Skip to main content Accessibility help
×
Hostname: page-component-599cfd5f84-9hh9z Total loading time: 0 Render date: 2025-01-07T05:45:45.801Z Has data issue: false hasContentIssue false

Chapter 25 - Thuja

Cupressales: Cupressaceae S.S.

from Part III - Living Arborescent Gymnosperm Genetic Presentations

Published online by Cambridge University Press:  11 November 2024

Christopher N. Page
Affiliation:
University of Exeter
Get access

Summary

Medium to tall and sometimes massive evergreen trees, with a conical, tapering crown when young, eventually becoming more irregular with age but throughout life remaining typically well furnished, with flattened horizontally held foliage arrays. The foliage is predominantly of small scale leaves cladding horizontally held flattened fern-like foliar sprays, with only faint white stomatal markings beneath. The foliage is aromatic when lightly bruised, and often freely bears crops of small cigar-shaped pale-coloured female cones standing gregariously and regimentedly upright close to the basal parts of ultimate spreading foliar sprays.

Type
Chapter
Information
Evolution of the Arborescent Gymnosperms
Pattern, Process and Diversity
, pp. 456 - 466
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acker, S.A., Gregory, S.V., Lienkaemper, G. et al. 2003. Composition, complexity, and tree mortality in riparian forests in the central Western Cascades of Oregon. Forest Ecology and Management 173: 293308.CrossRefGoogle Scholar
Akhmetiev, M.A. 1973. Miocene Flora of the Sikhote-Alin (Botchi River). Moscow: Nauka.Google Scholar
Bennike, O. 1990. The Kap Kobenhavn Formation: stratigraphy and palaeobotany of a Plio-Pleistocene sequence in Peary Land, north Greenland. Meddelelser om Gronland Geoscience 23: 185.Google Scholar
Biswas, R., Mandai, S.K., Dutta, S., et al. 2011. Thujone-rich fraction of Thuja occidentalis demonstrates major anti-cancer potentials: evidence from in vitro studies on A375 cells. Evidence-Based Complementary and Alternative Medicine 2011: 568148.CrossRefGoogle ScholarPubMed
Blevins, L.L., Prescott, C.E. & Van Niejenhuis, A. 2006. The roles of nitrogen and phosphorous in increasing productivity of western hemlock and western red cedar plantations on northern Vancouver Island. Forest Ecology and Management 234: 119122.CrossRefGoogle Scholar
Brunsfeld, S.J., Soltis, P.S., Soltis, D.E., Gadek, P.A. & Quinn, C.J. 1994. Phylogenetic relationships amongst the genera of the Taxodicaeae and Cupressaceae: evidence from rbcL sequences. Systematic Botany 19: 253262.CrossRefGoogle Scholar
Budantsev, L.Y. 1997. Late Eocene flora of Western Kamchatka. Proceedings of the Botanical Institute Russian Academy of Sciences 19: 3115.Google Scholar
Denneler, B., Berrgeron, Y. Begin, Y. & Asselin, H. 2008. Growth responses of riparian Thuja occidentalis to damming of a large boreal lake. Botany 86: 5362.CrossRefGoogle Scholar
Eckenwalder, J.F. 2009. Conifers of the World: The Complete Reference. Portland, OR: Timber Press.Google Scholar
Farjon, A. 2005. A Monograph of Cupressaceae and Sciadopitys. Kew: Royal Botanic Gardens.Google Scholar
Farjon, A. 2010. A Handbook of the World’s Conifers. Leiden: Konninklijke Brill NV.CrossRefGoogle Scholar
Farjon, A. & Page, C.N. (eds). 1999. Conifers: Status Survey and Conifer Action Plan. IUCN/SSC Conifer Specialist Group Report. Gland: International Union for the Conservation of Nature.Google Scholar
Franklin, J.F., Maeda, T., Ohsumi, Y., et al. 1979. Subalpine coniferous forests of central Honshu, Japan. Ecological Monographs 49: 311344.CrossRefGoogle Scholar
Gadek, P.A., Alpers, D.L., Heslewood, M.M. & Quinn, C.J. 2000. Relationships within Cupressaceae sensu lato: a combined morphological and molecular approach. American Journal of Botany 87: 10441057.CrossRefGoogle Scholar
Guo, Q.-S., Wang, X.-F., Guli, B. & Wan, Q.-X. 2007. Interspecific relationships of dominant tree species in Thuja sutchuenensis community. Shengtaixue Zazhi 26: 19111917 [seen as abstract only].Google Scholar
Guo, Q.-S., Wang, X.-F., Bar, G., et al. 2009. Life form spectra, leaf character, and hierarchical-synusia structure of vascular plants in Thuja sutchuenensis community. Yingyong Shengtai Xuebao 20: 20572062.Google ScholarPubMed
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Hizumae, M., Kondo, T., Shibata, F. & Ishoizuka, R. 2001. Flow cytometric determination of genome size in the Taxodiaceae, Cupressaceae sensu stricto and Sciadopityaceae. Cytologia (Tokyo) 66: 307311.CrossRefGoogle Scholar
Huzioka, K. & Uemura, K. 1973. The Late Miocene Miyata flora of Akita Prefecture, Northeast Honshu, Japan. Bulletin of the National Science Museum, Tokyo 16: 661738.Google Scholar
Kushla, J.D. & Ripple, W.J. 1997. The role of terrain in a fires mosaic of temperate coniferous forest. Forest Ecology and Management 95: 97107.CrossRefGoogle Scholar
Kusumi, J., Tsumura, Y., Yoshimaru, H. & Tacida, H. 2000. Phylogenetic relationships in Taxodiaceae and Cupressaceae sensu stricto based on matK gene, chiL gene, trnL-trnF IGS region, and trnL intron sequence. American Journal of Botany 87: 14801488.CrossRefGoogle Scholar
Larson, A.J. & Franklin, J.F. 2005. Patterns of conifer tree regeneration following an autumn wildfire event in the western Oregon Cascade Range, USA. Forest Ecology and Management 218: 2536.CrossRefGoogle Scholar
Lei, H.P., Wang, Y.G., Su, C. et al. 2010. Chemical composition and antifungal activity of essential oils of Thuja sutchuenensis, a critical endangered species endemic to China. Natural Products Communications 5: 1673-1676.Google ScholarPubMed
LePage, B.A. 2003. The evolution, biogeography and palaeoecology of the Pinaceae based on fossil and extant representatives. Acta Horticulturae 615: 2952.CrossRefGoogle Scholar
Lesher, R.D. & Henderson, J.A. 2010. Ecology and distribution of Western redcedar and Alaska yellowcedar in northwestern Washington. US Forest Service Pacific Northwest Research Station General Technical Report PNW-GTR 828.Google Scholar
Li, J.H. & Xiang, Q.P. 2005. Phylogeny and biogeography of Thuja L. (Cupressaceae), an eastern Asian and North American disjunct genus. Journal of Integrative Plant Biology 47: 651659.CrossRefGoogle Scholar
Li, L.-C & Fu, Y.-X. 1996. Studies on the karyotypes and the cytogeography of Cupressus (Cupressaceae). Acta Botanica Sinica 34: 117123.Google Scholar
McIver, E.E. & Basinger, J.F. 1987. Mesocyparis borealis gen. et sp. nov.: fossil Cupressaceae from the early Tertiary of Saskatchewan, Canada. Canadian Journal of Botany 65(11): 23382351.CrossRefGoogle Scholar
McIver, E.E. & Basinger, J.F. 1989. The morphology and relationships of Thuja polaris sp. nov.(Cupressaceae) from the early Tertiary, Ellesmere Island, Arctic Canada. Canadian Journal of Botany 67(6): 19031915.CrossRefGoogle Scholar
Miki, S. 1957. Pinaceae of Japan, with special reference to its remains. Journal of the Institute of Polytechnics Osaka City University Ser D 8: 221272.Google Scholar
Miki, S. 1958. Gymnosperms in Japan with special reference to the remains. Journal of the Institute of Polytechnics Osaka City University Ser D 9: 125152.Google Scholar
Murray, B. 1998. Nuclear DNA amounts in gymnosperms. Annals of Botany 82 (Suppl. A.): 315.CrossRefGoogle Scholar
Nichols, D.J. 2003. Biodiversity changes in Cretaceous palynofloras of eastern Asia and western North America. Journal of Asian Earth Sciences 21(8): 823833.CrossRefGoogle Scholar
Ohri, D. & Khoshoo, T. 1986. Genome size in gymnosperms. Plant Systematics and Evolution 153: 119132.CrossRefGoogle Scholar
Peng, D. & Wang, X.-Q. 2008. Reticulate evolution in Thuja inferred from multiple gene sequences: implications for the study of biogeographical disjunctions between eastern Asia and North America. Molecular Phylogenetics and Evolution 47: 11901202.CrossRefGoogle Scholar
Rooney, T.P., Solheim, S.L. & Waller, D.M. 2002. Factors affecting the regeneration of northern white cedar in lowland forests of the Upper Great Lakes region, USA. Forest Ecology and Management 163: 119130.CrossRefGoogle Scholar
Sax, K. & Sax, H.J. 1933. Chromosome number and morphology in the conifers. Journal of the Arnold Arboretum 14: 356375.CrossRefGoogle Scholar
Schweitzer, H.J. 1974 Die “Tertifiren” koniferen spitzberg. Paleontographica 149B: 189Google Scholar
Stan, A.B. & Daniels, L.D. 2010. Growth releases of three shade‐tolerant species following canopy gap formation in old‐growth forests. Journal of Vegetation Science 21(1): 7487.CrossRefGoogle Scholar
Stefanović, S., Jager, M., Deutsch, J., Broutin, J. & Masselot, M. 1998. Phylogenetic relationships of conifers inferred from partial 28S rRNA gene sequences. American Journal of Botany 85: 688697.CrossRefGoogle Scholar
Tsumura, Y., Yoshimura, K., Tomaru, N. & Ohba, K. 1995. Molecular phylogeny of conifers using RFLP analysis of PCR amplified specific chloroplast genes. Theoretical and Applied Genetics 91: 12221236.CrossRefGoogle ScholarPubMed
Wang, X.-F., Guo, Q.-S., Liu, Z.-Y., et al. 2007. A composition analysis of seed plant flora in Thuja sutchuenensis community. Forestry Research 20: 755762.Google Scholar
Wonkka, C.L., Lafon, C.W., Hutton, C.M. & Joslin, A.J. 2013. A CSR classification of tree life history strategies and implications for ice storm damage. Oikos 122(2): 209222.CrossRefGoogle Scholar
Xiang, Q.-P., Farjon, A., Li, Z.-Y., Fu, L.-K. & Liu, Z.-Y. 2002a. Thuja sutchuenensis: a rediscovered species of the Cupressaceae. Botanical Journal of the Linnean Society 139: 305310.Google Scholar
Xiang, Q.-P., Farjon, A., Li, Z.-Y., Fu, L.-K. & Liu, Z.-Y. 2002b. Erratum. Thuja sutchuenensis: a rediscovered species of the Cupressaceae. Botanical Journal of the Linnean Society 140: 93.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Thuja
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009262965.029
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Thuja
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009262965.029
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Thuja
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009262965.029
Available formats
×