Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-05T12:36:40.690Z Has data issue: false hasContentIssue false

Chapter 6 - Pseudotsuga

Pinales: Laricaceae

from Part III - Living Arborescent Gymnosperm Genetic Presentations

Published online by Cambridge University Press:  11 November 2024

Christopher N. Page
Affiliation:
University of Exeter
Get access

Summary

Tall, pyramidal and often massive evergreen trees, typically with straight trunks and often irregularly protruding main branch systems, distinguished from Abies by their more irregular foliar habit and pendulous female cones with exerted trifid bracts.

Type
Chapter
Information
Evolution of the Arborescent Gymnosperms
Pattern, Process and Diversity
, pp. 173 - 187
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alaback, P.B. 1982. Dynamics of understorey biomass in Sitka spruce: western hemlock forests of southeast Alaska. Ecology 63: 19321948.CrossRefGoogle Scholar
Amarasinghe, V. & Carlson, J.E. 1998. Physical mapping and characterization of 5S rRNA genes in Douglas-fir. Journal of Heredity 89: 495500.CrossRefGoogle ScholarPubMed
Arsenault, A. 2003. A note on the ecology and management of old-growth forests in the montane Cordillera. Forestry Chronicle 79: 441454.CrossRefGoogle Scholar
Axelrod, D.I. 1964 The Miocene Trapper Creek flora of southern Idaho. University of California Publications in Geological Science 51: 1-148.Google Scholar
Bailey, J.D. & Harrington, C.A. 2006. Temperature regulation of bud-burst phenology within and among years in a Douglas-fir (Pseudotsuga menziesii) plantation in western Washington, USA. Tree Physiology 26: 421430.CrossRefGoogle Scholar
Baker, R.G. & Waln, K.A. 1985. Quaternary pollen records from the Great Plains and Central United States. Pp 191203 in BryantJr., V.M. and Holloway, R.G. (eds.), Pollen Records of Late- Quaternary North American Sediments. Dallas, TX: American Association of Stratigraphic Palynologists Foundation.Google Scholar
Beardsley, D. & Warbington, R. 1996. Old growth in northwest California National Forests. US Department of Agriculture Forest Service, Research Paper.CrossRefGoogle Scholar
Benkman, C.W. 1993. Decline of the red crossbill of Newfoundland. American Birds 47: 225229.Google Scholar
Betancourt, J.L., Rylander, K.A., Peñalba, C. & McVickar, J.L. 2001 Late Quaternary vegetation history of Rough Canyon, south-central New Mexico, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 165(1–2): 7195.CrossRefGoogle Scholar
Brown, K.J. & Hebda, R.J. 2002. Origin, development and dynamics of coastal temperate conifer rainforests of southern Vancouver Island, Canada. Canadian Journal of Forest Research 32: 353372.CrossRefGoogle Scholar
Carey, A.B. 1995. Sciurids in Pacific Northwest managed and old-growth forests. Ecological Applications 5: 648661.CrossRefGoogle Scholar
Christy, R.E. & West, S.D. 1993. Biology of bats in Douglas-fir forests. General Technical Reports, US Department of Agriculture, Forest Service.CrossRefGoogle Scholar
Clement, J.P. & Shaw, D.C. 1999. Crown structure and the distribution of epiphyte functional group biomass in old-growth Pseudotsuga menziesii trees. Ecoscience 6: 243254.CrossRefGoogle Scholar
Doyle, J. 1926. The ovule of Larix and Pseudotsuga. Proceedings of the Royal Irish Academy 37B: 170180.Google Scholar
El-Kassaby, Y.A., Colangeli, A.M. & Sziklai, O. 1983. A numerical analysis of karyotypes in the genus Pseudotsuga. Canadian Journal of Botany 61: 536544.CrossRefGoogle Scholar
Engelhardt, H. & Kinkelin, F. 1908. 1. Die Oberpliozaenflora und fauna des Untermaintales, insbesondere des Frankfurter Klaerbeckens. Abhandlungen der Senckenbergischen naturforschenden Gesellschaft 29(3): 151289.Google Scholar
Erwin, D.M. & Schorn, H.E. 2005. Revision of the conifers from the Eocene Thunder Mountain flora, Idaho, USA. Review of Palaeobotany and Palynology 137(3–4): 125145.CrossRefGoogle Scholar
Ferguson, D.K. 1967. On the phytogeography of Coniferales in the European Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology 33: 73110.CrossRefGoogle Scholar
Fowells, H.A. 1965. Silvics of Forest Trees of the United States. Washington, DC: USDA.Google Scholar
Franklin, J.F. & Dyrness, C.T. 1973. Natural vegetation of Oregon and Washington. US Department of Agriculture Forest Service, General Technical Report.Google Scholar
Franklin, J.F., Spies, T.A. & Van Pelt, R. 2002. Disturbance and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example. Forest Ecology and Management 155: 399423.CrossRefGoogle Scholar
Frazer, G.W., Trofymow, J.A. & Lertzzman, K.P. 2000. Canopy openness and leaf area in chronosequences of coastal temperate rainforests. Canadian Journal of Forest Research 30: 239256.CrossRefGoogle Scholar
Furutani, M. 1989. Stratigraphical subdivision and pollen zonation of the Middle and Upper Pleistocene in the Coastal Area of Osaka Bay, Japan. Journal of Geosciences Osaka City University 32: 91121.Google Scholar
Gagon, D. & Bradfield, G.E. 1987. Gradient analysis of west central Vancouver Island forests. Canadian Journal of Botany 65: 822833.CrossRefGoogle Scholar
Gernandt, D.S. & Liston, A. 1999. Internal transcribed spacer region evolution in Larix and Pseudotsuga (Pinaceae). American Journal of Botany 86(5): 711723.CrossRefGoogle ScholarPubMed
Gray, A.N. & Spies, T.A. 1996. Gap size, within-gap position and canopy structure effects on seedling establishment. Journal of Ecology 84: 635645.CrossRefGoogle Scholar
Hansen, H.P. 1942. A pollen study of lake sediments in the lower Willamette Valley of western Oregon. Bulletin of the Torrey Botanical Club 69: 262280.CrossRefGoogle Scholar
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Hebda, R.J., Warner, B.G. & Cannings, R.A. 1990. Pollen, plant macrofossils, and insects from fossil woodrat (Neotoma cinerea) middens in British Columbia. Géographie physique et Quaternaire 44(2): 227234.CrossRefGoogle Scholar
Hershey, K.T., Meslow, E.C. & Ramsey, F.L. 1998. Characteristics of forests at spotted owl nest sites in the Pacific Northwest. The Journal of Wildlife Management 62: 13981410.CrossRefGoogle Scholar
Heusser, C.J. 1969. Modern pollen spectra from the Olympic Peninsula, Washington. Bulletin of the Torrey Botanical Club 96: 407417.CrossRefGoogle Scholar
Hunter, J.C. & Parker, V.T. 1993. The disturbance regime of an old-growth forest in coastal California. Journal of Vegetation Science 4: 1924.CrossRefGoogle Scholar
Ishii, H. & Ford, E.D. 2002. Persistence of Pseudotsuga menziesii (Douglas-fir) in temperate coniferous forests of the Pacific Northwest Coast, USA. Folia Geobotanica 37: 6369.CrossRefGoogle Scholar
Ishii, H. & Kadotani, T. 2006. Biomass and dynamics of attached dead branches in the canopy of 450-year-old Douglas-fir trees. Canadian Journal of Forest Research 36: 378389.CrossRefGoogle Scholar
Ishii, H. & Wilson, M.E. 2001. Crown structure of old-growth Douglas-fir in the western Cascade range, Washington. Canadian Journal of Forest Research 31: 12501261.CrossRefGoogle Scholar
Jackson, S.T., Betancourt, J.L., Lyford, M.E., Gray, S.T. & Rylander, K.A. 2005. A 40,000‐year woodrat‐midden record of vegetational and biogeographical dynamics in north‐eastern Utah, USA. Journal of Biogeography 32(6): 10851106.CrossRefGoogle Scholar
Kan, X.Z., Wang, S.S., Ding, X. & Wang, X.Q. 2007. Structural evolution of nrDNA ITS in Pinaceae and its phylogenetic implications. Molecular Phylogenetics and Evolution 44(2): 765777.CrossRefGoogle ScholarPubMed
Kaufmann, M.R., Regan, C.M., & Brown, P.M. 2000. Heterogeneity in Ponderosa pine/Douglas-fir forests: age and size structure in unlogged and logged landscapes of central Colorado. Canadian Journal of Forest Research 30: 698711.CrossRefGoogle Scholar
Keeton, W.S. & Franklin, J.F. 2005. Do remnant old-growth trees accelerate rates of succession in mature Douglas-fir forests ? Ecological Monographs 75: 103118.CrossRefGoogle Scholar
Kong, W.S. 1995. The distribution of conifers and taxads in time and space in the Korean Peninsula. Journal of the Korean Geographical Society 30(1): 113.Google Scholar
Kovar-Eder, J., Kvaček, Z., Martinetto, E. & Roiron, P. 2006. Late Miocene to Early Pliocene vegetation of southern Europe (7–4 Ma) as reflected in the megafossil plant record. Palaeogeography, Palaeoclimatology, Palaeoecology 238(1–4): 321339.CrossRefGoogle Scholar
Labandeira, C.C. (2001). The rise and diversification of insects. In Briggs, D. & Crowther, P. (eds.), Palaeobiology II. New York: Wiley.Google Scholar
Lanner, R.M., Hutchins, H.E. & Lanner, H.A. 1984. Bristlecone pine and Clark’s nutcracker: probable interaction in the White Mountains, California. The Great Basin Naturalist 44: 357360.Google Scholar
Larson, A.J. & Franklin, J.F. 2005. Patterns of conifer tree regeneration following an autumn wildfire event in the western Oregon Cascade Range, USA. Forest Ecology and Management 218: 2536.CrossRefGoogle Scholar
Li, H.-L. 1975. Coniferae. Pp 499544 in DeVol, C.E. (ed.), Flora of Taiwan. Vol 1. Pteridophyta and Gymnospermae. Taipei: Epoch Publishing.Google Scholar
Li, L.C. 1993. Studies on the karyotype and systematic position of Larix Mill. (Pinaceae). Acta Phytotaxonomic Sinica 31: 405412.Google Scholar
Liu, J.M. 2000. The seed bank of the forest community at the pinnacles at Maolin Karst hilly area in Guizhou. Forest Research 13: 4450.Google Scholar
Mägdefrau, K. 1953. Paläobotanik. Bericht Über das Jahr 1951: 99161.Google Scholar
Martinetto, E., Uhl, D. & Tarabra, E. 2007. Leaf physiognomic indications for a moist warm-temperate climate in NW Italy during the Messinian (Late Miocene). Palaeogeography, Palaeoclimatology, Palaeoecology 253(1–2): 4155.CrossRefGoogle Scholar
McClelland, B.R. & McClelland, P.T. 1999. Pileated woodpecker nest and roost trees in Montana: links with old-growth and forest ‘health’. Wildlife Society Bulletin 27: 846857.Google Scholar
McClune, B. 1993. Gradients in epiphyte biomass in three Pseudotsuga: Tsuga forests of different ages in Western Oregon and Washington. Bryologist 96: 405411.CrossRefGoogle Scholar
McClune, B. 1997. Vertical profile of epiphytes in a Pacific Northwest old-growth forest. Northwest Science 71: 145152.Google Scholar
McConnon, H., Knowles, R.L., & Hansen, L.W. 2004. Provenance affects bark thickness in Douglas fir. New Zealand Journal of Forestry Science 34: 7786.Google Scholar
Miki, S., 1957. Pinaceae of Japan, with special reference to its remains. Journal of the Institute of Polytechnics Osaka City University Japan Series D 8: 221272.Google Scholar
Miller, C.N. 1985 Pityostrobus pubescens, a new species of pinaceous cones from the Late Cretaceous of New Jersey. American Journal of Botany 72: 520529.CrossRefGoogle Scholar
North, M. & Greenberg, J. 1998. Stand conditions associated with truffle abundance in western hemlock/Douglas-fir forests. Forest Ecology and Management 112: 5565.CrossRefGoogle Scholar
Parker, G.C. 1997. Canopy structure and light environment of an old-growth Douglas-fir/Western Hemlock forest. Northwest Science 71: 261270.Google Scholar
Poage, N.J. & Tappeiner, J.C. 2002. Long-term patterns of diameter of basal area growth of old-growth Douglas-fir trees in western Oregon. Canadian Journal of Forest Research 32: 12321243.CrossRefGoogle Scholar
Poage, N.J. & Tappeiner, J.C. 2005. Tree species and size structure of old-growth Douglas-fir forests in central western Oregon, USA. Forest Ecology and Management 204: 329343.CrossRefGoogle Scholar
Pypker, T.G., Unsworth, M.H. & Bond, B.J. 2006. The role of epiphytes in rainfall interception by forests in the Pacific Northwest. II. Field measurements at the branch and canopy scale. Canadian Journal of Forest Research 36(4): 819832.CrossRefGoogle Scholar
Rogers, S.O., Langenegger, K. & Holdenrieder, O. 2000. DNA changes in tissues entrapped in plant resins (the precursors of amber). Naturwissenschaften 87: 7075.CrossRefGoogle ScholarPubMed
Rypins, S., Reneau, S.L., Byrne, R. & Montgomery, D.R. 1989. Palynologic and geomorphic evidence for environmental change during the Pleistocene–Holocene transition at Point Reyes Peninsula, central coastal California. Quaternary Research 32(1): 7287.CrossRefGoogle Scholar
Sax, K. & Sax, H.J. 1933. Chromosome number and morphology in the conifers. Journal of the Arnold Arboretum 14: 356375.CrossRefGoogle Scholar
Schowalter, T.D. 1995. Canopy arthropod communities in relation to forest age and alternative harvest practices in western Oregon. Forest Ecology and Management 78(1–3): 115125.CrossRefGoogle Scholar
Schowalter, T.D. & Ganio, L.M. 1998. Vertical and seasonal variation in canopy arthropod communities in an old-growth conifer forest in southwestern Washington, USA. Bulletin of Entomological Research 88(6): 633640.CrossRefGoogle Scholar
Shang, H., Cui, J.Z. & Li, C.S. 2001. Pityostrobus yixianensis sp. nov., a pinaceous cone from the Lower Cretaceous of north-east China. Botanical Journal of the Linnean Society 136(4): 427437.CrossRefGoogle Scholar
Shaw, D.C., Franklin, J.F., Bible, K., et al. 2004. Ecological setting of the Wind River old-growth forest. Ecosystems 7: 427439.CrossRefGoogle Scholar
Shaw, D.C., Chen, J., Freeman, E.A. & Braun, D.M. 2005. Spatial and population characteristics of dwarf mistletoe infected trees in an old-growth Douglas-fir–western hemlock forest. Canadian Journal of Forest Research 35: 9901001.CrossRefGoogle Scholar
Sillett, S.C. 1994. Growth rates of two epiphytic cyanolichen species at the edge and in the interior of a 700-year-old Douglas fir forest in the Western Cascades of Oregon. Bryologist 97: 321324.CrossRefGoogle Scholar
Sillett, S.C. & Rambo, T.R. 2000. Vertical distribution of dominant epiphytes in Douglas-fir forests of the central Oregon Cascades. Northwest Science 74: 4449.Google Scholar
Sillett, S.C., McCune, B., Peck, J.E., Rambo, T.R. & Ruchty, A. 2000. Dispersal limitations of epiphytic lichens result in species dependent on old‐growth forests. Ecological Applications 10(3): 789799.CrossRefGoogle Scholar
Spies, T.A., Franklin, J.F. & Thomas, T.B. 1988. Coarse woody debris in Douglas-fir forests of western Oregon and Washington. Ecology 69: 16891702.CrossRefGoogle Scholar
Spies, T.A., Franklin, J.F. & Klopsch, M. 1990. Canopy gaps in Douglas-fir forests of the Cascade Mountains. Canadian Journal of Forest Research 20: 649658.CrossRefGoogle Scholar
Stewart, G.H. 1986. Forest development in canopy openings in old-growth Pseudotsuga forests of the western Cascade Range, Washington. Canadian Journal of Forest Research 16: 558568.CrossRefGoogle Scholar
Stewart, G.H. 1989. The dynamics of old-growth Pseudotsuga forests in the western Cascade Range, Oregon, USA. Vegetation 82: 7994.CrossRefGoogle Scholar
Sudworth, G.B. 1908. Forest Trees of the Pacific Slope. San Francisco, CA: USDA Forest Service.CrossRefGoogle Scholar
Tanai, T. & Suzuki, N. 1972. Additions to the Miocene floras of southwestern Hokkaido, Japan. Journal of the Faculty of Science, Hokkaido University. Series 4. Geology and Mineralogy 15(1–2): 281359.Google Scholar
Thompson, R.S. & Mead, J.I.. 1982. Late Quaternary environments and biogeography in the Great Basin. Quaternary Research 17(1): 3955.CrossRefGoogle Scholar
Tsukada, M. 1982. Cryptomeria japonica: glacial refugia, and late-glacial and postglacial migration. Ecology 63: 10911105.CrossRefGoogle Scholar
Vander-Wall, S.B., Borchert, M.I. & Gworek, J.R. 2006. Secondary dispersal of bigcone Douglas-fir (Pseudotsuga macrocarpa) seeds. Acta Oecologica 30: 100106.CrossRefGoogle Scholar
Wang, X.Q., Han, Y. & Hong, D.Y. 1998a. A molecular systematic study of Cathaya, a relic genus of the Pinaceae in China. Plant Systematics and Evolution 213: 165172.CrossRefGoogle Scholar
Wang, X.Q., Han, Y. & Hong, D.Y. 1998b. PCR-RFLP analysis of the chloroplast gene trn K in the Pinaceae, with special reference to the systematic position of Cathaya. Israel Journal of Plant Sciences 46(4): 265271.CrossRefGoogle Scholar
Wheeler, E.A. & ArnetteJr, C.G. 1994. Identification of Neogene woods from Alaska-Yukon. Quaternary International 22: 91102.CrossRefGoogle Scholar
Winter, L.E., Brubaker, L.B., Franklin, J.F., Miller, E.A. & DeWitt, D.Q. 2002a. Initiation of an old-growth Douglas-fir stand in the Pacific Northwest: a reconstruction from tree-ring records. Canadian Journal of Forest Research 32: 10391056.CrossRefGoogle Scholar
Winter, L.E., Brubaker, L.B., Franklin, J.F., Miller, E.A. & DeWitt, D.Q. 2002b. Canopy disturbance over the five century lifetime of an old-growth Douglas-fir stand in the Pacific Northwest. Canadian Journal of Forest Research 32: 10571070.CrossRefGoogle Scholar
Worona, M.A. & Whitlock, C. 1995. Late Quaternary vegetation and climate history near Little Lake, central Coast Range, Oregon. Geological Society of America Bulletin 107(7): 867876.2.3.CO;2>CrossRefGoogle Scholar
Zalewska, Z. 1961. Coniferae: Taxaceae, Podocarpaceae, Pinaceae, Taxodiaceae. Cupressaceae. Flora kopalna Turowa kolo Bogatyni 11(2). [Flora excavated in Turowa near Bogatyni.] Prace Museum Ziemi 4: 1949. English summary, pp. 92–102.Google Scholar
Zarnowitz, J.E. & Manuwal, D.A. 1985. The effects of forest management on cavity-nesting birds in northwestern Washington. Journal of Wildlife Management 49: 255263.CrossRefGoogle Scholar
Zenner, E.K. 2005. Development of tree-size distribution in Douglas-fir forests under differing disturbance regimes. Ecological Applications 15: 701714.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Pseudotsuga
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009262965.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Pseudotsuga
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009262965.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Pseudotsuga
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009262965.010
Available formats
×