). The Stone Age of Mount Carmel: The Fossil Human Remains from the Levalloiso-Mousterian. Oxford: Clarendon Press.Google Scholar
McHenry, H. M. (1975a). The ischium and hip extensor mechanism in human evolution. American Journal of Physical Anthropology, 43, 3946.Google Scholar
McHenry, H. M. (1975b). A new pelvic fragment from Swartkrans and the relationship between the robust and gracile australopithecines. American Journal of Physical Anthropology, 45, 245262.Google Scholar
McHenry, H. M. & Corruccini, R. S. (1975). Multivariate analysis of early hominid pelvic bones. American Journal of Physical Anthropology, 43, 263270.Google Scholar
Melo, D. & Marroig, G. (2015). Directional selection can drive the evolution of modularity in complex traits. Proceedings of the National Academy of Sciences of the United States of America, 112(2), 470475.Google Scholar
Melo, D., Porto, A., Cheverud, J. M. & Marroig, G. (2016). Modularity: genes, development, and evolution. Annual Review of Ecology Evolution and Systematics, 47(1), 463486.Google Scholar
Mercier, N. & Valladas, H. (2003). Reassessment of TL age estimates of burnt flints from the Paleolithic site of Tabūn Cave, Israel. Journal of Human Evolution, 45, 401409.Google Scholar
Middleton, E. R., Winkler, Z. J., Hammond, A. S., Plavcan, J. M. & Ward, C. (2017). Determinants of iliac blade orientation in anthropoid primates. The Anatomical Record, 300, 810827.Google Scholar
Miller, P., Smith, D. W. & Shepard, T. H. (1978). Maternal hyperthermia as a possible cause of anencephaly. Lancet, 1, 519521.Google Scholar
Mitteroecker, P. & Bookstein, F. L. (2007). The conceptual and statistical relationship between modularity and morphological integration. Systematic Biology, 56(5), 818836.Google Scholar
Mitteroecker, P., Gunz, P., Neubauer, S. & Müller, G. (2012). How to explore morphological integration in human evolution and development. Evolutionary Biology, 39, 536553.Google Scholar
Mittler, D. M. & Sheridan, S. G. (1992). Sex determination in subadults using auricular surface morphology: a forensic sciences perspective. Journal of Forensic Science, 37, 10681075.Google Scholar
Mobb, G. E. & Wood, B. A. (1977). Allometry and sexual dimorphism in the primate innominate bone. American Journal of Anatomy, 150, 531537.Google Scholar
Moczek, A. P., Sears, K. E., Stollewerk, A., et al. (2015). The significance and scope of evolutionary developmental biology: a vision for the 21st century. Evolution and Development, 17, 198219.Google Scholar
Moffett, E. A. (2017). Dimorphism in the size and shape of the birth canal across anthropoid primates. Anatomical Record, 300, 870889.Google Scholar
Molvarec, A., Tamasi, L., Losonczy, G., Madach, K., Prohaska, Z. & Rlgo, J. (2010). Circulating heat shock protein 70 (HSPA1A) in normal and pathological pregnancies. Cell Stress Chaperones, 15, 237247.Google Scholar
Morgan, M. E., Lewton, K. L., Kelley, J., et al. (2015). A partial hominoid innominate from the Miocene of Pakistan: description and preliminary analyses. Proceedings of the National Academy of Sciences of the United States of America, 112, 8287.Google Scholar
Morwood, M. J., Brown, P., Jatmiko, , et al. (2005). Further evidence for small-bodied hominins from the Late Pleistocene of Flores, Indonesia. Nature, 437, 10121017.Google Scholar
Moyà-Solà, S., Köhler, M., Alba, D. M., Casanovas-Vilar, I. & Galindo, J. (2004). Pierolapithecus catalaunicus, a new Middle Miocene great ape from Spain. Science, 306, 13391344.Google Scholar
Myers, M. J. & Steudel, K. (1985). Effect of limb mass distribution on the energetic cost of running. Journal of Experimental Biology, 116, 363373.Google Scholar
Nagano, A., Umberger, B. R., Marzke, M. W. & Gerritsen, K. G. (2005). Neuromusculoskeletal computer modeling and simulation of upright, straight-legged, bipedal locomotion of Australopithecus afarensis (A.L. 288-1). American Journal of Physical Anthropology, 126, 213.Google Scholar
Napier, J. R. & Napier, P. H. (1967). A Handbook of Living Primates. London: Academic Press.Google Scholar
Neumann, D. A. & Cook, T. M. (1985). Effect of load and carrying position on the electromyographic activity of the gluteus medius muscle during walking. Physical Therapy, 65(3), 305311.Google Scholar
Nevill, A. M., Stewart, A. D., Olds, T. & Holder, R. L. (2004). Are adult physiques geometrically similar? The dangers of allometric scaling using body mass power laws. American Journal of Physical Anthropology, 124, 177182.Google Scholar
Ngun, T. C., Ghahramani, N., Sanchez, F. J., Bocklandt, S. & Vilain, E. (2011). The genetics of sex differences in brain and behavior. Frontiers in Neuroendocrinology, 32(3), 227246.Google Scholar
Nowlan, N. C. (2015). Biomechanics of foetal movement. European Cells and Materials, 29, 121.Google Scholar
Nowlan, N. C., Chandaria, V. & Sharpe, J. (2014). Immobilized chicks as a model system for early-onset developmental dysplasia of the hip. Journal of Orthopedic Research, 32(6), 777785.Google Scholar
Ohta, T. (2002). Near-neutrality in evolution of genes and gene regulation. Proceedings of the National Academy of Sciences of the United States of America, 99, 16,13416,137.Google Scholar
O’Neill, M. (2012). Gait-specific metabolic costs and preferred speeds in ringtailed lemurs (Lemur catta), with implications for the scaling of locomotor costs in primates. American Journal of Physical Anthropology, 149, 356364.Google Scholar
O’Rahilly, R., Müller, F. & Meyer, D. B. (1990). The human vertebral column at the end of the embryonic period proper. 4. The sacrococcygeal region. Journal of Anatomy, 168, 95111.Google Scholar
Oxnard, C. E. (1974). Primate Locomotor Classifications for Evaluating Fossils: Their Inutility and an Alternative. Tokyo: Japan Science Press, pp. 269286.Google Scholar
Oxnard, C. E., Crompton, R. H. & Lieberman, S. S. (1990). Animal Lifestyles and Anatomies: The Case of the Prosimian Primates. Seattle: University of Washington Press.Google Scholar
Passmore, R. & Durnin, J. V. G. A. (1955). Human energy expenditure. Physiological Reviews, 35, 801840.Google Scholar
Pavličev, M., Cheverud, J. M. & Wagner, G. P. (2009). Measuring morphological integration using eigenvalue variance. Evolutionary Biology, 36, 157170.Google Scholar
Pearson, O. M., Royer, D. F., Grine, F. E. & Fleagle, J. G. (2008). A description of the Omo I postcranial skeleton, including newly discovered fossils. Journal of Human Evolution, 55, 421437.Google Scholar
Pellegrini, M., Pantano, S., Fumi, M. P., Lucchini, F. & Forabosco, A. (2001). Agenesis of the scapula in Emx2 homozygous mutants. Developmental Biology, 232, 149156.Google Scholar
Pennycuick, C. J. (1975). On the running of the gnu (Connochaetes taurinus) and other animals. Journal of Experimental Biology, 63, 775799.Google Scholar
Pérez de los Ríos, M., Moyà-Solà, S. & Alba, D. M. (2012). The nasal and paranasal architecture of the Middle Miocene ape Pierolapithecus catalaunicus (Primates: Hominidae): phylogenetic implications. Journal of Human Evolution, 63, 497506.Google Scholar
Pfeiffer, S., Doyle, L. E., Kurki, H. K., et al. (2014). Discernment of mortality risk associated with childbirth in archaeologically derived forager skeletons. International Journal of Paleopathology, 7, 1524.Google Scholar
Pike-Tay, A., Valdes, V. C. & de Quiros, F. B. (1999). Seasonal variations of the Middle–Upper Paleolithic transition at El Castillo, Cueva Morin and El Pendo (Cantabria, Spain). Journal of Human Evolution, 36, 283317.Google Scholar
Pinhasi, R., Teschler-Nicola, M., Knaus, A. & Shaw, P. (2005). Cross-population analysis of the growth of long bones and the os coxae of three Early Medieval Austrian populations. American Journal of Human Biology, 17, 470488.Google Scholar
Plavcan, J. M. (2011). Understanding dimorphism as a function of changes in male and female traits. Evolutionary Anthropology, 20, 143155.Google Scholar
Pomikal, C., Blumer, R. & Streicher, J. (2011). Four-dimensional analysis of early pelvic girdle development in Rana temporaria.Journal of Morphology, 272(3), 287301.Google Scholar
Ponce de León, M. S., Golovanova, L., Doronichev, V., et al. (2008). Neanderthal brain size at birth provides insights into the evolution of human life history. Proceedings of the National Academy of Science of the United States of America, 105, 13,76413,768.Google Scholar
Pontzer, H. (2012). Ecological energetics in early Homo. Current Anthropology, 53, S346S358.Google Scholar
Pontzer, H. (2017). Economy and endurance in human bvolution. Current Biology, 27, R613R621. doi:10.1016/j.cub.2017.05.031.Google Scholar
Porto, A., Sebastião, H., Pavan, S. E., et al. (2015). Rate of evolutionary change in cranial morphology of the marsupial genus Monodelphisis constrained by the availability of additive genetic variation. Journal of Evolutionary Biology, 28(4), 973985.Google Scholar
Porto, A., Schmelter, R., Vanderberg, J. L., Marroig, G. & Cheverud, J. M. (2016). Evolution of the genotype-to-phenotype map and the cost of pleiotropy in mammals. Genetics, 204(4), 16011612.Google Scholar
Pycraft, W. P. (1930). The pelvis of Rhodesian man. Man, 30, 117121.Google Scholar
Raff, R. A. & Kaufman, T. C. (1983). Embryos, Genes, and Evolution. New York, NY: Macmillan.Google Scholar
Raichlen, D. A., Gordon, A. D., Harcourt-Smith, W. E., Foster, A. D. & Haas, W. R. (2010). Laetoli footprints preserve earliest direct evidence of human-like bipedal biomechanics. PLoS ONE, 5, e9769.Google Scholar
Rak, Y. (1990). On the differences between two pelvises of Mousterian context from the Qafzeh and Kebara caves, Israel. American Journal of Physical Anthropology, 81, 323332.Google Scholar
Rak, Y. (1991). Lucy’s pelvic anatomy: its role in bipedal gait. Journal of Human Evolution, 20, 283290.Google Scholar
Rak, Y. & Arensburg, B. (1987). Kebara 2 Neanderthal pelvis: first look at a complete inlet. American Journal of Physical Anthropology, 73, 227231.Google Scholar
Ralston, H. J. (1958). Energy–speed relation and optimal speed during level walking. European Journal of Applied Physiology, 17, 277283.Google Scholar
Rathkey, J. & Wall-Scheffler, C. M. (2017). Do people choose to run at their optimal running speed? American Journal of Physical Anthropology, 163, 8593.Google Scholar
Reyment, R. (2010). Morphometrics: an historical essay. In Elewa, A. M. T. (ed.) Morphometrics for Nonmorphometricians. New York, NY: Springer, pp. 924.Google Scholar
Reno, P. L. (2014). Genetic and developmental basis for parallel evolution and its significance for hominoid evolution. Evolutionary Anthropology, 23, 188200.Google Scholar
Reno, P. L. (2016) Evo–devo sheds light on mechanisms of human evolution: limb proportions and penile spines. In Boughner, J. C. & Rolian, C. (eds) Developmental Approaches to Human Evolution. New York, NY: Wiley-Blackwell, pp. 77100.Google Scholar
Reno, P. L. & Lovejoy, C. O. (2015). From Lucy to Kadanuumuu: balanced analyses of Australopithecus afarensis assemblages confirm only moderate skeletal dimorphism. PeerJ, 3, e925.Google Scholar
Richmond, B. G. & Jungers, W. L. (1995). Size variation and sexual dimorphism in Australopithecus afarensis and living hominoids. Journal of Human Evolution, 29, 229245. DOI 10.1006/jhev.1995.1058.Google Scholar
Richmond, B. G. & Jungers, W. L. (2008). Orrorin tugenensis femoral morphology and the evolution of hominin bipedalism. Science, 319(5870), 16621665.Google Scholar
Ridley, M. (1995). Pelvic sexual dimorphism and relative neonatal brain size really are related. American Journal of Physical Anthropology, 97, 197200.Google Scholar
Rightmire, G. P. (2004). Brain size and encephalization in early to mid-Pleistocene Homo. American Journal of Physical Anthropology, 124, 109–23.Google Scholar
Rink, W. J., Schwarcz, H. P., Smith, F.H. & Radovčić, J. (1995). ESR ages for Krapina hominids. Nature, 378, 24.Google Scholar
Ríos, L., Weisensee, K. & Rissech, C. (2008). Sacral fusion as an aid in age estimation. Forensic Science International, 180(2–3), 111.e1–7.Google Scholar
Rissech, C. & Malgosa, A. (2005). Ilium growth study: applicability in sex and age diagnosis. Forensic Science International, 147, 165174.Google Scholar
Robinson, J. T. (1972). Early Hominid Posture and Locomotion. Chicago, IL: Chicago University Press.Google Scholar
Rocková, H. & Roček, Z. (2005). Development of the pelvis and posterior part of the vertebral column in the Anura. Journal of Anatomy, 206, 1735.Google Scholar
Rolfe, R. A., Nowlan, N. C., Kenny, E. M., et al. (2014). Identification of mechanosensitive genes during skeletal development: alteration of genes associated with cytoskeletal rearrangement and cell signalling pathways. BMC Genomics, 15, 48.Google Scholar
Rolian, C. (2009). Integration and evolvability in primate hands and feet. Evolutionary Biology, 36, 100117.Google Scholar
Rolian, C. (2014). Genes, development, and evolvability in primate evolution. Evolutionary Anthropology, 23, 93104.Google Scholar
Rook, L., Bondioli, L., Köhler, M., Moyà-Solà, S. & Macchiarelli, R. (1999). Oreopithecus was a bipedal ape after all: evidence from the iliac cancellous architecture. Proceedings of the National Academy of Science of the United States of America, 96, 87958799.Google Scholar
Rook, L., Kibreab, A., Russom, R., Tecle, T. M. & Abbate, E. (2002). The Buia Project: a collaborative geo-paleontological and paleoanthropological research project in Eritrea. Journal of Human Evolution, 42, A29–30.Google Scholar
Rose, M. D. (1984). A hominine hip bone, KNM-ER 3228, from East Lake Turkana, Kenya. American Journal of Physical Anthropology, 63, 371378.Google Scholar
Roseman, C. C. (2012). The soundness of the Cheverud Conjecture and its implications for the study of human evolution. American Journal of Physical Anthropology, 147, 252.Google Scholar
Roseman, C. C. & Auerbach, B. M. (2015). Ecogeography, genetics, and the evolution of human body form. Journal of Human Evolution, 78, 8090.Google Scholar
Roseman, C. C. & Weaver, T. D. (2007). Molecules versus morphology? Not for the human cranium. Bioessays, 29, 11851188.Google Scholar
Roseman, C. C., Weaver, T. D. & Stringer, C. B. (2011). Do modern humans and Neandertals have different patterns of cranial integration? Journal of Human Evolution, 60, 684693.Google Scholar
Rosenberg, K. R. (1988). The functional significance of Neanderthal pubic morphology. Current Anthropology, 29, 595617.Google Scholar
Rosenberg, K. R. (1992). The evolution of modern human childbirth. Yearbook of Physical Anthropology, 35, 89124.Google Scholar
Rosenberg, K. R. (1998). Morphological variation in West Asian postcrania: implications for obstetric and locomotor behavior. In Akazawa, T., Aoki, K. & Bar-Yosef, O. (eds) Neandertals and Modern Humans in Western Asia. New York, NY: Plenum Press, pp. 367379.Google Scholar
Rosenberg, K. R. (2007). Neandertal pelvic remains from Krapina: peculiar or primitive? Periodicum Biologorum, 109, 387392.Google Scholar
Rosenberg, K. R. & Trevathan, W. (2002). Birth, obstetrics and human evolution. British Journal of Obstetrics and Gynaecology, 109, 11991206.Google Scholar
Rosenberg, K. R., Golinkoff, R. M. & Zosh, J. M. (2004). Did australopithecines (or early Homo) sling? Behavioral and Brain Sciences, 27, 522.Google Scholar
Rosenberg, K. R., , Z. & Ruff, C. B. (2006). Body size, body proportions, and encephalization in a Middle Pleistocene archaic human from northern China. Proceedings of the National Academy of Science of the United States of America, 103, 35523556.Google Scholar
Rosenberg, K. R., Ponce De Leon, M., , Z. & Zollikofer, C. (2010). The evolution of rotational birth: inferences from a three-dimensional virtual reconstruction of the pelvic girdle of Jinniushan. American Journal of Physical Anthropology, S50, 120.Google Scholar
Ruff, C. B. (1991). Climate and body shape in hominid evolution. Journal of Human Evolution, 21, 81105.Google Scholar
Ruff, C. B. (1994). Morphological adaptation to climate in modern and fossil hominids. Yearbook of Physical Anthropology, 37, 65107.Google Scholar
Ruff, C. B. (1995). Biomechanics of the hip and birth in early Homo. American Joournalof Physical Anthropology, 98, 527574.Google Scholar
Ruff, C. B. (2002). Variation in human body size and shape. Annual Review of Anthropology, 31, 211232.Google Scholar
Ruff, C. B. (2007). Body size prediction from juvenile skeletal remains. American Journal of Physical Anthropology, 133, 698716.Google Scholar
Ruff, C. B. (2010). Body size and body shape in early hominins – implications of the Gona pelvis. Journal of Human Evolution, 58, 166178.Google Scholar
Ruff, C. B. (2017). Mechanical constraints on the hominin pelvis and the ‘obstetrical dilemma’. Anatomical Record, 300(5), 946955.Google Scholar
Ruff, C. B. & Walker, A. (1993). Body size and body shape. In Leakey, R. & Walker, A. (eds) The Nariokotome Homo erectus Skeleton. Cambridge, MA: Harvard University Press, pp. 234265.Google Scholar
Ruff, C. B., Trinkaus, E., Walker, A. & Larsen, C. S. (1993). Postcranial robusticity in Homo I: temporal trends and mechanical interpretations. American Journal of Physical Anthropology, 91, 2153.Google Scholar
Ruff, C. B., Trinkaus, E. & Holliday, T. W. (1997). Body mass and encephalization in Pleistocene Homo. Nature, 387, 173177.Google Scholar
Ruff, C. B., Niskanen, M., Junno, J.-A. & Jamison, P. (2005). Body mass prediction from stature and bi-iliac breadth in two high latitude populations, with application to earlier higher latitude humans. Journal of Human Evolution, 48, 381392.Google Scholar
Ruff, C. B., Ketcham, R. A., Burgess, M. L. & Kappelman, R. (2016). Limb bone structural proportions and locomotor behavior in A.L. 288-1 (‘Lucy’). PLoS ONE, 11, e0166095. doi: 10.1371/journal.pone.0166095Google Scholar
Ruina, A., Bertram, J. E. & Srinivasan, M. (2005). A collisional model of the energetic cost of support work qualitatively explains leg sequencing in walking and galloping, pseudo-elastic leg behavior in running and the walk-to-run transition. Journal of Theoretical Biology, 237, 170192.Google Scholar
Savell, K. R. R. (2018). Postcranial evolution in humans with respect to trait covariance and ecogeography. PhD thesis, The University of Tennessee.Google Scholar
Savell, K. R. R. (2019). Evolvability in human postcranial traits across ecogeographic regions. American Journal of Physical Anthropology, in press.Google Scholar
Savell, K. R. R., Auerbach, B. M. & Roseman, C. C. (2016). Constraint, natural selection, and the evolution of human body form. Proceedings of the National Academy of Sciences of the United States of America, 113(34), 94989503.Google Scholar
Say, L., Chou, D., Gemmill, A., et al. (2014). Global causes of maternal death: a WHO systematic analysis. The Lancet: Global Health, 2, e323e333.Google Scholar
Schaefer, M. C. & Black, S. M. (2005). Comparison of ages of epiphyseal union in North American and Bosnian skeletal material. Journal of Forensic Science, 50, 777784.Google Scholar
Scheuer, L. & Black, S. (2000). Developmental Juvenile Osteology. San Diego, CA: Elsevier Academic Press.Google Scholar
Schlosser, G. (2004). The role of modules in development and evolution. In Schlosser, G. & Wagner, G. P. (eds) Modularity in Development and Evolution. Chicago, IL: University of Chicago Press, pp. 519582.Google Scholar
Schlosser, G. & Wagner, G. P. (eds) (2004). Modularity in Development and Evolution. Chicago, IL: University of Chicago Press.Google Scholar
Schmid, P. (1983). Eine rekonstruktion des skelettes von A.L.288-1 (Hadar) und deren konsequenzen. Folia Primatologica, 40, 283306.Google Scholar
Schmitt, D. (2003). Insights into the evolution of human bipedalism from experimental studies of humans and other primates. Journal of Experimental Biology, 206, 14371448.Google Scholar
Schroeder, L. & Ackermann, R. R. (2017). Evolutionary processes shaping diversity across the Homo lineage. Journal of Human Evolution, 111, 117.Google Scholar
Schowenwolf, G. C., Bleyl, S. B., Brauer, P. R. & Francis-West, P. H. (2014). Larsen’s Human Embryology. 5th ed. New York, NY: Elsevier.Google Scholar
Schultz, A. H. (1930). The skeleton of the trunk and limbs of higher primates. Human Biology, 2, 303438.Google Scholar
Schultz, A. H. (1949). Sex differences in the pelves of primates. American Journal of Physical Anthropology, 7, 401424.Google Scholar
Schutkowski, H. (1993). Sex determination of infant and juvenile skeletons, I: Morphognostic features. American Journal of Physical Anthropology, 90, 199205.Google Scholar
Sellers, W. I., Cain, G. M., Wang, W. & Crompton, R. H. (2005). Stride lengths, speed, and energy costs in walking of Australopithecus afarensis: using evolutionary robotics to predict locomotion of early human ancestors. Journal of the Royal Society Interface, 22, 431441.Google Scholar
Sharma, K., Gupta, P. & Shandilya, S. (2016). Age related changes in pelvis size among adolescent and adult females with reference to parturition from Naraingarh, Haryana (India). Homo: Internationale Zeitschrift für die Vergleichende Forschung am Menschen, 67, 273293.Google Scholar
Shirreffs, S. M. (1999). Heat stress, thermoregulation, and fluid balance in women. British Journal of Sports Medicine, 33, 225230.Google Scholar
Sigmon, B. A. (1986). Evolution in the hominid pelvis. Paleontology of Africa, 26, 2532.Google Scholar
Sigmon, B. A. & Farslow, D. L. (1986). The primate hindlimb. In Swindler, D. R. & Erwin, J. (eds) Comparative Primate Biology, Vol 1: Systematics, Evolution, and Anatomy. New York, NY: A. Liss, pp. 671718.Google Scholar
Simons, M. J. P., Reimert, I., Van Der Vinne, V., et al. (2011). Ambient temperature shapes reproductive output during pregnancy and lactation in the common vole (Microtus arvalis): a test of the heat dissipation limit theory. Journal of Experimental Biology, 214, 3849.Google Scholar
Simpson, S. W., Quade, J., Levin, N. E., et al. (2008). A female Homo erectus pelvis from Gona, Ethiopia. Science, 322, 10891092.Google Scholar
Simpson, S. W., Spurlock, L. B., Lovejoy, C. O. & Latimer, B. (2010). A new reconstruction of the KNM-WT 15000 juvenile male pelvis. American Journal of Physical Anthropology, 141(S50), 217.Google Scholar
Simpson, S. W., Quade, J., Levin, N. E. & Semaw, S. (2014). The female Homo pelvis from Gona: response to Ruff (2010). Journal of Human Evolution, 68, 3235. doi:10.1016/ j.jhevol.2013.12.004Google Scholar
Sládek, V., Trinkaus, E., Hillson, S. W. & Holliday, T. W. (2000). The People of the Pavlovian. Skeletal Catalogue and Osteometrics of the Gravettian Fossil Hominids from Dolni Vestonice and Pavlov. Brno: Academy of Sciences of the Czech Republic.Google Scholar
Slice, D. E. (2005). Modern morphometrics. In Slice, D. S. (ed.) Modern Morphometrics in Physical Anthropology. New York, NY: Academic Press, pp. 145.Google Scholar
Smith, B. H. (1993). The physiological age of KNM-WT 15000. In Leakey, R. & Walker, A. (eds) The Nariokotome Homo erectus Skeleton. Cambridge, MA: Harvard University Press, pp. 195220.Google Scholar
Smith, D. W., Clarren, S. K. & Harvey, M. S. (1978). Hyperthermia as a possible teratogenic agent. Journal of Pediatrics, 92, 878883.Google Scholar
Snodgrass, J. J. & Leonard, W. R. (2009). Neandertal energetics revisited: insights into population dynamics and life history evolution. PaleoAnthropology, 2009, 220237.Google Scholar
Soo, C. H. & Donelan, J. M. (2010). Mechanics and energetics of step-to-step transitions isolated from human walking. Journal of Experimental Biology, 213, 42654271.Google Scholar
Stearns, F. W. (2010). One hundred years of pleiotropy: a retrospective. Genetics, 186(3), 767773.Google Scholar
Stern, J. T. (2000). Climbing to the top: a personal memoir of Australopithecus afarensis. Evolutionary Anthropology, 9, 113133.Google Scholar
Stern, J. T. & Susman, R. L. (1983). The locomotor anatomy of Australopithecus afarensis. American Journal of Physical Anthropology, 60, 279317.Google Scholar
Steudel, K. (1974). Primate locomotion: a study of pelvic function in living primates and fossil hominids by multivariate statistics. PhD thesis, University of Wisconsin-Madison.Google Scholar
Steudel, K. (1981a). Functional aspects of primate pelvic structure: a multivariate approach. American Journal of Physical Anthropology, 55, 399410.Google Scholar
Steudel, K. (1981b). Sexual dimorphism and allometry in primate ossa coxae. American Journal of Physical Anthropology, 55, 209215.Google Scholar
Steudel, K. (1994). Locomotor energetics and hominid evolution. Evolutionary Anthropology, 3, 4248.Google Scholar
Steudel-Numbers, K. (2006). Energetics in Homo erectus and other early hominins: the consequences of increased lower-limb length. Journal of Human Evolution, 51, 445453.Google Scholar
Steudel-Numbers, K. & Tilkens, M. J. (2004). The effect of lower limb length on the energetic cost of locomotion: implications for fossil hominins. Journal of Human Evolution, 47, 95109.Google Scholar
Steudel-Numbers, K. L. & Wall-Scheffler, C. M. (2009). Optimal running speed and the evolution of hominin hunting strategies. Journal of Human Evolution, 56, 355360.Google Scholar
Steudel-Numbers, K. & Weaver, T. (2006). Froude number corrections in anthropological studies. American Journal of Physical Anthropology, 131, 2732.Google Scholar
Stewart, T. D. (1960). Form of the pubic bone in Neanderthal man. Science, 131, 14371438.Google Scholar
Stewart, T. D. (1977). The Neanderthal skeletal remains from Shanidar Cave, Iraq: a summary of findings to date. Proceedings of the American Philosophical Society, 121, 121165.Google Scholar
Stock, J. T. (2006). Hunter–gatherer postcranial robusticity relative to patterns of mobility, climatic adaptation, and selection for tissue economy. American Journal of Physical Anthropology, 131, 194204.Google Scholar
Stock, J. T., O’Neill, M., Ruff, C. B., et al. (2011). Body size, skeletal biomechanics, mobility and habitual activity from the Late Palaeolithic to mid-Dynastic Nile Valley. In Pinhasi, R. & Stock, J. T. (eds) Human Bioarchaeology of the Transition to Agriculture. Oxford: Wiley-Blackwell.Google Scholar
Stoller, M. K. (1995). The obstetric pelvis and mechanism of labor in non human primates. Doctoral dissertation, Department of Anthropology, University of Chicago.Google Scholar
Stone, P. K. (2016). Biocultural perspectives on maternal mortality and obstetrical death from the past to the present. American Journal of Physical Anthropology, 159, S150–171.Google Scholar
Stringer, C. B. (1986). An archaic character in the Broken Hill innominate E. 719. American Journal of Physical Anthropology, 71, 115120.Google Scholar
Stringer, C. B. (2011). The chronological and evolutionary position of the Broken Hill cranium. American Journal of Physical Anthropology, 144(S52), 287.Google Scholar
Stringer, C. B. & Buck, L. T. (2014). Diagnosing Homo sapiens in the fossil record. Annals of Human Biology, 41, 312322. doi:10.3109/03014460.2014.922616.Google Scholar
Susman, R. L., Stern, J. T. & Jungers, W. L. (1984). Arboreality and bipedality in the Hadar hominids. Folia Primatologica, 43, 113156.Google Scholar
Sutikna, T., Tocheri, M. W., Morwood, M. J., et al. (2016). Revised stratigraphy and chronology for Homo floresiensis at Liang Bua in Indonesia. Nature, 532, 366369.Google Scholar
Sylvester, A. D., Kramer, P. A. & Jungers, W. L. (2008). Modern humans are not (quite) isometric. American Journal of Physical Anthropology, 137, 371383.Google Scholar
Tague, R. G. (1989). Variation in pelvic size between males and females. American Journal of Physical Anthropology, 80, 5971.Google Scholar
Tague, R. G. (1991). Commonalities in dimorphism and variability in the anthropoid pelvis, with implications for the fossil record. Journal of Human Evolution, 21, 153176.Google Scholar
Tague, R. G. (1992). Sexual dimorphism in the human bony pelvis, with a consideration of the Neandertal pelvis from Kebara Cave, Israel. American Journal of Physical Anthropology, 88, 121.Google Scholar
Tague, R. G. (1994). Maternal mortality or prolonged growth: age at death and pelvic size in three prehistoric Amerindian populations. American Journal of Physical Anthropology, 95(1), 2740.Google Scholar
Tague, R. G. (1995). Variation in pelvic size between males and females in nonhuman anthropoids. American Journal of Physical Anthropology, 97, 213233.Google Scholar
Tague, R. G. (2000). Do big females have big pelves? American Journal of Physical Anthropology, 112, 377393.Google Scholar
Tague, R. G. (2005). Big-bodied males help us recognize that females have big pelves. American Journal of Physical Anthropology, 127, 392405.Google Scholar
Tague, R. G. (2007). Costal process of the first sacral vertebra: sexual dimorphism and obstetrical adaptation. American Journal of Physical Anthropology, 132, 395405.Google Scholar
Tague, R. G. & Lovejoy, C. O. (1986). The obstetric pelvis of A.L. 288-1 (Lucy). Journal of Human Evolution, 15, 237255.Google Scholar
Tague, R. G. & Lovejoy, C. O. (1998). AL 288-1 – Lucy or Lucifer: gender confusion in the Pliocene. Journal of Human Evolution, 35, 7594.Google Scholar
Takahashi, H. (2006). Curvature of the greater sciatic notch in sexing the human pelvis. Anthropological Science, 114, 187191.Google Scholar
Tamrat, E., Thouveny, N., Taïeb, M. & Opdyke, N. (1995). Revised magnetostratigraphy of the Plio-Pleistocene sedimentary sequence of the Olduvai Formation (Tanzania). Paleogeography, Paleoclimatology, Paleoecology, 114, 273283.Google Scholar
Taylor, C. R., Heglund, N. C. & Maloiy, G. M. (1982). Energetics and mechanics of terrestrial locomotion. I. Metabolic energy consumption as a function of speed and body size in birds and mammals. Journal of Experimental Biology, 97, 121.Google Scholar
ten Berge, D., Brouwer, A., Korving, J., et al. (1998). Prxl and Prx2 in skeletogenesis: roles in the craniofacial region, inner ear and limbs. Development, 125, 38313842.Google Scholar
Thorpe, S. K. S., Holder, R. L. & Crompton, R. H. (2007). Origin of human bipedalism as an adaptation for locomotion on flexible branches. Science, 316, 13281331.Google Scholar
Tilkens, M. J., Wall-Scheffler, C. M., Weaver, T. & Steudel-Numbers, K. (2007). The effect of body proportions on thermoregulation: an experimental assessment of Allen’s Rule. Journal of Human Evolution, 53(3), 286291.Google Scholar
Tobias, P. V., Copley, K. & Brain, C. K. (1977). South Africa. In: Oakley, K. P., Campbell, B. G. & Molleson, T. I. (eds) Catalogue of Fossil Hominids Part I: Africa. London: Trustees of the British Museum, pp. 96151.Google Scholar
Todd, T. W. (1931). Differential skeletal maturation in relation to sex, race, variability and disease.Child Development, 2(1), 4965.Google Scholar
Tompkins, R. L. & Trinkaus, E. (1987). La ferrassie 6 and the development of neandertal pubic morphology. American Journal of Physical Anthropology, 73, 233239.Google Scholar
Towers, M. & Tickle, C. (2009). Growing models of vertebrate limb development. Development, 136(2), 179190.Google Scholar
Trevathan, W. R. (1987). Human Birth: An Evolutionary Perspective. New York, NY: Aldine de Gruyter.Google Scholar
Trevathan, W. R. (1988). Fetal emergence patterns in evolutionary perspective. American Anthropologist, 90, 674681.Google Scholar
Trevathan, W. R. (2015). Primate pelvic anatomy and implications for birth. Philosophical Transactions of the Royal Society of London B Biological Science, 370, 20140065.Google Scholar
Trinkaus, E. (1976). The morphology of European and Southwest Asian Neandertal pubic bones. American Journal of Physical Anthropology, 44, 95104.Google Scholar
Trinkaus, E. (1983). The Shanidar Neandertals. New York, NY: Academic Press.Google Scholar
Trinkaus, E. (1984). Neandertal pubic morphology and gestation length. Current Anthropology, 25, 509514.Google Scholar
Trinkaus, E. (2006). Modern human versus Neandertal evolutionary distinctiveness. Current Anthropology, 47, 597620.Google Scholar
Trinkaus, E. (2011). The postcranial dimensions of the La Chapelle-aux-Saints 1 Neandertal. American Journal of Physical Anthropology, 145, 461468.Google Scholar
Trueman, J. W. H. (2010). A new cladistics analysis of Homo floresiensis. Journal of Human Evolution, 59, 223226.Google Scholar
Turner, W. M. (1885). The index of the pelvic brim as a basis of classification. Journal of Anatomy and Physiology, 20, 125143.Google Scholar
Umberger, B. R. (2010). Stance and swing phase costs in human walking. Journal of the Royal Society Interface, 7, 13291340.Google Scholar
Valladas, H., Joron, J. L., Valladas, G., et al. (1987). Thermoluminescence dates for the Neanderthal burial site at Kebara in Israel. Nature, 300, 159160.Google Scholar
Valladas, H., Reyss, J. L., Joron, J. L., et al. (1988). Thermoluminescence dating of the Mousterian Proto-Cro-Magnon remains of Qafzeh Cave (Israel). Nature, 331, 614616.Google Scholar
van den Bergh, G. D., Li, B., Brumm, A., et al. (2016). Earliest hominin occupation of Sulawesi, Indonesia. Nature, 529, 208211.Google Scholar
Vandermeersch, B. (1981). Les Hommes Fossils de Qafzeh (Israel). Paris: Editions du Centre Nationale de la Recherche Scientifique.Google Scholar
Van Emmerik, R. E. A. & Wagenaar, R. C. (1996). Effects of walking velocity on relative phase dynamics in the trunk in human walking. Journal of Biomechanics, 29(9), 11751184.Google Scholar
VanSickle, C. (2014). A new examination of childbirth-related pelvic anatomy in Neandertal females. PhD thesis, University of Michigan, Ann Arbor.Google Scholar
VanSickle, C. (2017). Measuring lateral iliac flare by different methods risks obscuring evolutionary changes in the pelvis. Anatomical Record, 300, 956963.Google Scholar
VanSickle, C., Cofran, Z., García-Martínez, D., et al. (2018). Homo naledi pelvic remains from the Dinaledi Chamber, South Africa. Journal of Human Evolution, 125, 122136. doi:10.1016/j.jhevol.2017.10.001.Google Scholar
Venkataraman, V. V., Kraft, T. S. & Dominy, N. J. (2013). Tree climbing and human evolution. Proceedings of the National Academy of Sciences of the United States of America, 110, 12371242.Google Scholar
Verbruggen, S. W. & Nowlan, N. C. (2017). Ontogeny of the human pelvis. The Anatomical Record, 300(4), 643652.Google Scholar
Verbruggen, S. W., Loo, J. H. W., Hayat, T. T. A., et al. (2015). Modeling the biomechanics of fetal movements. Biomechanics and Modeling in Mechanobiology, 15(4), 9951004.Google Scholar
Villamil, C. I. (2018). Phenotypic integration of the cervical vertebrae in the Hominoidea (primates). Evolution, 72(3), 490517.Google Scholar
Voloshina, A. S., Kuo, A. D., Daley, M. A. & Ferris, D. P. (2013). Biomechanics and energetics of walking on uneven terrain. Journal of Experimental Biology, 216, 39633970. doi: 10.1242/jeb.081711.Google Scholar
Wagner, G. P., Booth, G. & Bagheri-Chaichian, H. (1997). A population genetic theory of canalization. Evolution, 51(2), 329347.Google Scholar
Wagner, G. P., Pavlicev, M. & Cheverud, J. M. (2007). The road to modularity. Nature Reviews Genetics, 8, 921931.Google Scholar
Wagnild, J. M. & Wall-Scheffler, C. M. (2013). Energetic consequences of human sociality: walking speed choices among friendly dyads. PLoS ONE, 8, e76576.Google Scholar
Walker, A. & Leakey, R. (1993). The postcranial bones. In Walker, A. & Leakey, R. (eds) The Nariokotome Homo erectus Skeleton. Cambridge, MA: Harvard University Press, pp. 95160.Google Scholar
Walker, A. & Ruff, C. B. (1993). The reconstruction of the pelvis. In Walker, A. & Leakey, R. (eds) The Nariokotome Homo erectus Skeleton. Cambridge, MA: Harvard University Press, pp. 221233.Google Scholar
Walker, A., Zimmerman, M. R. & Leakey, R. E. F. (1982). A possible case of hypervitaminosis A in Homo erectus. Nature, 296, 248250.Google Scholar
Walker, M. J., Ortega, J., Parmová, K., López, M. V. & Trinkaus, E. (2011). Morphology, body proportions, and postcranial hypertrophy of a female Neandertal from the Sima de las Palomas, southeastern Spain. Proceedings of the National Academy of Science of the United States of America, 108, 10,08710,091.Google Scholar
Walker, M. J., López-Martínez, M. V., Ortega-Rodrigáñez, J., et al. (2012). The excavation of buried articulated Neanderthal skeletons at Sima de las Palomas (Murcia, SE Spain). Quaternary International, 259, 721.Google Scholar
Walker, P. L. (2005). Greater sciatic notch morphology: sex, age, and population differences. American Journal of Physical Anthropology, 127, 385391.Google Scholar
Wall, C. M. (2005). The seasonality of site deposition of Gibraltar Neanderthals: evidence from Gorham’s and Vanguard Caves. Journal of Iberian Archaeology, 7, 922.Google Scholar
Wall-Scheffler, C. M. (2012a). Energetics, locomotion and female reproduction: implications for human evolution. Annual Review of Anthropology, 41, 7185.Google Scholar
Wall-Scheffler, C. M. (2012b). Size and shape: morphology’s impact on human speed and mobility. Journal of Anthropology, 2012, 19.Google Scholar
Wall-Scheffler, C. M. (2014). The balance between burden carrying, variable terrain, and thermoregulatory pressures in assessing morphological variation. In Carlson, K. J. & Marchi, D. (eds) Reconstructing Mobility: Environmental, Behavioral, and Morphological Determinants. New York, NY: Springer.Google Scholar
Wall-Scheffler, C. M. (2015a). Sex differences in incline-walking among humans. Integrative and Comparative Biology, 55, 11551165.Google Scholar
Wall-Scheffler, C. M. (2015b). Costlier inside or outside? The costs of baby carrying from pregnancy to weaning. American Journal of Physical Anthropology, Supplement 60, 317.Google Scholar
Wall-Scheffler, C. M. & Myers, M. J. (2012). Is female morphology selected for economy and male morphology selected for efficiency? Evidence from studies on humans. American Journal of Physical Anthropology, 54, 296.Google Scholar
Wall-Scheffler, C. M. & Myers, M. J. (2013). Reproductive costs for everyone: how female loads impact human mobility strategies. Journal of Human Evolution, 64, 448456.Google Scholar
Wall-Scheffler, C. M. & Myers, M. J. (2017). The biomechanical and energetic advantages of a mediolaterally wide pelvis in women. The Anatomical Record, 300, 764775.Google Scholar
Wall-Scheffler, C. M., Myers, M. J. & Steudel-Numbers, K. (2006). The application to bipeds of a geometric model of lower limb segment inertial properties. Journal of Human Evolution, 51, 320326.Google Scholar
Wall-Scheffler, C. M., Geiger, K. & Steudel-Numbers, K. (2007). Infant carrying: the role of increased locomotory costs in early tool development. American Journal of Physical Anthropology, 133, 841846.Google Scholar
Wall-Scheffler, C. M., Chumanov, E. S., Steudel-Numbers, K. & Heiderscheit, B. C. (2010). EMG activity across gait and incline: the impact of muscular activity on human morphology. American Journal of Physical Anthropology, 143, 601611.Google Scholar
Wall-Scheffler, C. M., Wagnild, J. M. & Wagler, E. (2015). Human footprint variation while performing load bearing tasks. PLoS ONE, 10, e0118619.Google Scholar
Walrath, D. (2003). Rethinking pelvic typologies and the human birth mechanism. Current Anthropology, 44, 531.Google Scholar
Walsh, B. & Lynch, M. (2018). Evolution and Selection of Quantitative Traits. Oxford: Oxford University Press.Google Scholar
Ward, C. V. (1991). Functional Anatomy of the Lower Back and Pelvis of the Miocene Hominoid Proconsul nyanzae from the Miocene of Mfangano Island, Kenya. Baltimore, MD: The Johns Hopkins University.Google Scholar
Ward, C. V. (1993). Torso morphology and locomotion in Proconsul nyanzae. American Journal of Physical Anthropology, 92, 291328.Google Scholar
Ward, C. V. (2002). Interpreting the posture and locomotion of Australopithecus afarensis: where do we stand? Yearbook of Physical. Anthropology, 45, 185215.Google Scholar
Ward, C. V. (2014). Locomotor adaptations and the origin of the hominin pelvis. The FASEB Journal, 28, 335.4.Google Scholar
Ward, C. V., Walker, A., Teaford, M. F. & Odhiambo, I. (1993). Partial skeleton of Proconsul nyanzae from Mfangano Island, Kenya. American Journal of Physical Anthropology, 90, 77111.Google Scholar
Ward, C. V., Begun, D. R. & Kordos, L. (2008). New partial pelvis of Dryopithecus brancoi from Rudabánya, Hungary. American Journal of Physical Anthropology, 135(Supp 46), 218.Google Scholar
Ward, C. V., Kimbel, W. H. & Johanson, D. C. (2011). Complete fourth metatarsal and arches in the foot of Australopithecus afarensis. Science, 331, 750753.Google Scholar
Ward, C. V., Feibel, C. S., Hammond, A. S., et al. (2015). Associated ilium and femur from Koobi Fora, Kenya, and postcranial diversity in early Homo. Journal of Human Evolution, 81, 4867.Google Scholar
Ward, C. V., Maddux, S. D. & Middleton, E. R. (2018). Three-dimensional anatomy of the anthropoid pelvis. American Journal of Physical Anthropology, 166, 325.Google Scholar
Washburn, S. L. (1948). Sex differences in the pubic bone. American Journal of Physical Anthropology, 6, 199207.Google Scholar
Washburn, S. L. (1951). The new physical anthropology. Transactions of the New York Academy of Science, 13, 298304.Google Scholar
Washburn, S. L. (1960). Tools and human evolution. Scientific American, 203, 315.Google Scholar
Waterman, H. C. (1929). Studies on the evolution of the pelvis of man and other primates. Bulletin of the American Museum of Natural History, 58, 585641.Google Scholar
Weaver, T. D. (2003). The shape of the Neandertal femur is primarily the consequence of a hyperpolar body form. Proceedings of the National Academy of Science of the United States of America, 100, 69266929.Google Scholar
Weaver, T. D. & Hublin, J. J. (2009). Neandertal birth canal shape and the evolution of human childbirth. Proceedings of the National Academy of Science of the United States of America, 106, 81518156.Google Scholar
Webb, P. A. O. & Suchey, J. M. (1985). Epiphyseal union of the anterior iliac crest and medial clavicle in a modern multiracial sample of American males and females. American Journal of Physical Anthropology, 68(4), 457466.Google Scholar
Weidenreich, F. (1913). Über das Huftbein und das Becken der Primaten und ihre Umformung durch den aufrechten Gang. Anatomischer Anzeiger, 44, 497513.Google Scholar
Wellik, D. M. & Capecchi, M. R. (2003). Hox10 and Hox11 genes are required to globally pattern the mammalian skeleton. Science, 301(5631), 363367.Google Scholar
Wells, C. (1975). Ancient obstetric hazards and female mortality. Bulletin of the New York Academy of Medicine, 51, 12351249.Google Scholar
Wells, J. C. K. (2017). The new ‘obstetrical dilemma’: stunting, obesity and the risk of obstructed labour. The Anatomical Record, 300, 716731.Google Scholar
Wells, J. C. K., DeSilva, J. M. & Stock, J. T. (2012). The obstetric dilemma: an ancient game of Russian roulette, or a variable dilemma sensitive to ecology? Yearbook of Physical Anthropology, 149, 4071.Google Scholar
Whitcome, K. K., Lopez, J., Miller, E. E. & Burns, J. L. (2012). Revisiting the human obstetrical dilemma: effect of pelvic rotation on stride length. American Journal of Physical Anthropology, 54, 302.Google Scholar
Whitcome, K. K., Miller, E. E. & Burns, J. L. (2017). Pelvic rotation effect on human stride length: releasing the constraint of obstetric selection. The Anatomical Record, 300, 752763.Google Scholar
White, T. D., Asfaw, B., Beyene, Y., et al. (2009). Ardipithecus ramidus and the paleobiology of early hominids. Science, 326(5949), 7586.Google Scholar
White, T. D., Lovejoy, C. O., Asfaw, B., Carlson, J. P. & Suwa, G. (2015). Neither chimpanzee nor human, Ardipithecus reveals the surprising ancestry of both. Proceedings of the National Academy of Science of the United States of America, 112, 48774884.Google Scholar
Williams, S. A., Ostrofsky, K. R., Frater, N., et al. (2013). The vertebral column of Australopithecus sediba. Science, 340(6129), 1232996.Google Scholar
Wilson, L. A. & Humphrey, L. T. (2017). Voyaging into the third dimension: a perspective on virtual methods and their application to studies of juvenile sex estimation and the ontogeny of sexual dimorphism. Forensic Science International, 278, 3246.Google Scholar
Wilson, L. A., Ives, R., Cardoso, H. F. & Humphrey, L. T. (2015). Shape, size, and maturity trajectories of the human ilium. American Journal of Physical Anthropology, 156, 1934.Google Scholar
Wilson, L. A. B., Ives, R. & Humphrey, L. T. (2017). Quantification of 3D curvature in the iliac crest: ontogeny and implications for sex determination in juveniles. American Journal of Physical Anthropology, 162, 255266. doi:10.1002/ajpa.23114.Google Scholar
Wilson, L. A., Macleod, N. & Humphrey, L. T. (2008). Morphometric criteria for sexing juvenile human skeletons using the ilium. Journal of Forensic Science, 53, 269278.Google Scholar
Wood, B. & Boyle, K. E. (2016). Hominin taxic diversity: fact or fantasy? American Journal of Physical Anthropology, 159, S37–78. doi:10.1002/ajpa.22902.Google Scholar
Wood, B. & Grabowski, M. (2015). Macroevolution in and around the hominin clade. In Serrelli, E. & Gontier, N. (eds) Macroevolution: Explanation, Interpretation and Evidence. Heidelberg: Springer, pp. 345376.Google Scholar
Wood, B. A. & Quinney, P. S. (1996). Assessing the pelvis of AL 288-1. Journal of Human Evolution, 31, 563568.Google Scholar
Wood, B. & Schroer, K. (2013). Paranthropus. In Begun, D. (ed.) A Companion to Paleoanthropology. Chichester: Blackwell Publishing, pp. 460480.Google Scholar
Wunderlich, R. E., Walker, A. & Jungers, W. L. (1999). Rethinking the positional repertoire of Oreopithecus. American Journal of Physical Anthropology, 108, 528.Google Scholar
Yokoyama, Y. & Nguyen, H. V. (1981). Datation directe de l’Homme de Tautavel par la spectrométrie gamma, non destructive, du crâne humain fossile Arago XXI. Comptes Rendus Académie des Sciences de Paris, 292, 741744.Google Scholar
Young, N. M. (2004). Modularity and integration in the hominoid scapula. Journal of Experimental Zoology, 302B(3), 226240.Google Scholar
Young, N. M. (2017). Integrating ‘evo’ and ‘devo’: the limb as a model structure. Integrative and Comparative Biology, 57(6), 12931302.Google Scholar
Young, N. M. & Capellini, T. D. (2016). Out on a limb: development and the evolution of the human appendicular skeleton. In Boughner, J. C. & Rolian, C. (eds) Developmental Approaches to Human Evolution. New York, NY: Wiley-Blackwell, pp. 101138.Google Scholar
Young, N. M., Wagner, G. P. & Halgrímsson, B. (2010). Development and the evolvability of human limbs. Proceedings of the National Academy of Sciences of the United States of America, 107 (8), 34003405.Google Scholar
Zelditch, M. L. & Swiderski, D. L. (2011). Epigenetic interactions: the developmental route to functional integration. In Hallgrímsson, B. & Hall, B. K. (eds) Epigenetics: Linking Genotype and Phenotype in Development and Evolution. Berkeley, CA: University of California Press, pp. 290316.Google Scholar
Zelditch, M. L., Fink, W. L., Swiderski, D. L. & Lundrigan, D. L. (1998). On applications of geometric morphometrics to studies ofontogeny and phylogeny: a reply to Rohlf. Systematic Biology, 47, 159167.Google Scholar
Zelditch, M. L., Mezey, J., Sheets, H. D., Lundrigan, B. L. & Garland, T. (2006). Developmental regulation of skull morphology II: ontogenetic dynamics of covariance. Evolution and Development, 8(1), 4660.Google Scholar
Zelditch, M. L., Swiderski, D. L. & Sheets, H. D. (2012). Geometric Morphometrics for Biologists: A Primer. New York, NY: Academic Press.Google Scholar
Zelik, K. E. & Kuo, A. D. (2010). Human walking isn’t all hard work: evidence of soft tissue contributions to energy dissipation and return. Journal of Experimental Biology, 213, 42574264.Google Scholar
Zhang, A. Y. & DeSilva, J. M. (2018). Computer animation of the walking mechanics of Australopithecus sediba. PaleoAnthropology, 2018, 423432.Google Scholar
Zhao, Z.-J., Krol, E., Moille, S., Gamo, Y. & Speakman, J. R. (2013). Limits to sustained energy intake. XV. Effects of wheel running on the energy budget during lactation. Journal of Experimental Biology, 216, 23162327.Google Scholar
Zhou, X., von der Mark, K., Henry, S., et al. (2014). Chondrocytes transdifferentiate into osteoblasts in endochondral bone during development, postnatal growth and fracture healing in mice. PLoS Genetics, 10(12), e1004820–20.Google Scholar
Ziegert, M., Witkin, S. S., Sziller, I., Alexander, H., Brylla, E. & Härtig, W. (1999). Heat shock proteins and heat shock protein–antibody complexes in placental tissues. Infectious Diseases in Obstetrics and Gynecology, 7, 180185.Google Scholar
Zollikofer, C. P., Scherrer, M. & Ponce de León, M. S. (2017). Development of pelvic sexual dimorphism in hylobatids: testing the obstetric constraints hypothesis. Anatomical Record, 300, 859869.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×