Skip to main content Accessibility help
×
Hostname: page-component-599cfd5f84-jr95t Total loading time: 0 Render date: 2025-01-07T05:41:50.616Z Has data issue: false hasContentIssue false

Chapter 35 - Tetraclinis

Cupressales: Cupressaceae S.S.

from Part III - Living Arborescent Gymnosperm Genetic Presentations

Published online by Cambridge University Press:  11 November 2024

Christopher N. Page
Affiliation:
University of Exeter
Get access

Summary

Medium-sized, evergreen tree, often of somewhat crooked habit and with interiorly thin but externally densely furnished open crowns of fine, somewhat flattened, much-branched, scale-like foliage.

Type
Chapter
Information
Evolution of the Arborescent Gymnosperms
Pattern, Process and Diversity
, pp. 601 - 610
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alloza, J.A. & Vallejo, R. 1999. Relacion entre les caracteristicas meteorologicas del ano de plantacion y los resultados de las repoblaciones. Ecologia 13: 173187.Google Scholar
Barrero, A.F., Herrador, M.M., Arteaga, R., et al. 2005a. Chemical composition of the essential oils of leaves and wood of Tetraclinis articualta (Vahl) Masters. Journal of Essential Oil Research 17: 166168.CrossRefGoogle Scholar
Barrero, A.F., Quilez del Moreau, J.F., Lucas, R., et al. 2005b. Diterpenoids from Tetraclinis articulata that inhibit various known leucocyte functions. Journal of Natural Products 66: 844850.CrossRefGoogle Scholar
Brunsfeld, S.J., Soltis, P.S., Soltis, D.E., Gadek, P.A. & Quinn, C.J. 1994. Phylogenetic relationships amongst the genera of the Taxodicaeae and Cupressaceae: evidence from rbcL sequences. Systematic Botany 19: 253262.CrossRefGoogle Scholar
Buhagiar, J.A., Podesta, M.T.C., Wilson, A.P., Micallef, M.J. & Ali, S. 1999. The induction of apoptosis in human melanoma, breast and ovarian cancer cell lines using an essential oil extracted from the conifer Tetraclinis articulata. Anticancer Research 19: 54355443.Google ScholarPubMed
Buhagiar, J.A., Podesta, M.T.C., Cioni, P.L., Flamini, G. & Morelli, I. 2000. Essential oil composition of different parts of Tetraclinis articualta. Journal of Essential Oil Research 12: 2932.CrossRefGoogle Scholar
Chow, Y.L. & Erdtman, H. 1960. Totarolone, a new diterpene ketophenol from Tetraclinis articulata. Acta Chimica Scandinavica 14: 18521853.CrossRefGoogle Scholar
Columbini, M.P., Modugno, F., Silvano, F. & Onor, M. 2000. Characterization of the balm of an Egyptian mummy from the 7th century B.C. Studies in Conservation 45: 1929.CrossRefGoogle Scholar
Díaz, G. & Honrubia, M. 1993. Arbuscular mycorrhizae on Tetraclinis articulata (Cupressaceae): development of mycorrhizal colonisation and effect of fertilization and inoculation. Agronomie 13: 267274.CrossRefGoogle Scholar
Distante, K.B., Fuentes, D. & Cortina, J. 2010. Sensitivity to zinc of Mediterranean woody species important for restoration. Science of the Total Environment 408: 22162225.CrossRefGoogle Scholar
Esteve-Selma, M.A., Martínez-Fernández, J., Hernandez, I., et al. 2010. Effects of climate change on the distribution and conservation of Mediterranean forests: the case of Tetraclinis articulata in the Iberian Peninsula. Biodiversity and Conservation 19: 38093825.CrossRefGoogle Scholar
Farjon, A. 2005. A Monograph of Cupressaceae and Sciadopitys. Kew: Royal Botanic Gardens.Google Scholar
Friis, E.M. 1977. Leaf whorls of Cupressaceae from the Miocene Fasterholt Flora, Denmark. Bulletin of the Geological Society of Denmark 26: 103114.CrossRefGoogle Scholar
Gadek, P.A. & Quinn, C.J. 1983. Biflavones of the subfamily Callitroideae, Cupressceae. Phytochemistry 22: 969972.CrossRefGoogle Scholar
Gadek, P.A. & Quinn, C.J. 1985. Biflavones of the subfamily Cupressoideae, Cupressaceae. Phytochemistry 24: 267272.CrossRefGoogle Scholar
Gadek, P.A. & Quinn, C.J. 1993. An analysis of relationships within the Cupressaceae sensu stricto based on rbcL sequences. Annals of the Missouri Botanic Garden 80: 581586.CrossRefGoogle Scholar
Gadek, P.A., Alpers, D.L., Heslewood, M.M. & Quinn, C.J. 2000. Relationships within Cupressaceae sensu lato: a combined morphological and molecular approach. American Journal of Botany 87: 10441057.CrossRefGoogle Scholar
Gómez-Aparicio, L., Gómez, J.M., Zamora, R. & Boettinger, J.L. 2005. Canopy vs. soil effects of shrubs facilitating tree seedlings in Mediterranean montane ecosystems. Journal of Vegetation Science 16: 191198.CrossRefGoogle Scholar
Haddouche, I., Benhanifia, K. & Gacemi, M. 2011. Spatial analysis of forest regeneration after fire in the forest of Fergoug in Mascara, Algeria. Bois et Forets des Tropiques 307: 2331.CrossRefGoogle Scholar
Hadjad, J. S. 1991. Tetraclinis articulata populations on the Oran coastline, Algeria. Ecologia Mediterranea 17: 6378.Google Scholar
Hair, J.B. 1968. The chromosomes of the Cupressaceae 1: Tetraclineae and Actinostrobeae (Callitroideae). New Zealand Journal of Botany 6: 277284.CrossRefGoogle Scholar
HCEFLCD 2015. Haut Commissariat aux Eaux et Forêts et à la Lutte Contre la Désertification. www.eauxetforets.gov.ma.Google Scholar
Howes, F.N. 1949. Vegetable Gums and Resins. Waltham, MA: Chronica Botanica.Google Scholar
Jagel, A. & Stutzel, T. 2003. On occurrence of non-axillary ovules in Tetraclinis articulata (Vahl.) Mast. (Cupressaceae s. str.). Feddes Repertorium 114: 497507.CrossRefGoogle Scholar
Kovar-Eder, J. & Kvaček, Z. 1995. The record of a fertile twig of Tetraclinis brachyodon (Brongniart) Mai et Walther from Radoboj, Croatia (Middle Miocene). Flora 190: 261264.CrossRefGoogle Scholar
Kovar-Eder, J., Kvaček, Z., Martinetto, E. & Roriron, P. 2006. Late Miocene to Early Pliocene vegetation of southern Europe (7–4 Ma) as reflected in the megafossil plant record. Palaeogeography, Paleoclimatology, Palaeoecology 238: 321339.CrossRefGoogle Scholar
Kvaček, Z. 1986. The fossil Tetraclinis Mast., Cupressaceae. Casopsis Narodniho Muzea v Praze Rada Prirodovedna 155: 4553.Google Scholar
Kvaček, Z. 2000. Cones, seeds and foliage of Tetraclinis salicornioides (Cupressaceae) from the Oligocene and Miocene of western North America: a geographic extension of the European Tertiary species. International Journal of Plant Science 161: 331344.CrossRefGoogle ScholarPubMed
Kvaček, Z. 2004. Revisions to Early Oligocene flora of Florsheim (Mainz Basin, Germany) based on epidermal anatomy. Senckenbergiana Lethaea 84: 173.CrossRefGoogle Scholar
Kvaček, Z. & Bubik, M. 1990. Oligocene flora of the Sitborice member and geology at Bystrie and Olsi, northeast Moravia, Czechoslovakia. Vestnik Ustredniho Ustavu Geologickeho 65: 8194.Google Scholar
Kvaček, Z. & Hably, L. 1998. New plant elements in the Tard Clay Formation from Eger-Kiseged. Acta Palaeobotanica 38: 523.Google Scholar
Kvaček, Z. & Rember, W.C. 2000. Shared Miocene conifers of the Clarkia flora and Europe. Acta Universitatis Carolinae, Geologica 44: 7585.Google Scholar
Mai, D.H. 1989. Development and regional differentiation of the European vegetation during the Tertiary. Plant Systematics and Evolution 162: 7991.CrossRefGoogle Scholar
Mai, D.H. & Walther, H. 1978. Die Floren der Haselbacher Serie im Weißelster-Becken (Bezirk Leipzig) DDR. – Abh. Staatl. Mus. Min. Geol. Dresden 28: 1200.Google Scholar
Mai, D.H. & Walther, H. 1985. Die obereozänen Floren des Weißelster-Beckens und seiner Randgebiete. – Abh. Staatl. Mus. Min. Geol. Dresden 33: 1260Google Scholar
Máñez, M., Cobo, D. & Jiménez, J. 1997. Tetraclinis articulata (Vahl) Masters, en la Provincia de Huelva. Annales del Jardin Botanica de Madrid 55: 462.Google Scholar
Martinetto, E. 2001. The role of central Italy as a centre of refuge for thermophilous plants in the late Cenozoic. Acta Palaeobotanica 41: 299319.Google Scholar
Martinetto, E., Uhl, D. & Tarabra, E. 2007. Leaf physiognomic indications for a moist warm-temperate climate in NW Italy during the Messinian (Late Miocene). Palaeogeography, Paleoclimatology, Palaeoecology 253: 4155.CrossRefGoogle Scholar
Meyer, H.W. & Manchester, S.R. 1997. The Oligocene Bridge Creek flora of the John Day Formation, Oregon. University of California Publications in the Geological Sciences 141: 195.Google Scholar
Moles, A.T. & Westoby, M. 2004. What do seedlings die from and what are the implications for evolution of seed size? Oikos 106: 193199.CrossRefGoogle Scholar
Morte, M.A., Díaz, G. & Honrubia, M. 1996. Effect of arbuscular mycorrhizal inoculation on micropropagated Tetraclinis articulata growth and survival. Agronomie 16: 633637.CrossRefGoogle Scholar
Oliveras, I., Martínez-Vilalta, J., Jimenez-Ortiz, T., et al. 2003. Hydraulic properties of Pinus halepensis, Pinus pinea and Tetraclinis articulata in a dune ecosystem of Eastern Spain. Plant Ecology 169: 131141.CrossRefGoogle Scholar
Otto, A. & Wilde, V. 2001. Sesqui-, di-, and triterpenoids as chemosystematic markers in extant conifers: a review. The Botanical Review 67: 141238.CrossRefGoogle Scholar
Peltier, J.P. 1984. The vegetation climax in the Ouedsous Basin, Morocco. Feddes Repertorium 25: 8996.CrossRefGoogle Scholar
Quezel, P., Barbero, M., Benabid, A., Loisel, R. & Rivas-Martínez, S. 1992. Contribution to the knowledge of the mattorals of eastern Morocco. Phytocoenologia 21: 117174.Google Scholar
Stroebitzer, M. 1999. The Lintsching fossil leaf assemblage (Tamsweg Basin, Salzburg; Miocene). Beitrage zur Palaeontologie 10: 91153.Google Scholar
Taleb, M.S. & Fennane, M. 2008. Diversite floristique de Parc National du Haut Atlas Oriental et des Massifs Ayachi et Maasker (Maroc). Acta Botanica malacitana 33: 125145.CrossRefGoogle Scholar
Teodoridis, V. & Sakala, J. 2008. Early Miocene conifer macrofossils from the Most Basin (Czech Republic). Neues Jahrbuch fur Geologie und Palaontologie-Abhandlungen 250(3): 287.CrossRefGoogle Scholar
Trubat, R., Cortina, J. & Vilagrosa, A. 2008. Short-term nitrogen deprivation increases field performance in nursery seedlings of Mediterranean woody species. Journal of Arid Environments 72: 897–890.CrossRefGoogle Scholar
Trubat, R., Cortina, J. & Vilagrosa, A. 2011. Nutrient deprivation improves field performance of woody seedlings in a degraded semi-arid shrubland. Ecological Engineering 37: 11641173.CrossRefGoogle Scholar
Vilagrossa, A., Cortina, J., Gil-Pelegrin, E., & Bellot, J. 2003. Sustainability of drought-preconditioning techniques in Mediterranean climate. Restoration Ecology 11: 208216.CrossRefGoogle Scholar
Villar-Salvador, P., Ocana, L., Penuelas, J.L. & Carasso, I. 1999. Effects of water stress conditioning on the water relations. Root growth capacity, and the nitrogen and non-structural carbohydrate concentration in Pinus halepensis Mill. (Aleppo pine) seedlings. Annals of Forest Science 56: 459465.CrossRefGoogle Scholar
Yakhlef, S.E.B., Abbas, Y., Prin, Y., et al. 2011. Effective arbuscular mycorrhizal fungi and the roots of Tetraclinis articulata and Lavandula multifida in Moroccan Tetraclinis woodlands. Mycology 2: 7986.CrossRefGoogle Scholar
Zidianakis, G., Mohr, B.A.R. & Fassoulas, C. 2007. A Late Miocene leaf assemblage from Vrysses, western Crete, Greece, and its paleoenvironmental and paleoclimatic interpretation. Geodiveritas 29: 351377.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Tetraclinis
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009262965.039
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Tetraclinis
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009262965.039
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Tetraclinis
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009262965.039
Available formats
×