Skip to main content Accessibility help
×
Hostname: page-component-599cfd5f84-jhfc5 Total loading time: 0 Render date: 2025-01-07T05:37:13.701Z Has data issue: false hasContentIssue false

Chapter 28 - Platycladus

Cupressales: Cupressaceae S.S.

from Part III - Living Arborescent Gymnosperm Genetic Presentations

Published online by Cambridge University Press:  11 November 2024

Christopher N. Page
Affiliation:
University of Exeter
Get access

Summary

Evergreen trees or shrubs, with upright, fern-like foliage sprays of pinnately much branched minor branchlet systems. The mature foliage is bright, deep, glossy green. The female cones are upright and somewhat flask-like, topped with hooked spines.

Type
Chapter
Information
Evolution of the Arborescent Gymnosperms
Pattern, Process and Diversity
, pp. 510 - 517
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, R.P., Nguyen, S., Hsieh, C.F. & Kaiyun, G. 2006. The leaf essential oils of the genus Calocedrus. Journal of Essential Oil Research 18(6): 654658.CrossRefGoogle Scholar
Afsharypuor, S. & Nayebzadeh, B. 2009. Essential oil constituents of young stem, leaf and fruit of Platycladus orientalis (L.) Franco grown in Isfahan (Iran). Journal of Essential Oil Research 21: 525528.CrossRefGoogle Scholar
Asili, J., Lambert, M., Ziegler, H.L., et al. 2004. Labdanes and isopimarenes from Platycladus orientalis and their effects on erythrocyte membrane and on Plasmodium falciparum growth in the erythrocyte host cells. Journal of Natural Products 67: 631637.CrossRefGoogle Scholar
Brunsfeld, S.J., Soltis, P.S., Soltis, D.E., Gadek, P.A. & Quinn, C.J. 1994. Phylogenetic relationships amongst the genera of the Taxodicaeae and Cupressaceae: evidence from rbcL sequences. Systematic Botany 19: 253262.CrossRefGoogle Scholar
Chen, L., Ding, L., Yu, A., et al. 2007. Continuous determination of total flavenoids in Platycladus orientalis (L.) Franco by dynamic microwave-assisted extraction coupled with on-line derivatization and ultraviolet-visible detection. Analytica Chimica Acta 596: 164170.CrossRefGoogle Scholar
DeVillers, P., DeVillers-Terchuren, J. & Van Linden, C. 2001. Hyrcinian Thuja forests. Palaearctic Habitats. Black Sea Marine Habitat Classification. PHYSIS database. Royal Belgian Institute of Natural Science www.naturalsciences.bc/eb.Google Scholar
Farjon, A. 2005. A Monograph of Cupressaceae and Sciadopitys. Kew: Royal Botanic Gardens.Google Scholar
Gadek, P.A., Alpers, D.L., Heslewood, M.M. & Quinn, C.J. 2000. Relationships within Cupressaceae sensu lato: a combined morphological and molecular approach. American Journal of Botany 87: 10441057.CrossRefGoogle Scholar
Gao, P. & Wang, L. 1993. Study on the benefits of the water-reserving forest in the upper reaches of Miyum reservoir. Bulletin of Soil Water Conservation 13: 2429 (in Chinese).Google Scholar
Gao, P., Zhang, G.-P., Wu, Q., Lian, J.-Q. & Zhang, F. 2010. An analysis of inter-specific relationships among the dominant populations of Platycladus orientalis communities in Yanshan Nature Reserve in Shanxi. Bulletin of Botanical Research 30: 731736.Google Scholar
Han, L., Jiao, J., Jia, Y., et al. 2011. Seed removal on loess slopes in relation to runoff and sediment yield. Catena 85(1): 1221.CrossRefGoogle Scholar
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Hoffman, M.T. & Arnold, A.E. 2008. Geographic locality and host identity shape fungal endophyte communities in cupressaceous trees. Mycological Research 112(3): 331344.CrossRefGoogle ScholarPubMed
Jagel, A. & Stutzel, T. 2001. Zur Abgrenzung von Chamaecyparis Spach und Cupressus L. (Cupressaceae) und die systematische Stellung von Cupressus nootkatensis D.Don [= Chamaecyparis nootkatensis (D.Don) Spach]. Fedde’s Repertorium 112: 179229.CrossRefGoogle Scholar
Kuo, Y.H., Chen, W.C. & Lee, C.K. 2000. Four new terpenes of Platycladus orientalis. Chemical Pharmacological Bulletin 48: 766768.CrossRefGoogle ScholarPubMed
Lai, L.K., Naki, M., Yoshida, S.H., German, T.S. & Gershwin, M.E. 1994. Dietary Platycladus seed oil suppresses anti-erythrocyte autoantibodies and prolonged survival in NZB mice. Clinical Immunology and Immunopathology 71: 293302.CrossRefGoogle ScholarPubMed
Lei, H.P., Wang, Y.G., Liang, F.Y., et al. 2010. Composition and variability of essential oils of Platycladus orientalis growing in China. Biochemical Systematics and Ecology 38: 10001006.CrossRefGoogle Scholar
Lei, H.P., Liang, F.Y., Wang, Y.G., et al. 2011. Simultaneous determination of Thujopsene and Cedrol in cedarwood oils from Thuja sutchuenensis and Platycladus orientalis. Journal of Essential Oil Bearing Plants 14: 4856.Google Scholar
Li, L. & Hu, P. 1984. Karyotype analysis in Platycladus orientalis and Fokienia hodginsii. Acta Botanica Yunnanica 9: 447451 (in Chinese with English summary).Google Scholar
Li, L.-C & Fu, Y.-X. 1996. Studies on the karyotypes and the cytogeography of Cupressus (Cupressaceae). Acta Botanica Sinica 34: 117123.Google Scholar
Li, S., Li, D., Qin, T. & Liu, Y. 2010. Dynamics of species composition and regeneration rules in the gaps of Pinus bungeana forest gaps in Huanglong mountain, Shaanxi Province. Journal of Wuhan Botanical Research 28(5): 583588.Google Scholar
Li, S.Q., Fang, Y.L. & Zhang, Z.N. 2007. Effects of volatiles of non-host plants and other chemicals on oviposition of Monochamus alternatus (Coleoptera: Cerambycidae). Journal of Pest Science 80: 119123.CrossRefGoogle Scholar
Li, T.C., Shao, M.A. & Jia, Y.H. 2016. Application of X‐ray tomography to quantify macropore characteristics of loess soil under two perennial plants. European Journal of Soil Science 67(3): 266275.CrossRefGoogle Scholar
Li, Z.X. & Powell, C.M. 2001. An outline of the palaeogeographic evolution of the Australasian region since the beginning of the Neoproterozoic. Earth-Science Reviews 53: 237–27.CrossRefGoogle Scholar
Liu, G.G. & Leopold, E.B. 1992. Paleoecology of a Miocene flora from Shanwang Formation, Shandong Province, north east China. Palynology 16: 187212.CrossRefGoogle Scholar
Liu, Y.J., Ding, H. & Zhu, Y.G. 2005. Metal bioaccumulation in plant leaves from an industrious area and the botanical garden in Beijing. Journal of Environmental Sciences 17(2): 294300.Google ScholarPubMed
Martin, P.C. 1950 A morphological comparison of Biota and Thuja. Proceedings of the Pennsylvania Academy of Science 24: 65112.Google Scholar
Messing, I., Chen, L. & Hessel, R. 2003. Soil conditions in a small catchment on the Loess Plateau in China. Catena 54(1–2): 4558.CrossRefGoogle Scholar
Mitchell, A.F. 1972. Conifers in the British Isles: A Descriptive Handbook. London: HMSO.Google Scholar
Morgan, C.S. 1999. Platycladus orientalis: Cupressaceae. Curtis’s Botanical Magazine 16: 185192.CrossRefGoogle Scholar
Ren, X.-Y. & Ye, Y. 2006. Labdane diterpenes from the seeds of Platycladus orientalis. Journal of Asian Natural Products Research 8: 677682.CrossRefGoogle ScholarPubMed
Rushforth, K. 1987. Conifers. London: Christopher Helm Ltd.Google Scholar
Singh, H. & Oberoi, Y.P. 1962 A contribution to the life history of Biota orientalis Endl. Phytomorphology 12: 373393.Google Scholar
Vidaković, M. 1991 Conifers: Morphology and Variation. Zagreb: Grafićki zavod Hrvatske.Google Scholar
Wang, B., Yeun, L.H., Xue, J.-Y., et al. 2010. Presence of three mycorrhizal genes in the common ancestor of land plants suggests a key role of mycorrhizas in the colonisation of land by plants. New Phytologist 186: 514525.CrossRefGoogle ScholarPubMed
Xing, S.P., Zhang, Q., Hu, X.Y., Chen, Z.K. & Lin, J.X. 1999. The mechanism of pollination in Platycladus orientalis and Thuja occidentalis (Cupressaceae). Acta Botanica Sinica 41: 130132.Google Scholar
Yang, H.O., Suh, D.Y. & Han, B.H. 1995. Isolation and characterisation of platelet-activating factor receptor binding antagonists from Biota orientalis. Planta Medici 61: 3740.CrossRefGoogle ScholarPubMed
Yao, J., Xue, J., Wu, Q., Wu, Y. & Rong, Y. 2010. Drought resistance of four species of tree saplings for afforestation in Karst Regions. Journal of Ecology and Rural Environment 26(4): 318322.Google Scholar
Zamjatnin, B. 1963. Observationes nonnullae de Microbiota decussata Kom. Notes Syst, Herb. Hort. Bot. Petrop. 22: 4350 (in Russian).Google Scholar
Zhang, J.T. & Chen, T. 2007. Effects of mixed Hippophae rhamnoides on community and soil in planted forests in the Eastern Loess Plateau, China. Ecological Engineering 31(2): 115121.CrossRefGoogle Scholar
Zhu, B., Li, Z., Li, P., Liu, G. & Xue, S. 2010. Soil erodibility, microbial biomass, and physical–chemical property changes during long-term natural vegetation restoration: a case study in the Loess Plateau, China. Ecological Research 25: 531541.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Platycladus
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009262965.032
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Platycladus
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009262965.032
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Platycladus
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009262965.032
Available formats
×