Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-15T09:26:27.437Z Has data issue: false hasContentIssue false

20 - Morphological disparity of the postcranial skeleton in rodents and its implications for palaeobiological inferences: the case of the extinct Theridomyidae (Rodentia, Mammalia)

Published online by Cambridge University Press:  05 August 2015

Monique Vianey-Liaud
Affiliation:
Universite Montpellier
Lionel Hautier
Affiliation:
Université de Montpellier
Laurent Marivaux
Affiliation:
Universite Montpellier
Philip G. Cox
Affiliation:
University of York
Lionel Hautier
Affiliation:
Université de Montpellier II
Get access

Summary

Introduction

Rodents constitute roughly half of the current mammalian diversity. This astonishing specific diversity is shown most notably in terms of ecology as they occupy the majority of the ecosystems on the planet, from aquatic environments to desert areas. Current rodent diversity is the result of multiple radiations linked to the invasion of new ecological niches. The diverse rodent groups developed a wide locomotor repertoire, shown first and foremost by a morphological differentiation of the postcranial skeleton. Startlingly, rodents have not traditionally been the animal model of choice for investigating the evolution of the mammalian postcranial anatomy, probably because a great majority of extant species (murids in particular) are often depicted as “terrestrial generalists”. In comparison to the abundant literature on cranial and dental morphology, the rodent postcranial anatomy has received relatively little attention. Meanwhile, inconsistent terminology and imprecision in the definition of habitats, postural behaviors, feeding behaviors, locomotor repertoires (Table 20.1), which are often used interchangeably, have led to confusion.

The fossil record has only occasionally been considered and the extinct species under study often belong to families that still have existing representatives, like sciurids and murids (Vianey-Liaud, 1974; Emry and Thorington, 1982; Szalay, 1985; Price, 1993; Thorington and Darrow, 2000; Bover et al., 2010; Michaux et al., 2012), caviomorphs (Carrano, 1997; Elissamburu and Vizcaino, 2004; Weisbecker and Schmid, 2007; Candela and Picasso, 2008; Araújo et al., 2013), and castoroids (Samuels and Valkenburgh, 2008), although a few concern extinct rodent groups, such as paramyids (Wood, 1962; Szalay, 1985; Rose and Chinnery, 2004). Extinct rodents are mainly documented by isolated bones and finding complete skeletons remains a very rare event. Thus, reconstructing the life history of extinct rodents based on postcranial features seems tentative and extremely challenging. In this context, can palaeontologists contribute to efforts to better understand the evolution of the rodent postcranial anatomy?

Type
Chapter
Information
Evolution of the Rodents
Advances in Phylogeny, Functional Morphology and Development
, pp. 539 - 588
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Araújo, F. A. P., de Sesoko, N. F., Rahal, S. C.et al. (2013). Bone morphology of the hind limbs in two caviomorph rodents. Anatomia Histologia Embryologia, Journal of Veterinary Medicine, 42, 114–123.Google ScholarPubMed
Biochro, M (1997). Actes du Congrès BiochroM'97 Montpellier 14–17 avril, Aguilar J.-P., Legendre S., and Michaux J. (éditeurs.)Mémoires et Travaux de l'Ecole Pratique des Hautes Etudes, Institut de Montpellier, 21, 818pp.Google Scholar
Bosma, A. A. (1974). Rodent biostratigraphy of the Eocene–Oligocere transition strata of the Isle of Wight. Utrecht Micropaleontological Bulletin, Special Publications, 1, 1–128.Google Scholar
Bover, P., Alcover, J. A., Michaux, J. J., Hautier, L. and Hutterer, R. (2010). Body shape and lifestyle of the extinct Balearic dormouse Hypnomys (Rodentia, Gliridae), new evidence from the study of associated skeletons. PLoS ONE, 5 (12), e15817, 1–11.CrossRefGoogle Scholar
Candela, A. M. and Picasso, M. B. J. (2008). Functional anatomy of the limbs of Erethizontidae (Rodentia, Caviomorpha), indicators of locomotor behavior in Miocene porcupines. Journal of Morphology, 269, 552–593.CrossRefGoogle Scholar
Carrano, M. T. (1997). Morphological indicators of foot posture in mammals, a statistical and biomechanical analysis. Zoological Journal of the Linnean Society of London, 121, 77–104.CrossRefGoogle Scholar
Elissamburu, A. and Vizcaino, S. F. (2004). Limb proportions and adaptations in caviomorph rodents (Rodentia, Caviomorpha). Journal of Zoology, 262, 145–159.CrossRefGoogle Scholar
Emry, R. J. and Thorington, R. W. (1982). Descriptive and comparative osteology of the oldest fossil squirrel, Protosciurus (Rodentia: Sciuridae). Smithsonian Contributions to Paleobiology, 47, 1–35.Google Scholar
Engesser, B. and Mödden, C. (1997). A new version of the biozonation of the Lower Freshwater Molasse (Oligocene and Agenian) of Switzerland and Savoy on the basis of fossil mammals. Actes du Congrès BiochroM'97 Montpellier. Mémoires et Travaux de l'EPHE, Institut de Montpellier, 21, 475–500.Google Scholar
Engesser, B. and Storch, G. (1999). Eomyiden (Mammalia, Rodentia) aus dem Oberoligozän von Enspel im Westerwald (Westdeuschland). Eclogae Geologiae Helvetiae, 92, 483–493.Google Scholar
Escarguel, G., Marandat, B. and Legendre, S. (1997). Sur l’âge numérique des faunes de mammifères du Paléogène d'Europe occidentale, en particulier celles de l'Eocène inférieur et moyen. Actes du Congrès BiochroM'97, Montpellier. Mémoires et Travaux de l'EPHE, Institut de Montpellier, 21, 443–460.Google Scholar
Fabre, A.-C., Cornette, R., Slater, G.et al. (2013). Getting a grip on the evolution of grasping in musteloid carnivorans: a three-dimensional analysis of forelimb shape. Journal of Evolutionary Biology, 26, 1521–1535.CrossRefGoogle ScholarPubMed
Greene, E. C. (1935). Anatomy of the rat. Transactions of the American Philosophical Society, N.S., 27, 1–370.CrossRefGoogle Scholar
Hartenberger, J.-L. (1973). Etude systématique des Theridomyoidea (Rodentia) de l'Eocène supérieur. Mémoires de la Société Géologique de France, n.s. 57, 117, 1–74.Google Scholar
Hooker, J. J., Grimes, S. T., Mattey, D. P., Collinson, M. E. and Sheldon, N. D. (2009). Refined correlation of the UK Late Eocene-Early Oligocene Solent Group and timing its climate history. The Geological Society of America, Special Papers, 452, 179–195.Google Scholar
Katz, M. E., Miller, K. G., Wright, J. D.et al. (2008). Stepwise transition for the Eocene greenhouse to the Oligocene icehouse. Nature Geoscience, 1, 329–334.CrossRefGoogle Scholar
Lartet, E. (1869). Sur le Trechomys bonduelli et deux autres rongeurs fossiles de l'Eocène parisien. Annales de Sciences Naturelles, Paris, 12, 151–166Google Scholar
Lavocat, R. (1951). Révision de la faune des mammifères oligocènes d'Auvergne et du Velay. Ed. « Sciences et Avenir », Paris, 153 pp.Google Scholar
Lavocat, R. (1955). Sur un squelette de Pseudosciurus provenant du gisement d'Armissan (Aude). Annales de Paléontologie, 41, 77–89.Google Scholar
Michaux, J., Hautier, L., Hutterer, R.et al. (2012). Body shape and life style of the extinct rodent Canariomys bravoi (Mammalia, Murinae) from Tenerife, Canary Islands (Spain). Comptes Rendus Palevol, 11, 485–494.CrossRefGoogle Scholar
Mödden, C. (1993). Revision der Archeomyini Schlosser (Rodentia, Mammalia) des eurospäischen Oberoligozän. Schweizerische Paläontologische Abhandlungen, 115, 1–83.Google Scholar
Musser, G. G. (1972). The species of Hapalomys (Rodentia, Muridae). American Museum Novitates, 2503, 1–27.Google Scholar
Musser, G. G. (1981). A new genus of arboreal rat from West Java, Indonesia. Zoologische Verhandelingen, 189, 1–35.Google Scholar
Pelaez-Campomanes, P. (1995). Primates and rodents from the Middle Eocene of Casa Ramon (Huesca, Spain). Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, 98, 291–312.Google Scholar
Picot, L., Becker, D., Cavin, L.et al. (2008). Sédimentologie et Paléontologie des paléoenvironnements côtiers rupéliens de la molasse marine rhénane dans le Jura Suisse. Swiss Journal of Geosciences, 101, 483–513.CrossRefGoogle Scholar
Pierce, S. E., Clack, J. A. and Hutchinson, J. R. (2012). Three-dimensional limb joint mobility in the early tetrapod Ichthyostega. Nature, 486, 523–526.CrossRefGoogle ScholarPubMed
Price, M. V. (1993). A functional-morphometric analysis of forelimbs in bipedal and quadrupedal heteromyid rodents. Biological Journal of the Linnean Society, 50, 339–360.CrossRefGoogle Scholar
Rose, K. D. and Chinnery, B. J. (2004). The postcranial skeleton of Early Eocene rodents. Bulletin Carnegie Museum of Natural History, 36, 211–244.CrossRefGoogle Scholar
Samuels, J. X. and van Valkenburgh, B. (2008). Skeletal indicators of locomotor adaptations in living and extinct rodents. Journal of Morphology, 269, 1387–1411.CrossRefGoogle ScholarPubMed
Schmidt-Kittler, N. (1971). Odontologische Untersuchungen an Pseudosciuriden (Rodentia, Mammalia) des Altertiärs. Bayerische Akademie der Wissenschaften – Mathematisch-Naturwissenchaftliche Klasse, Abhandlungen, 150, 1–133.Google Scholar
Schmidt-Kittler, N. and Storch, G. (1985). Ein vollständiges Theridomyiden-Skelett (Mammalia, Rodentia) mit Rennmaus-Anpassungen aus dem Oligozän von Céreste, S-Frankreich. Senckenbergiana lethaea, 66, 89–109.Google Scholar
Schmidt-Kittler, N. and Vianey-Liaud, M. (1987). Morphometric analysis of the genus Issiodoromys (Theridomyidae, Rodentia) of the European Oligocene. Proceedings of Koninklijke Nederlandse Akademie van Wetenschappen, Amsterdam, B, 90, 281–306.Google Scholar
Schmidt-Kittler, N., Vianey-Liaud, M., Comte, B. and Mödden, C. (1997). Biostratigraphic relevance of the rodent genus Issiodoromys in the European Upper Oligocene. In BiochroM'97, Mémoires et Travaux de l'EPHE, Institut de Montpellier, eds. Aguilar, J.-P., Legendre, S. and Michaux, J., 21, 375–395.Google Scholar
Seckel, L. and Janis, C. (2008). Convergences in scapula morphology among small cursorial mammals: an osteological correlate for locomotory specialization. Journal of Mammalian Evolution, 15, 261–279.CrossRefGoogle Scholar
Szalay, F. S. (1985). Rodent and lagomorph morphotype adapatations, origins, and relationships, some postcranial attributes analyzed. In: Evolutionary Relationships Among Rodents: a Multidisciplinary Analysis, eds. Luckett, W. P. and Hartenberger, J.-L.. New York: Plenum Press, pp. 83–132.Google Scholar
Thaler, L. (1966). Les rongeurs fossiles du Bas-Languedoc dans leurs rapports avec l'histoire des faunes et la stratigraphie du Tertiaire d'Europe, Mémoires du Muséum National d'Histoire Naturelle, Paris, 17, 1–295.Google Scholar
Thorington, R. W. Jr. and Darrow, K. (2000). Anatomy of the squirrel wrist: bones, ligaments, and muscles. Journal of Morphology, 246, 85–102.3.0.CO;2-5>CrossRefGoogle ScholarPubMed
Tobien, H. (1972). Mikromammalier aus dem alttertiären Melanienton von Nordhessen 2-Rodentia. Biostratigraphie, Biostratonomie. Notizblatt des Hessischen Landsamtes für Bodenforschung zu Wiesbaden, 100, 7–40.Google Scholar
Van Simaeys, S. and Vanderberghe, N. (2006). Rupelian. Geologica Belgica, 9 (1–2), 95–101.Google Scholar
Vanderberghe, N., Hilgen, F.J. and Speijer, R.P. (2012). The Paleogene period. In: The Geologic Time Scale, eds. Gradstein, F. M., Ogg, J. G., Schmitz, M. and Ogg, G.. Elsevier, pp. 856–907.Google Scholar
Vianey-Liaud, M. (1972). L’évolution du genre Theridonys à l'Oligocène moyen. Intérêt biostratigraphique. Bulletin du Museum National d'Histoire Naturelle, Paris, 98, 18, 295–372.Google Scholar
Vianey-Liaud, M. (1974). Palaeosciurus goti nov. sp., écureuil terrestre de l'Oligocène moyen du Quercy. Données nouvelles sur l'apparition des Sciuridés en Europe, Annales de Paléontologie (Vertébrés), 60, 103–122.Google Scholar
Vianey-Liaud, M. (1976). Les Issiodoromyinae (Rodentia, Theridomyidae) de l'Eocène supérieur à l'Oligocène inférieur en Europe Occidentale. Palaeovertebrata, Montpellier, 7, 1–115.Google Scholar
Vianey-Liaud, M. (1979). Evolution des rongeurs à l'Oligocène en Europe Occidentale. Palaeontographica A, 166, 136–236.Google Scholar
Vianey-Liaud, M. (1991). Les rongeurs de l'Eocène terminal et de l'Oligocène d'Europe comme indicateurs de leur environnement. Paleogeography, Paleoclimatology, Paleoecology, 85, 15–28.CrossRefGoogle Scholar
Vianey-Liaud, M. (1998). La radiation des Theridomyinae (Rodentia) à l'Oligocène inférieur, modalités et implications biochronologiques. Geologica et Paleontologica, 32, 253–285.Google Scholar
Vianey-Liaud, M. and Ringeade, M. (1993). La radiation des Theridomyidae (Rodentia) hypsodontes à l'Eocène supérieur. Géobios, 26, 455–495.CrossRefGoogle Scholar
Vianey-Liaud, M. and Schmid, B. (2009). Diversité, Datation et Paléoenvironnement de la faune de mammifères oligocène de Cavalé (Quercy, SW France) : contribution de l'analyse morphométrique des Theridomyinae (Mammalia, Rodentia). Mémoire Jubilaire L. de Bonis, Geodiversitas, 31, 223–255.CrossRefGoogle Scholar
Weisbecker, V. and Schmid, S. (2007). Autopodial skeletal diversity in hystricognath rodents, Functional and phylogenetic aspects. Mammalian Biology, 72, 27–44.CrossRefGoogle Scholar
Wood, A. E. (1962). The Early Tertiary rodents of the family Paramyidae. Transactions of the American Philosophical Society, 52, 1–261.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×