Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-15T09:42:20.596Z Has data issue: false hasContentIssue false

1 - Rodentia: a model order?

Published online by Cambridge University Press:  05 August 2015

Lionel Hautier
Affiliation:
Université de Montpellier
Philip G. Cox
Affiliation:
University of York
Philip G. Cox
Affiliation:
University of York
Lionel Hautier
Affiliation:
Université de Montpellier II
Get access

Summary

In the UK, every good discussion takes place over a nice cup of tea. Our book was no exception, with the first seeds of the idea being sown during teatime in the tearoom of the Department of Zoology of the University of Cambridge (United Kingdom). Our original thought was to write a review on the evolution of the masticatory apparatus of rodents, but we quickly realised that such a review could be as long as a book, and that no journal would accept it for publication. Thus, the idea for this volume was first voiced as a joke: ‘what about writing a book then?’. Sometimes, a small joke can have long-term consequences and this one has been running for over two years.

At some point, the conversation turned to the fact that the last authoritative work on the Rodentia, Evolutionary Relationships Among Rodents: a Multidisciplinary Analysis, edited by W. Patrick Luckett and Jean-Louis Hartenberger (1985a), was nearly 30 years old. That volume was the result of a NATO Advanced Research Workshop held in Paris in July 1984 (Figure 1.1). Similarly, the current volume was preceded by a symposium on rodent evolution at the 10th International Congress of Vertebrate Morphology in Barcelona in July 2013, convened by the editors and Robert Druzinsky. Although not precisely the same in content, many of the chapters in this volume were presented at that symposium. Despite the apparent lack of enthusiasm for rodents in the intervening 30 years between these two volumes and symposia, it was clear to us that the study of rodents is currently going through a renaissance period. The widespread use of mouse models in developmental, behavioural and genetic studies has sparked interest in the biology of rodents as a whole, and developments in computing technology have enabled great leaps forward in our understanding of the rodents. Advances in the use of molecular data in phylogenetic studies are leading to consensus on the relationships within this large order (e.g. Blanga-Kanfi et al., 2009; Fabre et al., 2012), whilst recent fossil and extant finds have greatly increased our understanding of the evolutionary history of the rodents (e.g. Jenkins et al., 2005; Antoine et al., 2012).

Type
Chapter
Information
Evolution of the Rodents
Advances in Phylogeny, Functional Morphology and Development
, pp. 1 - 18
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amrine-Madsen, H., Koepfli, K.-P., Wayne, R. K. and Springer, M. S. (2003). A new phylogenetic marker, apolipoprotein B, provides compelling evidence for eutherian relationships. Molecular Phylogenetics and Evolution, 28, 225–240.CrossRefGoogle ScholarPubMed
Antoine, P.-O., Marivaux, L., Croft, D. A., et al. (2012). Middle Eocene rodents from Peruvian Amazonia reveal the pattern and timing of caviomorphs origin and biogeography. Proceedings of the Royal Society B, 279, 1319–1326.CrossRefGoogle ScholarPubMed
Bauman, J. M. and Chang, Y.-H. (2010). High-speed X-ray video demonstrates significant skin movement errors with standard optical kinematics during rat locomotion. Journal of Neuroscience Methods, 186, 18–24.CrossRefGoogle ScholarPubMed
Baverstock, H., Jeffery, N. and Cobb, S. N. (2013). The morphology of the mouse masticatory musculature. Journal of Anatomy, 223, 46–60.CrossRefGoogle ScholarPubMed
Bininda-Emonds, O. R. F, Cardillo, M., Jones, K. E., et al. (2007). The delayed rise of present-day mammals. Nature, 446, 507–512.CrossRefGoogle ScholarPubMed
Blanga-Kanfi, S., Miranda, H., Penn, O., et al. (2009). Rodent phylogeny revised: analysis of six nuclear genes from all major rodent clades. BMC Evolutionary Biology 9, 71.CrossRefGoogle ScholarPubMed
Blumenbach, J. F. (1779). Handbuch der Naturgeschichte. Göttingen: Johann Christian Dieterich.Google Scholar
Bonaparte, C. L. (1837). A new systematic arrangement of vertebrate animals. Transactions of the Linnaean Society, 18, 247–304.Google Scholar
Brandt, J. F. (1855). Beiträge zur nähern Kenntniss der Säugethiere Russlands. Mémoires de l'Academie Imperiale des Sciences de St Pétersbourg, Sixième Série, 9, 1–375.Google Scholar
Cope, E. D. (1888). The mechanical causes of the origin of the dentition of the Rodentia. American Naturalist, 22, 3–11.CrossRefGoogle Scholar
Cope, E. D. (1891). Syllabus of Lectures on Geology and Paleontology. Part 3 – Paleontology of the Vertebrata. Philadelphia: Ferris Bros.Google Scholar
Cox, P. G. and Jeffery, N. (2011). Reviewing the jaw-closing musculature in squirrels, rats and guinea pigs with contrast-enhanced microCT. Anatomical Record, 294, 915–928.CrossRefGoogle ScholarPubMed
Cox, P. G.Rayfield, E. J.Fagan, M. J., et al. (2012). Functional evolution of the feeding system in rodents. PLoS ONE 7(4), e36299.CrossRefGoogle ScholarPubMed
Cox, P. G., Kirkham, J. and Herrel, A. (2013). Masticatory biomechanics of the Laotian rock rat, Laonastes aenigmamus, and the function of the zygomaticomandibularis muscle. PeerJ 1, e160.CrossRefGoogle ScholarPubMed
Cuvier, G. (1798). Tableau Élémentaire de l'Histoire Naturelle des Animaux. Paris: J.B. Bailière.Google Scholar
Cuvier, G. (1800). Leçons d'Anatomie Comparée. Paris: Bauduin.Google Scholar
de Jong, W. W. (1985). Sequence affinities of Rodentia studied by sequence analysis of eye lens protein. In Evolutionary Relationships Among Rodents: a Multidisciplinary Analysis, eds. Luckett, W. P. and Hartenberger, J.-L.. New York: Plenum Press, pp. 211–226.Google Scholar
Fabre, P.-H., Hautier, L., Dimitrov, D. and Douzery, E. J. P. (2012). A glimpse on the pattern of rodent diversification: a phylogenetic approach. BMC Evolutionary Biology 12, 88.CrossRefGoogle ScholarPubMed
Flower, W. H. (1883). On the arrangement of the orders and families of existing Mammalia. Proceedings of the Zoological Society, 1883, 178–186.Google Scholar
Gidley, J. W. (1912). The lagomorphs as an independent order. Science, 36, 285–286.CrossRefGoogle ScholarPubMed
Gill, T. (1870). On the relations of the orders of mammals. Proceedings of the American Association for the Advancement of Science, 19, 267–270.Google Scholar
Gregory, W. K. (1910). The orders of mammals. Bulletin of the American Museum of Natural History, 27, 1–542.Google Scholar
Hartenberger, J.-L. (1985). The order Rodentia: major questions on their evolutionary origin, relationships and suprafamilial systematics. In Evolutionary Relationships Among Rodents: a Multidisciplinary Analysis, eds. Luckett, W. P. and Hartenberger, J.-L.. New York: Plenum Press, pp. 1–33.Google Scholar
Hautier, L., Lebrun, R., Saksiri, S., et al. (2011). Hystricognathy vs sciurognathy in the rodent jaw: a new morphometric assessment of hystricognathy applied to the living fossil Laonastes (Diatomyidae). PLoS ONE, 6, e18698.CrossRefGoogle Scholar
Hautier, L., Lebrun, R. and Cox, P. G. (2012). Patterns of covariation in the masticatory apparatus of hystricognathous rodents: implications for evolution and diversification. Journal of Morphology, 273, 1319–1337.CrossRefGoogle ScholarPubMed
Huxley, T. H. (1872). A Manual of the Anatomy of the Vertebrated Animals. New York: D. Appleton & Co.CrossRefGoogle Scholar
Illiger, C. (1811). Prodromus Systematis Mammalium et Avium Additus Terminis Zoographis Utriudque Classis. Berlin: C. Salfeld.Google Scholar
Jeffery, N. S., Stephenson, R., Gallagher, J. A., Jarvis, J. C. and Cox, P. G. (2011). Micro-computed tomography with iodine staining reveals the arrangement of muscle fibres. Journal of Biomechanics, 44, 189–192.CrossRefGoogle Scholar
Jenkins, P. D., Kilpatrick, C. W., Robinson, M. F. and Timmins, R. J. (2005). Morphological and molecular investigations of a new family, genus and species of rodent (Mammalia: Rodentia: Hystricognatha) from Lao PDR. Systematics and Biodiversity, 2, 419–454.CrossRefGoogle Scholar
Lacépède, B. G. E. (1799). Tableau des divisions, sous-divisions, ordres et génres des mammifères. In Histoire Naturelle vol. 14 Quadrupedes, ed. de Buffon, G. L. L.. Paris: P. Didot L'Aine et Firmin Didot, pp. 144–195.Google Scholar
Landry, S. O. (1999). A proposal for a new classification and nomenclature for the glires (Lagomorpha and Rodentia). Mitteilungen aus dem Museum für Naturkunde in Berlin Zoologische Reihe, 2, 283–316.Google Scholar
Li, C.-K. and Ting, S.-Y. (1985). Possible phylogenetic relationship of asiatic eurymylids and rodents, with comments on mimotonids. In Evolutionary Relationships Among Rodents: a Multidisciplinary Analysis, eds. Luckett, W. P. and Harterberger, J.-L.. New York: Plenum Press, pp. 211–226.Google Scholar
Li, J., Miller, M. A., Hutchins, G. D. and Burr, D. B. (2005). Imaging bone microdamage in vivo with positron emission tomography. Bone, 37, 819–824.CrossRefGoogle ScholarPubMed
Lidicker, W. Z. (1985). Rodents. A World Survey of Rodent Species of Conservation Concern. Occasional Papers of the IUCN Species Survival Commission (SSC) No. 4.
Lilljeborg, W. (1866). Systematisk Öfversigt af de Gnagande Däggdjuren. Upsala: Kogl. Akad. Boktryckeriet.CrossRefGoogle Scholar
Linnaeus, C. (1735). Systema Naturae, Sive Regna Tria Naturae Systematice Proposita per Classes, Ordines, Genera et Species. Fol. Lugduni Batavorum.Google Scholar
Linnaeus, C. (1758). Systema Naturae per Regna Tria Naturae, Secundum Classes, Ordines, Genera, Species, cum Characteribus Differentiis, Synonymis, Locis. Edito Decima Reformata Vol. 1. Regnum Animale. Stockholm: Laurentii Salvii.Google Scholar
Luckett, W. P. (1985). Superordinal and intraordinal affinities of rodents: developmental evidence from the dentition and placentation. In Evolutionary Relationships Among Rodents: a Multidisciplinary Analysis, eds. Luckett, W. P. and Hartenberger, J.-L.. New York: Plenum Press, pp. 227–276.CrossRefGoogle Scholar
Luckett, W. P. and Hartenberger, J.-L. (eds.) (1985a). Evolutionary Relationships Among Rodents: a Multidisciplinary Analysis. New York: Plenum Press.CrossRefGoogle Scholar
Luckett, W. P. and Hartenberger, J.-L. (1985b). Evolutionary relationships among rodents: comments and conclusions. In Evolutionary Relationships Among Rodents: a Multidisciplinary Analysis, eds. Luckett, W. P. and Hartenberger, J.-L.. New York: Plenum Press, pp. 685–712.CrossRefGoogle Scholar
Macholán, M., Baird, S. J. E., Munclinger, P. and Piálek, J. (2012). Evolution of the House Mouse. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Madsen, O., Scally, M., Douady, C. J., et al. (2001). Parallel adaptive radiations in two major clades of placental mammals. Nature, 409, 610–614.CrossRefGoogle ScholarPubMed
Major, C. I. F. (1893). On some Miocene squirrels. Proceedings of the Zoological Society of London, 1893, 179–215.Google Scholar
Maroy, R., Boisgard, R., Comtat, C., et al. (2008). Segmentation of rodent whole-body dynamic PET images: an unsupervised method based on voxel dynamics. IEEE Transactions on Medical Imaging, 27, 342–354.CrossRefGoogle ScholarPubMed
McKenna, M. C. (1969). The origin and early differentiation of therian mammals. Annals of the New York Academy of Sciences, 167, 217–240.CrossRefGoogle Scholar
McKenna, M. C. (1975). Towards a phylogeny and classification of the Mammalia. In Phylogeny of the Primates: a Multidisciplinary Approach, eds. Luckett, W. P. and Szalay, F. S.. New York: Plenum Press, pp. 21–46.Google Scholar
McKenna, M. C. and Bell, S. J. (1997). Classification of Mammals Above the Species Level. New York: Columbia University Press.Google Scholar
Meng, J., Hu, Y.-M. and Li, C.-K. (2003). The osteology of Rhombomylus (Mammalia: Glires): implications for phylogeny and evolution of Glires. Bulletin of the American Museum of Natural History, 275, 1–247.2.0.CO;2>CrossRefGoogle Scholar
Meng, J. and Wyss, A. R. (2001). The morphology of Tribosphenomys (Rodentiaformes, Mammalia): phylogenetic implications for basal Glires. Journal of Mammalian Evolution, 8, 1–71.CrossRefGoogle Scholar
Meng, J. and Wyss, A. R. (2005). Glires (Lagomorpha, Rodentia). In The Rise of Placental Mammals: Origins and Relationships of the Major Clades, eds. Rose, K. D. and Archibald, J. D.. Baltimore: Johns Hopkins University Press, pp. 145–158.Google Scholar
Meredith, R. W., Janečka, J. E., Gatesy, J., et al. (2011). Impacts of the cretaceous terrestrial revolution and KPg extinction on mammal diversification. Science, 334, 521–524.CrossRefGoogle ScholarPubMed
Milinkovitch, M. C. and Tzika, A. C. (2007). Escaping the mouse trap; the selection of new evo-devo model species. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 308B, 337–346.CrossRefGoogle Scholar
Murphy, W. J., Eizirik, E., Johnson, W. E., et al. (2001a). Molecular phylogenetics and the origins of placental mammals. Nature, 409, 614–618.CrossRefGoogle ScholarPubMed
Murphy, W. J., Eizirik, E., O'Brien, O., et al. (2001b). Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science, 294, 2348–2351.CrossRefGoogle ScholarPubMed
Novacek, M. J. (1985). Cranial evidence for rodent affinities. In Evolutionary Relationships Among Rodents: a Multidisciplinary Analysis, eds. Luckett, W.P. and Hartenberger, J.-L.. New York: Plenum Press, pp. 59–82.Google Scholar
Novacek, M. J. (1986). The skull of leptictid insectivorans and the higher-level classification of eutherian mammals. Bulletin of the American Museum of Natural History, 183, 1–111.Google Scholar
Osborn, H. F. (1902). American Eocene primates and the supposed rodent family Mixodectidae. Bulletin of the American Museum of Natural History, 17, 169–214.Google Scholar
Owen, R. (1868). On the Anatomy of Vertebrates. Vol. 3. Mammals. London: Longmans Green & Co.Google Scholar
Sarich, V. M. (1985). Rodent macromolecular systematics. In Evolutionary Relationships Among Rodents: a Multidisciplinary Analysis, eds. Luckett, W. P. and Hartenberger, J.-L.. New York: Plenum Press, pp. 423–452.Google Scholar
Scopoli, J. A. (1777). Introducio ad Historium Naturalem Sistens Genera Lapidum, Plantarum et Animalium Hactentus Detecta, Caracteribus Essentialibus Donata, in Tribus Divisa, Subinde ad Leges Naturae. . Prague: Gerle.Google Scholar
Shoshani, J., Goodman, M., Czelusniak, J. and Braunitzer, G. (1985). A phylogeny of Rodentia and other Eutherian orders: parsimony analysis utilizing amino acid sequences of alpha and beta haemoglobin chains. In Evolutionary Relationships Among Rodents: a Multidisciplinary Analysis, eds. Luckett, W. P. and Hartenberger, J.-L.. New York: Plenum Press, pp. 191–210.Google Scholar
Simpson, G. G. (1945). The principles of classification and a classification of mammals. Bulletin of the American Museum of Natural History, 85, 1–350.Google Scholar
Springer, M. S., Cleven, G. C., Madsen, O., et al. (1997). Endemic African mammals shake the tree. Nature, 388, 61–64.CrossRefGoogle ScholarPubMed
Springer, M. S., Murphy, W. J., Eizirik, E. and O'Brien, S. (2003). Placental mammal diversification and the Cretaceous–Tertiary boundary. Proceedings of the National Academy of Sciences USA, 100, 1056–1061.CrossRefGoogle ScholarPubMed
Stanhope, M. J., Waddell, V. G., Madsen, O., et al. (1998). Molecular evidence for multiple origins of Insectivora and for a new order of endemic African insectivore mammals. Proceedings of the National Academy of Sciences, USA, 95, 9967–9972.CrossRefGoogle ScholarPubMed
Stefen, C., Ibe, P. and Fischer, M. S. (2011). Biplanar X-ray motion analysis of the lower jaw movement during incisor interaction and mastication in the beaver (Castor Fiber L. 1758). Mammalian Biology, 76, 534–539.CrossRefGoogle Scholar
Stephenson, R. S., Boyett, M. R., Hart, G., et al. (2012). Contrast enhanced micro-computed tomography resolves the 3-dimensional morphology of the cardiac conduction system in mammalian hearts. PLoS ONE, 7, e35299.CrossRefGoogle ScholarPubMed
Storr, G. C. C. (1780). Prodromus Methodi Mammalium. Tübingen: Frid. Wolffer.Google Scholar
Szalay, F. S. (1985). Rodent and lagomorph morphotypes adaptations, origins, and relationships: some postcranial attributes analyzed. In Evolutionary Relationships Among Rodents: a Multidisciplinary Analysis, eds. Luckett, W. P. and Hartenberger, J.-L.. New York: Plenum Press, pp. 83–132.Google Scholar
Tullberg, T. (1899). Über das System der Nagethiere: eine phylogenetische Studie. Nova Acta Regiae Societatis Scientarium Upsaliensis Series 3, 18, 1–514.Google Scholar
Van Valen, L. (1971). Adaptive zones and the orders of mammals. Evolution, 25, 420–428.CrossRefGoogle ScholarPubMed
Vaska, P., Woody, C.L., Schlyer, D.J., et al. (2004). RatCAP: Miniaturized head-mounted PET for conscious rodent brain imaging. IEEE Transactions on Nuclear Science, 51, 2718–2722.CrossRefGoogle Scholar
Vicq d'Azyr, F. (1792). Système Anatomique des Quadrupèdes. Encyclopédie Méthodique. Paris: Vve. Agasse.Google Scholar
Weber, M. (1904). Die Säugetiere. Einführung in die Anatomie und Systematik der recenten und fossilen Mammalia. Jena: Gustav Fischer.CrossRefGoogle Scholar
Wilson, D. E. and Reeder, D. M. (2005). Mammal Species of the World. Baltimore: Johns Hopkins Press.Google Scholar
Wood, A. E. (1940). The mammalian fauna of the White River Oligocene. Part 3: Lagomorpha. Transactions of the American Philosophical Society, 28, 271–362.Google Scholar
Wood, A. E. (1962). The early Tertiary rodents of the family Paramyidae. Transactions of the American Philosophical Society, 52(1), 3–261.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×