Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-18T19:24:48.706Z Has data issue: false hasContentIssue false

Chapter 45 - Sequoia

Cupressales: Sequoiaceae

from Part III - Living Arborescent Gymnosperm Genetic Presentations

Published online by Cambridge University Press:  11 November 2024

Christopher N. Page
Affiliation:
University of Exeter
Get access

Summary

Very long-lived, extremely tall and sometimes massive, monoecious evergreen trees, with a typically conical, tapering crown. The branch systems eventually often retreat to become high-set, revealing a long, ascending shaft-like trunk of pillar-like and virtually cathedrallian dimensions, the trunks are clad with reddish fibrous bark. The whole tree sheds copious amounts of dried, red–brown predominantly finely pinnate-leaved foliage, often including small marble-sized inconspicuous cones. The whole shed array is usually densely long persistent on the ground beneath.

Type
Chapter
Information
Evolution of the Arborescent Gymnosperms
Pattern, Process and Diversity
, pp. 98 - 119
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Axelrod, D.I. 1975. Evolution and biogeography of Madrean-Tethyan sclerophyll vegetation. Annals of the Missouri Botanical Garden 62: 280334.CrossRefGoogle Scholar
Azavedo, J. & Morgan, D.J. 1974. Fog precipitation in coastal California forests. Ecology 55: 11351141.CrossRefGoogle Scholar
Bradbury, D.C. & Firestone, M.K. 2007. Environmental control of microbial N transformation in redwood forests. Pp 203204 in Standiford, R.B., Giusti, Y., Valachovic, Y., et al. (eds.), Proceedings of the Redwood Region Forest Science Symposium: What does the Future Hold? Albany, CA: US Department of Agriculture.Google Scholar
Brunsfeld, S.J., Soltis, P.S., Soltis, D.E., Gadek, P.A. & Quinn, C.J. 1994. Phylogenetic relationships amongst the genera of the Taxodicaeae and Cupressaceae: evidence from rbcL sequences. Systematic Botany 19: 253262.CrossRefGoogle Scholar
Buchholz, J.T. & Kaeiser, M. 1940. A statistical study of two variables in the Sequoia: pollen grain size and cotyledon number. American Naturalist 74: 279283.CrossRefGoogle Scholar
Budantsev, L.Y. 1997. Late Eocene flora of Western Kamchatka. Proceedings of the Botanical Institute Russian Academy of Sciences 19: 3115.Google Scholar
Burgess, S.S.O. & Dawson, T.E. 2004. The contribution of fog to the water relations of Sequoia sempervirens (D.Don): foliar uptake and prevention of dehydration. Plant Cell and Environment 27: 10231034.CrossRefGoogle Scholar
Busing, R.T. & Fujimori, T. 2005. Biomass, production and woody detritus in an old coast redwood (Sequoia sempervirens) forest. Plant Ecology 77: 177188.CrossRefGoogle Scholar
Busing, R.T. & Takao, F. 2002. Dynamics of composition and structure in an old Sequoia sempervirens forest. Journal of Vegetation Science 13: 785792.CrossRefGoogle Scholar
Byers, H.R. 1953. Coastal redwoods and fog-drip. Ecology 34: 192193.CrossRefGoogle Scholar
Cannon, W.A. 1901. On the relation of redwoods and fog to the general precipitation in the redwood belt of California. Torreya 1: 137139.Google Scholar
Chaney, R.W. 1951. A revision of fossil Sequoia and Taxodium in western North America based on the recent discovery of Metasequoia. Transactions of the American Philosophical Society New Series 40: 171263.CrossRefGoogle Scholar
Chochiyeva, K.I. 1980. The family Taxodiaceae in the fossil floras of the Georgian-SSR USSR. Izvestya Akademii Nauk Gruzinskoi SSR Seriya Biologicheskaya 6: 6166.Google Scholar
Chu, L.-L. 1987. Looking at the origin of Sequoia sempervirens from the point of view of karyotype. Acta Botanica Yunnanica 9: 187190 (in Chinese).Google Scholar
Cooper, W.S. 1911. Redwoods, rainfall and fog. Plant World 20: 179189.Google Scholar
Dark, S.O.S. 1932. Chromosomes of Taxus, Sequoia, Cryptomeria, and Thuya. Annals of Botany 46: 965977.CrossRefGoogle Scholar
Dawson, T.E. 1998. Fog in the California redwood forest: ecosystem inputs and use by plants. Oecologia 117: 476485.CrossRefGoogle ScholarPubMed
Douhovnikoff, V., Cheng, A.M. & Dodd, R.S. 2004. Incidence, size and spatial structure of clones in second-growth stands of coast redwood, Sequoia sempervirens (Cupressaceae). American Journal of Botany 91: 11401146.CrossRefGoogle ScholarPubMed
Doyle, J. 1945. Naming of the redwoods. Nature 155: 254257.CrossRefGoogle Scholar
Eckenwalder, J.E. 1976. Re-evaluation of Cupressaceae and Taxodiaceae: a proposed merger. Madrõno 23: 237256.Google Scholar
Endlicher, I.L. 1847. Synopsis Coniferarum. Sangalli: Scheitlin & Zollikofer.Google Scholar
Endo, S. 1951. A record of Sequoia from the Jurassic of Manchuria. Botanical Gazette 113: 228230.Google Scholar
Erwin, D.M. & Schorn, H.E. 2005. Revision of the conifers from the Eocene Thunder Mountain flora, Idaho, USA. Review of Palaeobotany and Palynology 137(3–4): 125145.CrossRefGoogle Scholar
Ewing, H.A., Weathers, K.C., Templer, P.H., et al. 2009. Fog water and ecosystem function: heterogeneity in a California redwood forest. Ecosystems 12: 417443.CrossRefGoogle Scholar
Fenn, M.E., Poth, M.A. Schilling, S.L. & Grainger, D.B. 2000. Throughfall and fog deposition and nitrogen and sulphur at an N-limited and N-saturated site in the San Bernardino Mountains, southern California. Canadian Journal of Forest Research 30: 14761488.CrossRefGoogle Scholar
Florin, R. 1952. On Metasequoia, living and fossil. Bot. Notiser 105: 129.Google Scholar
Florin, R. 1955. The systematics of the Gymnosperms. Pp 323403 in A Century of Progress in the Natural Sciences. San Francisco, CA: California Academy of Sciences.Google Scholar
Garfin, G.M. 1998. Relationships between winter atmospheric circulation patterns and extreme tree growth anomalies in the Sierra Nevada. International Journal of Climatology 18: 725740.3.0.CO;2-R>CrossRefGoogle Scholar
Gonzáles, A.L., Fariña, J.M., Pinto, R., et al. 2011. Bromeliad growth and stoichiometry: responses to atmospheric nutrient supply in fog-dependent ecosystems of the hyper-arid Atacama Desert, Chile. Oecologia 167: 835845.CrossRefGoogle Scholar
Goodspeed, T.H. & Crane, M.P. 1920. Chromosome number in the Sequoias. Botanical Gazette 69: 348349.CrossRefGoogle Scholar
Grime, J.P. 2001. Plant Strategies, Vegetation Processes, and Ecosystem Processes, 2nd edn. Chichester: Wiley.Google Scholar
Grímsson, F. & Zetter, R. 2011. Combined LM and SEM study of the Middle Miocene (Sarmatian) palynoflora from the Lavanttal Basin, Austria. Part II. Pinophyta (Cupressaceae, Pinaceae and Sciadopityaceae). Grana 50: 262310.CrossRefGoogle Scholar
Grímsson, F., Denk, T. & Simonarson, L.A. 2007. Middle Miocene floras of Iceland: the early colonisation of an island? Review of Palaeobotany and Palynology 144: 181219.CrossRefGoogle Scholar
Harland, M., Francis, J.E., Brentnall, S.J. & Beerling, D.J. 2007. Cretaceous (Albian–Aptian) conifer wood from Northern Hemisphere high latitudes: forest composition and palaeoclimate. Review of Palaeobotany and Palynology 143(3–4): 167196.CrossRefGoogle Scholar
Harris, T.M. 1943. The fossil conifer Elatides williamsoni. Annals of Botany 7: 325339.CrossRefGoogle Scholar
Harris, T.M. 1979. The Yorkshire Jurassic Flora. 5. Coniferales. London: British Museum.Google Scholar
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Herman, A.B. & Spicer, R.A. 1996. Palaeobotanical evidence for a warm Cretaceous Arctic Ocean. Nature 380: 330333.CrossRefGoogle Scholar
Hiatt, C., Fernández, D. & Potter, C. 2012. Measurements of fog water deposition on the California Central Coast. Atmospheric and Climate Sciences 2: 525531.CrossRefGoogle Scholar
Hirayoshi, I. & Nakamura, Y. 1943. Chromosome numbers of Sequoia sempervirens. Bot. Zool. 11: 7375 (in Japanese).Google Scholar
Hu, Z.-A., Wang, H.-X. & Liu, C.-J. 1986. Biochemical systematics of gymnosperms (4): seed protein peptides and needle peroxidases of Taxodiaceae. Acta Phytotaxica Sinica 24: 471473.Google Scholar
Khoshoo, T.N. 1959. Polyploidy in gymnosperms. Evolution 13: 2439.CrossRefGoogle Scholar
Khoshoo, T.N. 1961. Chromosome numbers in gymnosperms. Silvae Genet 10: 19.Google Scholar
Kunzmann, L. & Mai, D.H. 2005. Conifers of the Mastixioideae-flora from Wiesa near Kamenz (Saxony, Miocene) with special consideration of leaves. Palaeontographica Abteilung B Palaophytologie 272: 67.CrossRefGoogle Scholar
Kusumi, J., Tsumura, Y., Yoshimaru, H. & Tacida, H. 2000. Phylogenetic relationships in Taxodiaceae and Cupressaceae sensu stricto based on matK gene, chiL gene, trnLtrnF IGS region, and trnL intron sequence. American Journal of Botany 87: 14801488.CrossRefGoogle Scholar
Iwauchi, A. & Hase, Y. 1992. Late Cenozoic vegetation and paleoenvironment of northern and central Kyushu, Japan – part 5. Yoshino area (Middle Pleistocene). Journal Geological Society of Japan 98: 205221.Google Scholar
Karlioğlu, N., Akkemik, U. & Caner, H. 2009. Detection of some woody plants in Late Oligocene forests of Istanbul. Turkish Journal of Agriculture and Forestry 33(6): 577584.Google Scholar
Kovar-Eder, J., Kvaček, Z., Martinetto, E. & Roiron, P. 2006. Late Miocene to Early Pliocene vegetation of southern Europe (7–4 Ma) as reflected in the megafossil plant record. Palaeogeography, Palaeoclimatology, Palaeoecology 238(1–4): 321339.CrossRefGoogle Scholar
LaPasha, C.A. & Miller, C.N. 1981. New taxodiaceous seed cones from the Upper Cretaceous of New Jersey. American Journal of Botany 68: 13741382.CrossRefGoogle Scholar
Lawson, A.A. 1904. The gametophytes, archegonia, fertilisation and embryo of Sequoia sempervirens. Annals of Botany 18: 128.CrossRefGoogle Scholar
Li, C.X. & Yang, Q. 2003. Phylogenetic relationships among the genera of Taxodiaceae and Cupressaceae from 28S rDNA sequences. Yi Chuan = Hereditas 25(2): 177180.Google ScholarPubMed
Li, L.-C. 1987. The origin of Sequoia sempervirens (Taxodiaceae) based on karyotype. Acta Botanica Yunnanica 9: 111, 187–192 (in Chinese with English abstract).Google Scholar
Li, L.-C. 1988. The parents of Sequoia sempervirens (Taxodiaceae) based on morphology. Acta Botanica Yunnanica 10: 3337 (in Chinese with English abstract).Google Scholar
Li, L.-C. 1989. Studies on the cytotaxonomy and systematic evolution of Taxodiaceae Warming. Acta Botanica Yunnanica 11: 113131 (in Chinese with English abstract).Google Scholar
Limm, E.B., Simonin, K.A., Bothman, A.G. & Dawson, T.E. 2009. Foliar water uptake: a common water acquisition strategy for plants of the redwood forest. Oecologia 161: 449459.CrossRefGoogle ScholarPubMed
Ma, Q.-W., Li, F.-L. & Li, C.-S. 2005. The coast redwoods (Sequoia, Taxodiaceae) from the Eocene of Heilongjiang and the Miocene of Yunnan, China. Review of Palaeobotany and Palynology 135: 117129.CrossRefGoogle Scholar
Maekawa, F. 1974. Origin and characteristics of Japan’s flora. Pp 3386 in Numa-Ta, N. (ed.), The Flora and Vegetation of Japan. Tokyo: Kodansha.Google Scholar
Maki, T., Ishikawa, T., Mastunaga, T., et al. 2016. Atmospheric aerosol deposition influences marine microbial communities in oligotrophic surface waters of the western Pacific Ocean. Deep Sea Research 1(118): 3745.CrossRefGoogle Scholar
Martinetto, E., Uhl, D. & Tarabra, E. 2007. Leaf physiognomic indications for a moist warm-temperate climate in NW Italy during the Messinian (Late Miocene). Palaeogeography, Palaeoclimatology, Palaeoecology 253(1–2): 4155.CrossRefGoogle Scholar
Mehra, P.N. & Khoshoo, T.N. 1956. Cytology of conifers I. Journal of Genetics 54: 165180.CrossRefGoogle Scholar
Miki, S. & Hikita, S. 1951. Probable chromosome number of fossil Sequoia and Metasequoia found in Japan. Science 113: 34.CrossRefGoogle ScholarPubMed
Miller, C.N. 1977. Mesozoic conifers. Biological Review 43: 218280.Google Scholar
Miller, C.N. 1982. Current status of Paleozoic and Mesozoic conifers. Review of Palaeobotany and Palynology 37: 99114.CrossRefGoogle Scholar
Mitchell, A.F. 1972. Conifers in the British Isles. A Descriptive Handbook. London: Her Majesty’s Stationery Office.Google Scholar
Mooney, H.A. & Dawson, T.E. 2015. Coast redwood forests. Pp 535552 in Zavaleta, E. & Mooney, H.A. (eds.), Ecosystems of California. Berkley, CA: University of California Press.Google Scholar
Morzadec-Kerfourn, M.-T. 2008. La limite Pliocene-Pleistocene en Bretagne. Boreas 6: 275283.CrossRefGoogle Scholar
Muntzing, A. 1933. Hybrid incompatibility and the origin of polyploidy. Hereditas 18: 3355.CrossRefGoogle Scholar
Nascimbene, J., Marini, L. & Ódor, P. 2012. Drivers of lichen species richness at multiple spatial scales in temperate forests. Plant Ecology & Diversity 5(3): 355363.CrossRefGoogle Scholar
Noss, R. (ed.). 2000. The Redwood Forest: History, Ecology, and Conservation of the Coast Redwoods. Washington, DC: Island Press.Google Scholar
Otto, A., Simoneit, B.R. Lesiak, M., Wilde, V. & Worobiec, G. 2001. Resin and wax biomarkers preserved in Miocene Cupressaceae s.l. from Belchatow and Lipnica Wielka, Poland. Acta Palaeobotanica 41: 195206.Google Scholar
Page, C.N. 1973. Ferns, polyploids, and their bearing on the evolution of the Canarian flora. Monographia Biologicae Canariensis 4: 8388.Google Scholar
Page, C.N. 1977. An ecological survey of the ferns of the Canary Islands. Fern Gazette 11: 297312.Google Scholar
Parker, L.R. & Balsley, J.K. 1977. Paleoecology of the coastal margin coal-forming swamps in the Upper Cretaceous Blackhawk Formation of central Utah. Abstracts with Programs: Geological Society of America 9: 11251126.Google Scholar
Parsons, J.J. 1960. Fog drip from coastal stratus, with special reference to California. Weather (London) 15: 5862.CrossRefGoogle Scholar
Petterssen, S. 1936. On the causes and the forecasting of the California fog. Journal of Aeronautical Sciences 3: 305309.CrossRefGoogle Scholar
Popescu, S.-M. 2006. Late Miocene and Early Pliocene environments in the southwestern Black Sea region from high-resolution palynology of DSDP Site 380A (Leg 42B). Palaeogeography, Palaeoclimatology, Palaeoecology 238: 6477.CrossRefGoogle Scholar
Price, R.A. & Lowenstein, J.M. 1989. An immunological comparison of the Sciadopityaceae, Taxodiaceae, and Cupressaceae. Systematic Botany 14: 141149.CrossRefGoogle Scholar
Price, R.A., Thomas, J., Straus, H., et al. 1993. Familial relationships of the conifers from rbcL sequence data. American Journal of Botany 80: 172.Google Scholar
Quinn, C.J., Price, R.A. & Gadek, P.A. 2002. Familial concepts and relationships in the conifers based on rbcL and matK sequence comparisons. Kew Bulletin 57: 513531.CrossRefGoogle Scholar
Renneberg, H., Schneider, S. & Weber, P. 1996. Analysis of uptake and allocation of nitrogen and sulphur compounds by trees in the field. Journal of Experimental Botany 47: 14911498.CrossRefGoogle Scholar
Rogers, D.L. 2000. Genotypic diversity and clone size in old-growth populations of coast redwood (Sequoia sempervirens). Canadian Journal of Botany 78: 14081419.CrossRefGoogle Scholar
Saylor, L.C. & Simons, H.A. 1970. Karyology of Sequoia sempervirens: karyotype and accessory chromosomes. Cytologia 35: 294303.CrossRefGoogle Scholar
Schlarbaum, S.E. & Tsuchiya, T. 1984. Cytotaxonomy and phylogeny in certain species of Taxodiaceae. Plant Systematics and Evolution 147: 2954.CrossRefGoogle Scholar
Seward, A.C. 1933. Plant Life Through the Ages. Cambridge: Cambridge University Press.Google Scholar
Shimada, M. 1953 . The pollen analyses of sonie lignite beds in the north-eastern provinces of Japan. BZCLL Society of Plant Ecology 3.Google Scholar
Sillett, S. C. 2008. Sequoia sempervirens. Redwoods Photos Tour. www.humboldt.edu/~sillett/redwoods.html.Google Scholar
Sillett, S.C. & Bailey, M.G. 2003. Effect of tree crown structure on biomass of the epiphytic fern Polypodium scouleri (Polypodicaceae) in redwood forests. American Journal of Botany 90: 255261.CrossRefGoogle ScholarPubMed
Sillett, S.C., McCune, B., Peck, J.E., Rambo, T.R. & Ruchty, A. 2000. Dispersal limitations of epiphytic lichens result in species dependent on old‐growth forests. Ecological Applications 10(3): 789799.CrossRefGoogle Scholar
Spicer, R.A. & Parrish, J.T. 1986. Paleobotanical evidence for cool north polar climates in middle Cretaceous (Albian–Cenomanian) time. Geology 14: 703706.2.0.CO;2>CrossRefGoogle Scholar
Stebbins, G.L. 1948. The chromosomes and relationships of Metasequoia and Sequoia. Science 108: 9598.CrossRefGoogle ScholarPubMed
Stebbins, G.L. 1963. Variation and Evolution in Plants. New York: Columbia University Press.Google Scholar
Stone, E.C. & Vasey, R.B. 1968. Preservation of coast redwoods on alluvial flats. Science 15: 157161.CrossRefGoogle Scholar
Sveshnikova, I.N. & Budantsev, L.J. 1969. Iskopaemye flory Arktiki, I (Fossil Floras of the Arctic, I). Leningrad: Nauka (in Russian).Google Scholar
Takaso, T. & Tomlinson, P.B. 1992. Seed cone and ovule ontogeny in Metasequoia, Sequoia and Sequoiadendron (Taxodiaceae – Coniferales). Botanical Journal of the Linnean Society. 109: 1537.CrossRefGoogle Scholar
Tanai, T. 1961. Neogene floral change in Japan. Journal of the Faculty of Science, Hokkaido University 4(9): 1112.Google Scholar
Templer, P.H., Ewing, H., Weathers, K., Dawson, T. & Forestone, M. 2006. Fog as a potential source of nitrogen for coastal redwood forest ecosystems. American Geophysical Union Annual Meeting. Moscone Center, San Francisco, CA.Google Scholar
Templer, P.H., Weather, K.C., Lindsey, A., Lenoir, K. & Scott, L. 2015. Atmospheric inputs and nitrogen saturation status in and adjacent to Class I wilderness areas of the northeastern United States. Oecologia 177: 515.CrossRefGoogle Scholar
Teodoridis, V. & Sakala, J. 2008. Early Miocene conifer macrofossils from the Most Basin (Czech Republic). Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen 250: 287312.CrossRefGoogle Scholar
Thornburgh, D.A., Noss, R.F. Angelides, D.P., et al. 2000. Managing redwoods. Pp 229261 in Noss, R.F. (ed), The Redwood Forest: History, Ecology and Conservation of the Coast Redwoods. Washington, DC: Island Press.Google Scholar
Urban, D.L., Miler, C., Halpin, P.N. & Stephenson, N.L. 2000. Forest gradient response in Sierran landscapes: the physical template. Landscape Ecology 15: 603620.CrossRefGoogle Scholar
Vakhrameev, V.A. 1991. Jurassic and Cretaceous Floras and Climates of the Earth. Cambridge: Cambridge University Press.Google Scholar
Waller, D.M. 2000. The redwood forest: history, ecology, and conservation of the coast redwoods – review. Ecology 81: 35523553.CrossRefGoogle Scholar
Waring, R.H. & Franklin, J.F. 1979. Evergreen coniferous forests of the Pacific Northwest. Science 204: 13801386.CrossRefGoogle ScholarPubMed
Whitmore, T.C. 1975. Tropical Rainforest of the Far East. Oxford: Clarendon Press.Google Scholar
Whitmore, T.C. & Page, C.N. 1980. A monograph of Agathis. Plant Systematics and Evolution 135: 4169.CrossRefGoogle Scholar
Willett, T.R. 2001. Spiders and other arthropods as indicators of old-growth versus logged redwood stands. Restoration Ecology 9: 410420.CrossRefGoogle Scholar
Williams, C.B. & Sillett, S.C. 2007. Epiphyte communities of redwood (Sequoia sempervirens) in northwestern California. The Bryologist 110: 420452.CrossRefGoogle Scholar
Yasui, K. 1946. On polyploidy in the genus Sequoia. Japanese Journal of Genetics 21: 910 (in Japanese).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Sequoia
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.009
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Sequoia
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.009
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Sequoia
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.009
Available formats
×