Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-18T19:24:22.221Z Has data issue: false hasContentIssue false

Chapter 52 - Wollemia

Araucariales: Agathaceae

from Part III - Living Arborescent Gymnosperm Genetic Presentations

Published online by Cambridge University Press:  11 November 2024

Christopher N. Page
Affiliation:
University of Exeter
Get access

Summary

Medium-sized evergreen, soft-leaved, monoecious rainforest trees, to 25–30+ m when mature, with approximately whorled branch systems and a slender, more or less parallel to conic crown. Their shoot and branch systems are moderately stout, mostly markedly spreading-descending. The lateral shoots with age eventually terminate in small, elongate male or orbicular female cones directly from ultimate branches.

Type
Chapter
Information
Evolution of the Arborescent Gymnosperms
Pattern, Process and Diversity
, pp. 267 - 283
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, P. 1992. Australian Rainforests. Oxford: Clarendon Press.CrossRefGoogle Scholar
Archangelsky, S. 1963. A new Mesozoic flora from Tico, Santa Cruz province, Argentina. Bulletin of the British Museum Natural History Geology 8: 492.Google Scholar
Askin, R.A. 1989. Endemism and heterochronicity in the Late Cretaceous (Campanian) to Paleocene palynofloras of Seymour Island, Antarctica: implications for origins, dispersal and palaeoclimates of southern floras. Pp 107119 in Crane, J.A. (ed.), Origins and Evolution of the Antarctic Biota. London: Geological Society of London.Google Scholar
Bigwood, A.J. & Hill, R.S. 1985. Tertiary araucarian macrofossils from Tasmania. Australian Journal of Botany 33: 645656.CrossRefGoogle Scholar
Cantrill, D.J. 1991. Broad leaved coniferous foliage from the Lower Cretaceous Otway Group, southeastern Australia. Alcheringa 15: 177190.CrossRefGoogle Scholar
Cantrill, D.J. 1992. Araucarian foliage from the Lower Cretaceous of southern Victoria, Australia. International Journal of Plant Sciences 153: 622645.CrossRefGoogle Scholar
Cantrill, D.J. 2000. A Cretaceous (Aptian) flora from President Head, Snow Island, Antarctica. Palaeontographica B, 253: 153191.CrossRefGoogle Scholar
Cantrill, D.J. & Falcon-Lang, H.J. 2001. Cretaceous (Late Albian) Coniferales of Alexander Island, Antarctica. Part 2. Foliage, reproductive structures and roots. Review of Palaeobotany and Palynology 115: 119145.CrossRefGoogle Scholar
Cantrill, D.J. & Poole, I. 2012. The Vegetation of Antarctica through Geological Time. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Cantrill, D.J. & Raine, J.I. 2006. Wairarapaia mildenhallii gen. et sp. nov., a new araucarian cone related to Wollemia from the Cretaceous (Albian–Cenomanian) of New Zealand. International Journal of Plant Sciences 167: 12591269.CrossRefGoogle Scholar
Cardemil, L., Salas, E. & Godoy, M. 1984. Comparative study of the karyotypes of South American species of Araucaria. Journal of Heredity 75: 121132.CrossRefGoogle Scholar
Carpenter, R.J. & Pole, M. 1995. Eocene plant fossils from the Lefroy and Cowan palaeodrainages, Western Australia. Australian Systematic Botany 8: 11071154.CrossRefGoogle Scholar
Carpenter, R.J., Jordan, G.J., Macphail, M.K. & Hill, R.S. 2012. Near-tropical Early Eocene terrestrial temperatures at the Australo-Antarctic margin, western Tasmania. Geology 40(3): 267270.CrossRefGoogle Scholar
Chambers, T.C., Drinnan, A.N. & McLoughlin, S. 1998. Some morphological features of Wollemi Pine (Wollemia nobilis: Araucariaceae) and their comparison to Cretaceous plant fossils. International Journal of Plant Sciences 1569: 160171.CrossRefGoogle Scholar
Christophel, D.C. & Greenwood, D.R. 1988. A comparison of Australian tropical rainforest and Tertiary fossil leaf beds. Proceedings of the Ecological Society of Australia 15: 139148.Google Scholar
Cookson, I.C. 1947. Plant microfossils from the lignites of Kerguelen Archipelago. Report of the British, Australian and New Zealand Antarctic Expedition A 2: 127142.Google Scholar
Dainty, A.L. 1982. Chromosome numbers and karyotype variation in Araucaria. Kew Bulletin 37: 511514.CrossRefGoogle Scholar
Davies, B.J., O’Brien, I.E.W. & Murray, B.G. 1997. Karyotypes, chromosome bands and genome size variation in New Zealand endemic gymnosperms. Plant Systematics and Evolution 208: 169185.CrossRefGoogle Scholar
Dettmann, M.E. 1989. Antarctic: Cretaceous cradle of austral temperate rainforests ? Pp 89105 in Crane, J.A. (ed.) Origins and Evolution of the Antarctic Biota. London: Geological Society of London.Google Scholar
Dettmann, M.E. & Jarzen, D.M. 2000. Pollen of extant Wollemia (Wollemi pine) and comparisons with pollen of other extant and fossil Araucariaceae. Pp 167203 in Harley, M.M., Morton, C.M. & Blackmore, S. (eds.), Pollen and Spores: Morphology and Biology. Kew: Royal Botanic Gardens.Google Scholar
Douglas, J.G. & Williams, G.E. 1982. Southern polar forests: the Early Cretaceous floras of Victoria and their palaeoclimatic significance. Palaeogeography, Palaeoclimatology, Palaeoecology 39: 171185.CrossRefGoogle Scholar
Drinnan, N. & Chambers, T.C. 1986. Flora of the Lower Cretaceous Koonwarra Fossil Bed (Korumburra Group), South Gippsland, Victoria. Pp 177 in Jell, P.A. & Roberts, J. (eds.), Plants and Invertebrates from the Koonwarra Fossil Bed, South Gippsland, Victoria. Sydney: Association of Australasian Palaeontologists.Google Scholar
Escapa, I.H. & Catalano, S.A. 2013. Phylogenetic analysis of Araucariaceae: integrating molecules, morphology, and fossils. International Journal of Plant Sciences 174(8): 11531170.CrossRefGoogle Scholar
Falcon-Lang, H.J. & Cantrill, D.J. 2002. Terrestrial paleoecology of the Cretaceous (early Aptian) Cerro Negro Formation, South Shetland Islands, Antarctica: a record of polar vegetation in a volcanic arc environment. Palaios 17: 709725.2.0.CO;2>CrossRefGoogle Scholar
Fensom, G. & Offord, C. 1997. Propagation of the wollemi pine (Wollemia nobilis). Combined Proceedings of the International Plant Propagators Society 47: 6667.Google Scholar
Flory, W.S. 1936. Chromosome numbers and phylogeny in the gymnosperms. Journal of the Arnold Arboretum 17: 8389.CrossRefGoogle Scholar
Gilmore, S. & Hill, K.D. 1997. Relationships of the Wollemi Pine (Wollemia nobilis) and a molecular phylogeny of the Araucariaceae. Telopea 7: 275291.CrossRefGoogle Scholar
Hanson, L. 2001. Chromosome number, karyotype and DNA C-value of the Wollemi Pine (Wollemia nobilis, Araucariaceae). Botanical Journal of the Linnean Society 135: 271274.CrossRefGoogle Scholar
Harris, W.K. 1965. Basal tertiary microfloras from the Princetown area, Victoria, Australia. Palaeontographica 115B: 75106.Google Scholar
Hill, K.D. 1997. Architecture of the Wollemi pine (Wollemia nobilis, Araucariaceae), a unique combination of model and reiteration. Australian Journal of Botany 45: 817826.CrossRefGoogle Scholar
Hill, R.S. & Macphail, M.K. 1983. Reconstruction of the Oligocene vegetation at Pioneer, north-east Tasmania. Alcheringa 7: 281299.CrossRefGoogle Scholar
Jones, W.G., Hill, K.D. & Allen, J.M. 1995. Wollemia nobilis, a new living Australian genus and species in the Araucariaceae. Telopea 6: 173176.CrossRefGoogle Scholar
Kershaw, P. & Wagstaff, B. 2001. The southern conifer family Araucariaceae: history, status and value for palaeoenvironmental reconstruction. Annual Review of Ecology and Systematics 32: 397414.CrossRefGoogle Scholar
Khoshoo, T.N. 1961. Chromosome numbers in gymnosperms. Silvae Genetica 10: 132.Google Scholar
Li, Z.X. & Powell, C.McA. 2001. An outline of the palaeogeographic evolution of the Australasian region since the beginning of the Neoproterozoic. Earth-Science Reviews 53: 237277.CrossRefGoogle Scholar
Liu, N., Zhu, Y., Wei, Z.-X., et al. 2009. Phylogenetic relationships and divergence times of the family Araucariaceae based on the DNA sequences of eight genes. Chinese Science Bulletin 54: 26482655.CrossRefGoogle Scholar
Lu, Y., Hautevelle, Y. & Michels, R. 2013. Determination of the molecular signature of fossil conifers by experimental palaeochemotaxonomy: part 1. The Araucariaceae family. Biogeosciences 10: 19431962.CrossRefGoogle Scholar
Macphail, M.K., Alley, N.F., Trusswell, E.M. & Sluiter, I.R.K. 1994. Early Tertiary vegetation: evidence from spores and pollen. Pp 189261 in Hill, R.S. (ed.), History of Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Macphail, M.K., Hill, K., Partridge, A.D., Truswell, E.M. & Foster, C. 1995. Australia: ‘Wollemi pine’: old pollen records for a newly discovered genus of gymnosperms. Geology Today, March–April: 48–50.Google Scholar
Macphail, M., Carpenter, R.J., Iglesias, A. & Wilf, P. 2013. First evidence for Wollemi pine-type pollen (Dilwynites: Araucariaceae) in South America. PLoS One 8(7): e69281.CrossRefGoogle ScholarPubMed
McLoughlin, S. & Vajda, V. 2005. Ancient Wollemi pines resurgent: ten years after its discovery, a vanishingly rare tree from the Cretaceous Period is a scientific darling and may soon become a commercial success too. American Scientist 93(6): 540548.CrossRefGoogle Scholar
McLoughlin, S., Drinnan, A.N. & Rozefelds, A.C. 1995. A Cenomanian flora from the Winton Formation, Eromanga Basin, Queensland, Australia. Memoirs of the Queensland Museum 38: 273313.Google Scholar
Mehra, P.N. 1988. Indian Conifers, Genotypes and Phylogeny. Chandigarh: Punjab University.Google Scholar
Morley, R.J. 1998. Palynological evidence for Tertiary plant dispersal in the SE Asian region in relation to plate tectonics and climate. Pp 211234 in Hall, R. & Holloway, J.D. (eds.), Biogeography and Geological Evolution in SE Asia. Leiden: Backbuys.Google Scholar
Offord, C.A. & Meagher, P.F. 2001. Effects of temperature, light and stratification on seed germination of wollemi pine (Wollemia nobilis, Araucariaceae). Australian Journal of Botany 49: 699704.CrossRefGoogle Scholar
Ohri, D. & Khoshoo, T. 1986. Genome size in gymnosperms. Plant Systematics and Evolution 153: 119132.CrossRefGoogle Scholar
Page, C.N. 1980. Leaf micromorphology in Agathis and its taxonomic implications. Plant Systematics and Evolution 135: 7179.CrossRefGoogle Scholar
Page, C.N. 1990. Araucariaceae. Pp 294299 in Kubitsky, K. & Green, P.S. (eds.), The Families and Genera of Vascular Plants. I. Pteridophytes and Gymnosperms. Berlin: Springer.Google Scholar
Page, C.N. & Clifford, H.T. 1981. Ecological biogeography of Australian conifers and ferns. Pp 473498 in Keast, A. (ed.), Ecological Biogeography of Australia. The Hague: W. Junk.Google Scholar
Parrish, J.T., Daniel, I.L., Kennedy, E.M. & Spicer, R.A. 1998. Palaeoclimatic significance of mid-Cretaceous floras from the Middle Clarence Valley, New Zealand. Palaios 13: 149159.CrossRefGoogle Scholar
Peakall, R., Ebert, D., Scott, J., Meagher, P.F. & Offord, C.A. 2003. Comparative genetic study confirms exceptionally low genetic variation in the ancient and endangered relictual conifer, Wollemia nobilis (Araucariaceae). Molecular Ecology 12: 23312343.CrossRefGoogle ScholarPubMed
Pole, M. 2007. Early Eocene dispersed cuticles and mangrove to rainforest vegetation at Strahan-Regatte Point, Tasmania. Palaeontologica Electronica 10(3).Google Scholar
Setoguchi, H., Asakawa Osawa, T., Pintaud, J.C., Jaffré, T. & Veillon, J.M. 1998. Phylogenetic relationships within Araucariaceae based on rbcL gene sequences. American Journal of Botany 85(11): 15071516.CrossRefGoogle ScholarPubMed
Seward, A.C. 1904. On a collection of Jurassic plants from Victoria. Records of the Geological Survey of Victoria 1: 155211.Google Scholar
Spicer, R.A. & Chapman, J.L. 1990. Climate change and the evolution of high-latitude terrestrial vegetation and floras. Trends in Ecology and Evolution 5: 279284.CrossRefGoogle ScholarPubMed
Stockey, R.A. 1990. Antarctic and Gondwana conifers. Pp 179191 in Taylor, T.N. & Taylor, E.L. (eds.), Antarctic Paleobiology. New York: Springer.CrossRefGoogle Scholar
Stockey, R.A. 1994. Mesozoic Araucariaceae: morphology and systematic relationships. Journal of Plant Research 107: 493502.CrossRefGoogle Scholar
Stockey, R.A. & Atkinson, I.J. 1993. Cuticle micromorphology of Agathis Salisbury. International Journal of Plant Sciences 154: 187225.CrossRefGoogle Scholar
Stockey, R.A. & Ko, H. 1986. Cuticle micromorphology of Araucaria De Jussieu. Botanical Gazette 147: 508548.CrossRefGoogle Scholar
Strobel, G.A., Hess, W.M., Li, Y.-J., et al. 1997. Pestalotiopsis guepinii, a taxol-producing endophyte of the wollemi pine, Wollemia nobilis. Australian Journal of Botany 45: 10731082.CrossRefGoogle Scholar
Taylor, A.H. 1990. Habitat segregation and regeneration patterns of red fir and mountain hemlock in ecotonal forests, Lassen Volcanic National park, California. Physical Geography 11: 3648.CrossRefGoogle Scholar
Tomlinson, P.B. & Murch, S.J. 2009. Wollemia nobilis (Araucariaceae): branching, vasculature and histology in juvenile stages. American Journal of Botany 96: 17871797.CrossRefGoogle Scholar
Truswell, E.M. 1990. Cretaceous and Tertiary vegetation of Antarctica: a palynological perspective. Pp 7188 in Taylor, T.N. & Taylor, E.L. (eds.), Antarctic Palaeobiology. New York: Springer.CrossRefGoogle Scholar
Truswell, E.M. 1991. Antarctica: a history of terrestrial vegetation. Pp 499537 in Tinget, R.J. (ed.), The Geology of Antarctica. Oxford: Clarendon Press.Google Scholar
Wagstaff, S.J., Martinsson, K. & Swenson, U. 2000. Divergence estimates of Tetrachondra hamiltonii and T. patagonica (Tetrachomdraceae) and their implications for Southern Hemisphere biogeography. New Zealand Journal of Botany 38: 587596.CrossRefGoogle Scholar
Woodford, J. 2000. The Wollemi Pine: The Incredible Discovery of a Living Fossil from the Age of the Dinosaurs. Melbourne: Text Publishing.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Wollemia
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.016
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Wollemia
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.016
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Wollemia
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.016
Available formats
×