Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-05T12:45:20.888Z Has data issue: false hasContentIssue false

Chapter 2 - Picea

Pinales: Pinaceae S.S.

from Part III - Living Arborescent Gymnosperm Genetic Presentations

Published online by Cambridge University Press:  11 November 2024

Christopher N. Page
Affiliation:
University of Exeter
Get access

Summary

Tall, medium-sized to sometimes massive, monoecious evergreen trees, with strongly whorled branches and a typically conical, tapering crown. Tree crowns are symmetric, often slender and spire-like, their branch systems short and eventually mostly markedly down-sweeping, with the tips level or upcurving. Crowns bear with age elongate female cones hanging pendulously from near the uppermost branch tips. Unlike Abies, leaves of Picea fall eventually from their shoots (abundantly so if dried), leaving peg-like pulvini covering the shoots.

Type
Chapter
Information
Evolution of the Arborescent Gymnosperms
Pattern, Process and Diversity
, pp. 48 - 84
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, R.J. 2017. Plant speciation across environmental gradients and the occurrence of natural hybrid zones. Journal of Systematics and Evolution 55: 238258.CrossRefGoogle Scholar
Abbott, R.J., Bruton, N.H. & Good, J.M. 2016. Genomics of hybridisation and its evolutionary consequences. Molecular Evolution 25: 23252332.Google ScholarPubMed
Ager, T.A. 1982. Vegetational history of western Alaska during the Wisconsin glacial interval and the Holocene. Pp 7593 in Hopkins, D., Matthews, J., Young, S. (eds), Paleoecology of Beringia. New York: Academic Press.CrossRefGoogle Scholar
Ager, T.A. & Phillips, R.L. 2008. Pollen evidence for late Pleistocene Bering land bridge environments from Norton Sound, northeastern Bering Sea, Alaska. Arctic Antarctic and Alpine Research 40(3): 451461.CrossRefGoogle Scholar
Aizawa, M., Yoshmaruth, H., Saito, H., et al. 2007. Phylogeography of a northeast Asian spruce, Picea jezoensis, inferred from genetic variation observed in organelle DNA markers. Molecular Ecology 16: 33933405.CrossRefGoogle ScholarPubMed
Akkiraz, M., Akgün, F., Örçen, S., Bruch, A., Mosbrugger, V.. 2006. Stratigraphic and palaeoenvironmental significance of Bartonian–Priabonian (Middle–Late Eocene) microfossils from the Başçeşme Formation, Denizli Province, Western Anatolia. Turkish Journal of Earth Sciences 15(2): 155180.Google Scholar
Alaback, P.B. 1982. Dynamics of understorey biomass in Sitka spruce–western Hemlock forests of southeast Alaska. Ecology 63: 19321948.CrossRefGoogle Scholar
Alexander, I.J. & Watling, R. 1987. Macrofungi of Sitka spruce in Scotland. Proceedings of the Royal Society of Edinburgh 93B: 107115.Google Scholar
Alexandrov, A. 1971. The occurrence of forms of Norway spruce based on branching habit. Silvae Genetica 8: 204208.Google Scholar
Alexandrov, A. 1985. Taxonomy and geographic distribution of the species of the genus Picea A. Dietr. Gorskostopanska Nauka 22: 2333 (in Russian).Google Scholar
Alfimov, A.V. & Berman, D.I. 2001. Beringian climate during the Late Pleistocene and Holocene. Quaternary Science Reviews 20: 127134.CrossRefGoogle Scholar
An, Z., Kutzbach, J.E., Prell, W.L. & Porter, S.C. 2001. Evolution of Asian monsoons and phased uplift of the Himalayan–Tibetan plateau since Late Miocene times. Nature 411: 6266.Google Scholar
Anderson, L.L., Hu, F.S., Nelsson, R.M., Pettot, R.J. & Paige, K.M. 2006. Ice Age endurance: DNA evidence of a white spruce refugium in Alaska. Proceedings of the National Academy of Sciences USA 103: 1244712450.CrossRefGoogle Scholar
Anderson, P.M. & Brubaker, L.B. 1994. Vegetation history of northcentral Alaska: a mapped summary of late-Quaternary pollen data. Quaternary Science Reviews 13(1): 7192.CrossRefGoogle Scholar
Anderson, P.M. & Lozhkin, A.V. 2001. The Stage 3 interstadial complex (Karginskii/middle Wisconsinan interval) of Beringia: variations in paleoenvironments and implications for paleoclimatic interpretations. Quaternary Science Reviews 20: 93125.CrossRefGoogle Scholar
Arain, M.A., Black, T.A., Barr, A.G., et al. 2002. Effects of seasonal and interannual climate variability on net ecosystem productivity of boreal deciduous and conifer forests. Canadian Journal of Forest Research 32(5): 878891.CrossRefGoogle Scholar
Arsenault, A. 2003. A note on the ecology and management of old-growth forests in the Montane Cordillera. The Forestry Chronicle 79(3): 441454.CrossRefGoogle Scholar
Avouac, J.P. & Burov, E.B. 1996. Erosion as a driving mechanism of intracontinental mountain growth. Journal of Geophysical Research: Solid Earth 101: 1774717769.CrossRefGoogle Scholar
Axelrod, D.I. 1944. Sonoma Floras. Washington, DC: Carnegie Institution of Washington Publications.Google Scholar
Axelrod, D.I. 1956. Mio-Pliocene Floras from West-Central Nevada. Berkeley, CA: University of California Press.Google Scholar
Axelrod, D.I. 1964 The Miocene Trapper Creek flora of southern Idaho. University of California Publications in Geological Sciences 51: 1148.Google Scholar
Axelrod, D.I. 1986. Cenozoic history of some western American pines. Annals of the Missouri Botanical Garden, 73: 565641.CrossRefGoogle Scholar
Axelrod, D.I. 1987 The Late Oligocene Creede Flora, Colorado. Berkeley, CA: University of California Press.Google Scholar
Axelrod, D.I. 1988. An interpretation of high montane conifers in western Tertiary Flora. Paleobiology 14(3): 301306.CrossRefGoogle Scholar
Barnard, P.L., Owen, L.A., Sharma, M.C. & Finkel, R.C. 2001. Natural and human-induced landsliding in the Garhwal Himalaya of northern India. Geomorphology 40: 2135.CrossRefGoogle Scholar
Baumeister, D. & Callaway, R.M. 2006. Facilitation by Pinus flexilis during succession: a hierarchy of mechanisms benefits other plant species. Ecology 87(7): 18161830.CrossRefGoogle ScholarPubMed
Becker, H.F. 1969. Forest plants of the Tertiary Beaverhead Basins in southwestern Montana. Palaeontographica B 127: 1142.Google Scholar
Berry, E.W. 1905. The flora of the Cliffwood clays. New Jersey Geological Survey Annual Reports 1905: 135172.Google Scholar
Bertini, A. & Martinetto, E. 2008. Messinian to Zanclean Vegetation and Climate of Northern and Central Italy. Napoli: Bollettino della.Google Scholar
Bezrukova, E.V., Abzaeva, A.A., Letunova, P.P., et al. 2005. Post-glacial history of Siberian spruce (Picea obovata) in the Lake Baikal area and the significance of this species as a paleo-environmental indicator. Quaternary International 136(1): 4757.CrossRefGoogle Scholar
Bigelow, N.H. & Edwards, M.E. 2001. A 14,000 yr paleoenvironmental record from Windmill Lake, central Alaska: late glacial and Holocene vegetation in the Alaska Range. Quaternary Science Reviews 20: 203215.CrossRefGoogle Scholar
Bishop, M.P., Bonk, R., Kamp, U. Jr & Shroder, J.F. Jr 2001. Terrain analysis and data modeling for alpine glacier mapping. Polar Geography 25: 182201.CrossRefGoogle Scholar
Bishop, M.P., Shroder, J.F. Jr, Bonk, R. & Olsenholler, J. 2002. Geomorphic change in high mountains: a western Himalayan perspective. Global and Planetary Change 32(4): 311329.CrossRefGoogle Scholar
Blyakharchuk, T.A., Wright, H.E., Borodavko, P.S., et al. 2004. Late Glacial and Holocene vegetational changes on the Ulagan high-mountain plateau, Altai Mountains, southern Siberia. Palaeogeography, Palaeoclimatology, Palaeoecology 209: 259279.CrossRefGoogle Scholar
Blyakharchuk, T.A., Wright, H.E., Borodavko, P.S., et al. 2007. Late glacial and Holocene vegetational history of the Altai mountains (southwestern Tuva Republic, Siberia). Palaeogeography, Palaeoclimatology, Palaeoecology 245: 518534.CrossRefGoogle Scholar
Bobrov, E.G. 1970. Generis Picea historia et systematica. Nova Systematica plantae Vascularis 7: 739 (in Russian).Google Scholar
Bobrov, E.G. 1973. Introgressive hybridisation, Sippenbildung und Vegetationsanderung. Feddes Repertorium 84: 273294.CrossRefGoogle Scholar
Bonan, G.B. 2008. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320: 14441449.CrossRefGoogle ScholarPubMed
Borgaonkar, H.P., Pant, G.B. & Kumar, R. 1994. Dendroclimatic reconstruction of summer precipitation at Srinagar, Kashmir, India, since the late-eighteenth century. The Holocene 4(3): 299306.CrossRefGoogle Scholar
Bouillé, M., Senneville, S. & Bouchet, J. 2011. Discordant mtDNA and cpDNA phylogenies indicate geographic speciation and reticulation as driving factors for the diversification of the genus Picea. Tree Genetics and Genomes 7: 469484.CrossRefGoogle Scholar
Brang, P. 2001. Resistance and elasticity: promising concepts for the management of protection forests in the European Alps. Forest Ecology and Management 145: 107119.CrossRefGoogle Scholar
Brookfield, M.E. 2008a. Evolution of the great river systems of southern Asia during the Cenozoic India–Asia collision: rivers draining north from the Pamir syntaxis. Geomorphology 100: 296311.CrossRefGoogle Scholar
Brookfield, M.E. 2008b. Principles of Stratigraphy. New York: Wiley.Google Scholar
Calder, J.A. & Taylor, R.L. 1968. Flora of the Queen Charlotte Islands. Part 1. Systematics of the Vascular Plants. Ottawa: Queen’s Printer.Google Scholar
Cannell, M.G.R. 1987. Photosynthesis, foliage development and productivity of Sitka spruce. Proceedings of the Royal Society of Edinburgh 93B: 6173.Google Scholar
Carter, L.D. & Ager, T.A. 1989. Late Pleistocene spruce (Picea) in northern interior basins of Alaska and the Yukon: evidence from marine deposits in northern Alaska. US Geological Survey Circular 1026: 11–14.CrossRefGoogle Scholar
Chatterjee, S. & Scotese, C.R. 1999. The break-up of Gondwana and the evolution and biogeography of the Indian plate. PINSA 64: 397425.Google Scholar
Chen, J. Käluman, T., Gyllenstrand, V. & Lascoux, M. 2010. New insights on the speciation history and radiative diversity of three broad spruce groups and a Tertiary relic. Heredity 104: 314.CrossRefGoogle Scholar
Cherubini, P., Piussi, P. & Schweingruber, F.H. 1996. Spatiotemporal growth dynamics and disturbances in a subalpine spruce forest in the Alps: a dendroecological reconstruction. Canadian Journal of Forest Research 26: 9911001.CrossRefGoogle Scholar
Chytrý, M., Danihelka, J., Kubešová, S., et al. 2008. Diversity of forest vegetation across a strong gradient of climatic continentality: Western Sayan Mountains, southern Siberia. Plant Ecology 196: 6183.CrossRefGoogle Scholar
Clark, M.K., Schoenbohm, L.M., Royden, L.H., et al. 2004. Surface uplift, tectonics, and erosion of eastern Tibet from large‐scale drainage patterns. Tectonics 23(1).CrossRefGoogle Scholar
Colinvaux, P.A. 1964. The environment of the Bering land bridge. Ecological Monographs 34: 297329.CrossRefGoogle Scholar
Colinvaux, P.A. 1967. A long pollen record from St. Lawrence Island, Bering Sea (Alaska). Palaeogeography, Palaeoclimatology, Palaeoecology 3: 2948.CrossRefGoogle Scholar
Copeland, P., Harrison, T.M., Kidd, W.E.A., Ronghua, X. & Yuquan, Z. 1987. Rapid early Miocene acceleration of uplift in the Gangdese Belt, Xizang (southern Tibet), and its bearing on accommodation mechanisms of the India–Asia collision. Earth and Planetary Science Letters 86: 240252.CrossRefGoogle Scholar
Crabtree, D.R. 1983. Picea wolfei, a new species of petrified cone from the Miocene of northwestern Nevada. American Journal of Botany 70: 13501364.CrossRefGoogle Scholar
Crabtree, D.R. 1984. Botanical relationships of Upper Cretaceous dicotyledonous leaf fossils from the Two Medicine Formation, north-central Montana. Second Internatl. Organ. Paleobot. Conf. Edmonton. [Abstract.JGoogle Scholar
Cwynar, L.C. 1982. A Late‐Quaternary vegetation history from Hanging Lake, Northern Yukon: ecological archives M052–001. Ecological Monographs 52(1): 124.CrossRefGoogle Scholar
Daubenmire, R. 1968. Some geographic variation in Picea sitchensis and their ecologic interpretation. Canadian Journal of Botany 46: 787798.CrossRefGoogle Scholar
Daubenmire, R. 1974. Taxonomic and ecologic relationships between Picea glauca and P. engelmannii. Canadian Journal of Botany 52: 15451560.CrossRefGoogle Scholar
Davies, J.M. 1968. Adelgids attacking spruce and other conifers. [UK] Forestry Commission Leaflet 7: 1–12.Google Scholar
Di, H., Ma, J., He, K., Han, Y.L. & Nui, S. 2020. Phylogenetic relationships of Picea mongolica and other Picea species in the same area based on chloroplast gene variations. Journal of Forestry Research 32: 247305.Google Scholar
Ding, Y.H. & Reiter, E.R. 1980. Further study of the variability in the frequency of typhoon formation over the West Pacific ocean. Colorado State University, Fort Collins (USA).CrossRefGoogle Scholar
Dogra, P.D. 1986. Conifers of India and their natural gene resources in relation to forestry and the Himalayan environment. Glimpses in Plant Research 7: 129194.Google Scholar
Du, F.K., Petit, R.J. & Liu, J.Q. 2009. More introgressions with less gene flow: chloroplast vs. mitochondrial DNA in the Picea asperata complex in China, and comparison with other conifers. Molecular Ecology 18: 13691407.CrossRefGoogle Scholar
Edman, M. & Jonsson, B.G. 2001. Spatial pattern of downed logs of wood-decaying fungi in an old-growth Picea abies forest. Journal of Vegetation Science 12: 609620.CrossRefGoogle Scholar
Erwin, D.M. & Schorn, H.E. 2005. Revision of the conifers from the Eocene Thunder Mountain flora, Idaho. USA Review of Palaeobotany and Palynology 137: 125145.CrossRefGoogle Scholar
Esseen, P.A., Ehnström, B., Ericson, L. & Sjöberg, K. 1992. Boreal forests: the focal habitats of Fennoscandia. Pp 252325 in Hansson, L. (ed.), Ecological Principles of Nature Conservation: Application in Temperate and Boreal Environments. New York: Springer.CrossRefGoogle Scholar
Fan, Z.X., Bräuning, A., Yang, B. & Cao, K.F. 2009. Tree ring density-based summer temperature reconstruction for the central Hengduan Mountains in southern China. Global and Planetary Change 65: 111.CrossRefGoogle Scholar
Fang, K., Wang, Y., Yu, T., et al. 2008. Isolation of de-exined pollen and cytological studies of the pollen intines of Pinus bungeana Zucc. Ex Endl and Picea wilsonii Mast Flora morphology distribution. Functional Ecology of Plants 203(4): 332340.CrossRefGoogle Scholar
Farjon, A. 1990 Pinaceae: Drawings and Descriptions of the Genera Abies, Cedrus, Pseudolarix, Keteleerria, Nothotsuga, Tsuga, Cathaya, Pseudotsuga, Lark and Picea. Königstein: Koeltz Scientific Books.Google Scholar
Faulkner, R. 1987. Genetics and breeding of Sitka spruce. Proceedings of the Royal Society of Edinburgh 93B: 4150.Google Scholar
Ferguson, D.K. 1967. On the phytogeography of Coniferales in the European Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology., 33: 73110.CrossRefGoogle Scholar
Fielding, E.J. 1996. Tibet uplift and erosion. Tectonophysics 260: 5584.CrossRefGoogle Scholar
Finlayson, D.P., Montgomery, D.R. & Hallet, B. 2002. Spatial coincidence of rapid inferred erosion with young metamorphic massifs in the Himalayas. Geology 30(3): 219222.2.0.CO;2>CrossRefGoogle Scholar
Fisk, H.N., Richards, H.G., Brown, C.A. & Steere, W.C. 1938. Contributions to the Pleistocene history of the Florida parishes of Louisiana. Dept. Conservation, Louisiana Geology Survey Geology Bulletin 12.Google Scholar
Flohn, H. 1968. Contributions to a meteorology of the Tibetan Highlands. Atmospheric Science Paper 120.Google Scholar
Flohn, H. 1981. The elevated heat source of the Tibetan highlands and its role for the large scale atmospheric circulation. Geological and Ecological Studies of the Qinghai-Xizang Plateau 2: 14631469.Google Scholar
Florin, R. 1963. The distribution of conifer and taxa genera in time and space. Acta Horti Bergiani 20: 121319.Google Scholar
Fort, M.B. 1986. Glacial extension and catastrophic dynamics along the Annapurna Front, Nepal Himalaya. Pp 105121 in Khule, M. (ed.), Proc. Symposium uber Tibet und Hochasien, Goettinger-Geographische-Abhandlugen. Univ. de Paris Nord.Google Scholar
Foster, J.B. 1965. The evolution of the mammals of the Queen Charlotte Islands. Occasional papers of the British Columbia Provincial Museum 14.Google Scholar
Fowler, D.D. 1966. A new spruce hybrid Picea schrenkiana x P. glauca. Second genetics workshop of the Society of American Foresters. US Forest Service, North Central Experimental Station, Research paper NC-6: 44–47.Google Scholar
Fox, D.P. 1987 The chromosomes of Picea sitchensis (Bong.) Carr. and its relatives. Proceedings of the Royal Society of Edinburgh 93B: 5159.Google Scholar
Frankis, M.P. 1989. Generic inter-relationships in Pinaceae. Notes of the Royal Botanical Gardens of Edinburgh 45: 527548.Google Scholar
Franklin, J.F. & Dyrness, C.T. 1973. Natural Vegetation of Oregon and Washington. Washington, DC: US Government Printing Office.Google Scholar
Fu, C. & Wen, G. 1999. Variation of ecosystems over East Asia in association with seasonal, interannual and decadal monsoon climate variability. Climatic Change 43(2): 477494.CrossRefGoogle Scholar
Gabet, E., Burbank, D., Pratt-Sitaula, B., et al. 2008. Modem erosion rates in the High Himalayas of Nepal. Earth and Planetary Science Letters 267: 482494.CrossRefGoogle Scholar
Gao, J., Zhang, P., Zhang, X. & Liu, Y.H. 2018. Multi-scale analysis on species diversity within a 40-ha old growth temperate forest. Plant Diversity 40: 4549.CrossRefGoogle ScholarPubMed
Geburek, T., Robitschek, K. & Milasowszky, N. 2008. A tree of many faces: why are there different crown types in Norway spruce (Picea abies [L.] Karst.)? Flora 203: 126133.CrossRefGoogle Scholar
Gitterman, R.E., Sher, A.V. & Mathews, J.V. 1982. Comparison of tundra–steppe environments in west and east Beringia: pollen and macrofossil evidence from key sections. Pp 4373 in Hopkins, D.M., Matthews, J., Young, S., et al. (eds), Paleoecology of Beringia. New York: Academic Press.CrossRefGoogle Scholar
Gordon, A.G. 1968. Ecology of Picea chihuahuana Martinez. Ecology 49: 880896.CrossRefGoogle Scholar
Graham, A. 1998. Studies in neotropical paleobotany. XI. Late Tertiary vegetation and environments of southeastern Guatemala: palynofloras from the Mio‐Pliocene Padre Miguel Group and the Pliocene Herreria Formation. American Journal of Botany 85(10): 14091425.CrossRefGoogle Scholar
Graham, A. 1999. Studies in neotropical paleobotany. XIII. An Oligo-Miocene Palynoflora from Simojovel (Chiapas, Mexico). American Journal of Botany 86: 1731.CrossRefGoogle ScholarPubMed
Hahn, D.G. & Manabe, S. 1975. The role of mountains in the south Asian monsoon circulation. Journal of the Atmospheric Sciences 32(8): 15151541.2.0.CO;2>CrossRefGoogle Scholar
Harley, J.L. & Smith, S.E. 1983. Mycorrhizal Symbiosis. London: Academic Press.Google Scholar
Harris, J.A., Hobbs, R.J., Higgs, E. & Aronson, J. 2006. Ecological restoration and global climate change. Restoration Ecology 14(2): 170176.CrossRefGoogle Scholar
Harris, N. 2006. The elevation history of the Tibetan Plateau and its implications for the Asian monsoon. Palaeogeography, Palaeoclimatology, Palaeoecology 241(1): 415.CrossRefGoogle Scholar
Harris, T.M. 1976. The Mesozoic gymnosperms. Review of Palaeobotany and Palynology 21: 119134.CrossRefGoogle Scholar
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Heusser, C.J. 1954. Alpine fir at Taku Glacier, Alaska with notes on its postglacial migration to the territory. Bulletin of the Torrey Botanical Club 81(1): 8386.CrossRefGoogle Scholar
Heusser, C.J. 1965. Climates of the Past: An Introduction to Paleoclimatology. New York: Van Nostrand.Google Scholar
Heusser, L. 1983. Contemporary pollen distribution in coastal California and Oregon. Palynology 7: 1942.CrossRefGoogle Scholar
Hewitt, K., Clague, J.J. & Orwin, J.F. 2008. Legacies of catastrophic rock slope failures in mountain landscape. Earth-Science Reviews 87: 138.CrossRefGoogle Scholar
Hills, L.V. & Ogilvie, R.T. 1970. Picea banksii n.sp., from the Beaufort formation (Tertiary), northwestern Banks Island, Arctic Canada. Canadian Journal of Botany 48: 457464.CrossRefGoogle Scholar
Hodges, K.V., Wobus, C., Ruhl, K., Schildgen, T. & Whipple, K. 2004. Quaternary deformation, river steepening, and heavy precipitation at the front of the Higher Himalayan ranges. Earth and Planetary Science Letters 220: 379389.CrossRefGoogle Scholar
Höfle, C. & Ping, C.L. 1996. Properties and soil development of late-Pleistocene paleosols from Seward Peninsula, northwest Alaska. Geoderma 71: 219243.CrossRefGoogle Scholar
Hopkins, D.M. 1982. Aspects of the paleogeography of Beringia during the late Pleistocene. Pp 328 in Hopkins, D.M., Matthews, J., Young, S., et al. (eds.), Paleoecology of Beringia. New York: Academic Press.CrossRefGoogle Scholar
Hu, F.S., Brubaker, L.B. & Anderson, P.M. 1993. A 12 000 year record of vegetation change and soil development from Wien Lake, central Alaska. Canadian Journal of Botany 71(9): 11331142.CrossRefGoogle Scholar
Hu, F.S., Brubaker, L.B. & Anderson, P.M. 1996. Boreal ecosystem development in the northwestern Alaska range since 11,000 yr BP. Quaternary Research 45(2): 188201.CrossRefGoogle Scholar
Hulten, E. 1937. Outline of the History of Arctic and Boreal Biota during the Quaternary Period. Stockholm: Bok Forlagsaktiebologet Thule.Google Scholar
Hustich, I. 1953. The boreal forest limit of conifers. Arctic 6: 149160.CrossRefGoogle Scholar
Igarashi, Y. 1994. Quaternary forest and climate history of Hokkaido, Japan, from marine sediments. Quaternary Science Reviews 13(4): 335344.CrossRefGoogle Scholar
Iwatsuki, Z. 1972. Distribution of bryophytes common to Japan and the United States. Pp 107137 in Graham, A. (ed.), Floristics and Palaeofloristics of Asia and Eastern North America. Amsterdam: Elsevier.Google Scholar
Iwatsuki, Z. & Sharp, A.J. 1968. The bryogeographical relationships between Eastern Asia and North America, II. Journal of the Hattori Botanical Laboratory 31: 55-58.Google Scholar
Jackson, S.T. & Weng, C. 1999. Late quaternary extinction of a tree species in eastern North America. PNAS 23(24).Google Scholar
Jeong, E.K., Kim, K., Kim, J.H. & Suzuki, M. 2004. Fossil woods from Janggi Group (Early Miocene) in Pohang Basin, Korea. Journal of Plant Research 117: 183189.CrossRefGoogle ScholarPubMed
Jia, G., Peng, P.A., Zhao, Q. & Jian, Z. 2003. Changes in terrestrial ecosystem since 30 Ma in East Asia: stable isotope evidence from black carbon in the South China Sea. Geology 31(12): 10931096.CrossRefGoogle Scholar
Jia, R.J., Wang, J.H. & Zhang, S.G. 2013. Pollen morphology and its phylogenetic implications in the genus Picea. Plant Systematics and Evolution 300: 461473.CrossRefGoogle Scholar
Jiang, H. & Ding, Z. 2008. A 20 Ma pollen record of East-Asian summer monsoon evolution from Guyuan, Ningxia, China. Palaeogeography, Palaeoclimatology, Palaeoecology 265: 3038.CrossRefGoogle Scholar
Jiménez-Moreno, G., Fauquette, S. & Suc, J.-P. 2008. Vegetation, climate and palaeoaltitude reconstructions of the Eastern Alps during the Miocene based on pollen records from Austria, Central Europe. Journal of Biogeography 35: 16381649.CrossRefGoogle Scholar
Jonsson, B.G. 2000. Availability of coarse woody debris in a boreal old-growth Picea abies forest. Journal of Vegetation Science 11: 5156.CrossRefGoogle Scholar
Kan, X.-Z., Wang, S.-S., Ding, X. & Wang, X.-Q. 2007. Structural evolution of nrDNA ITS in Pinaceae and its phylogenetic implications. Molecular Phylogenetics and Evolution 44: 765777.CrossRefGoogle ScholarPubMed
Kane, R.L. & Klein, D.E. 2005. Carbon sequestration. Pp 97112 in Wang, L., Pereira, N. & Hung, Y.-T. (eds), Advanced Air and Noise Pollution Control. New York: Springer.CrossRefGoogle Scholar
Katamura, F., Fukuda, M., Bosikov, N.P., et al. 2006. Thermokarst formation and vegetation dynamics inferred from a palynological study in Central Yakutia, Eastern Siberia, Russia. Arctic Antarctic and Alpine Research 38(4): 561570.CrossRefGoogle Scholar
Klymiuk, A.A. & Stockey, R.A. 2012. A Lower Cretaceous (Valanginian) seed cone provides the earliest fossil record for Picea (Pinaceae). American Journal of Botany 99: 10691082.CrossRefGoogle Scholar
Kolchugina, T.P. & Vinson, T.S. 1993. Carbon sources and sinks in forest biomes of the former Soviet Union. Global Biogeochemical Cycles 7(2): 291304.CrossRefGoogle Scholar
Kotlia, B.S., Sharma, C., Bhalla, M.S., et al. 2000. Palaeoclimatic conditions in the late Pleistocene Wadda lake, eastern Kumaun Himalaya (India). Palaeogeography, Palaeoclimatology, Palaeoecology 162: 105118.CrossRefGoogle Scholar
Krajina, V.J., Klinka, K. & Worrall, J. 1982. Distribution and Ecological Characteristics of Trees and Shrubs in British Columbia. Vancouver: University Of British Columbia, Faculty of Forestry.Google Scholar
Kuan, C.-T. 1981. Fundamental features of the distribution of coniferae in Sichuan. Acta Phytotax. Sinica 14: 407420 (in Chinese).Google Scholar
Kutzbach, J.E., Guetter, P.J., Ruddiman, W.F. & Prell, W.L. 1989. Sensitivity of climate to late Cenozoic uplift in southern Asia and the American west: numerical experiments. Journal of Geophysical Research 94: 18393.CrossRefGoogle Scholar
Kuzmina, S., Elias, S., Matheus, P., Storer, J.E. & Sher, A. 2008. Paleoenvironmental reconstruction of the Last Glacial Maximum, inferred from insect fossils from a tephra buried soil at Tempest Lake, Seward Peninsula, Alaska. Palaeogeography, Palaeoclimatology, Palaeoecology 267: 245255.CrossRefGoogle Scholar
La Motte, R.S. 1935. An Upper Oligocene florule from Vancouver Island. Carnegie Institution of Washington Publications 455: 5156.Google Scholar
Lavé, J. & Avouac, J.P. 2001. Fluvial incision and tectonic uplift across the Himalayas of central Nepal. Journal of Geophysical Research: Solid Earth 106: 2656126591.CrossRefGoogle Scholar
Ledig, F.T., Hodgskiss, P.D., Krutovskii, K.V. Neale, D.B. & Eguiluz-Piedra, T. 2004. Relationships among species of Picea (Pinaceae) of southwestern North America. Systematic Botany 29: 275295.CrossRefGoogle Scholar
Ledig, F.T., Hodgskiss, P.D. & Johnson, D.R. 2005. Genic diversity, genetic structure and mating system of Brewer spruce (Pinaceae), a relict of the Arcto-Tertiary forest. American Journal of Botany 92: 19751986.CrossRefGoogle ScholarPubMed
Leopold, A.S. 1950. Vegetation zones of Mexico. Ecology 31(4): 507518.CrossRefGoogle Scholar
LePage, B.A. 2001. New species of Picea A. Dietrich (Pinaceae) from the middle Eocene of Axel Heiburg Island, Arctic Canada. Botanical Journal of the Linnean Society 135: 137167.CrossRefGoogle Scholar
LePage, B.A. 2003. The evolution, biogeography and palaeoecology of the Pinaceae based on fossil and extant representatives.Acta Hort 615: 2952.CrossRefGoogle Scholar
LePage, B.A. & Basinger, J.F. 1991a. Early Tertiary Larix from the Buchanan Lake Formation, Canadian Arctic Archipelago, and a consideration of the phytogeography of the genus. Geological Survey of Canada Bulletin 403: 6782.Google Scholar
LePage, B.A. & Basinger, J.F. 1991b. A new species of Larix (Pinaceae) from the early Tertiary of Axel Heiberg Island, Arctic Canada. Review of Palaeobotany and Palynology 70: 89111.CrossRefGoogle Scholar
Li, H.-L. 1953. Present distribution and habitats of the conifers and taxads. Evolution 7: 245261.CrossRefGoogle Scholar
Liang, E., Shao, X., Eckstein, D., Huang, L. & Liu, X. 2006. Topography- and species-dependent growth responses of Sabina przewalskii and Picea crassifolia to climate on the northeast Tibetan Plateau. Forest Ecology and Management 236: 268277.CrossRefGoogle Scholar
Lie, M.H., Arup, U., Grytnes, J.A. & Ohlson, M. 2009. The importance of host tree age, size and growth rate as determinants of epiphytic lichen diversity in boreal spruce forests. Biodiversity and Conservation 18: 35793596.CrossRefGoogle Scholar
Lines, R. 1987. Seed origin variation in Sitka spruce. Proceedings of the Royal Society of Edinburgh 93B: 2539.Google Scholar
Liu, T.S. 1982. A new proposal for the classification of the genus Picea. Acta Phytotaxonomica Geobotanica 33: 227244.Google Scholar
Liu, X. & Yin, Z.Y. 2002. Sensitivity of East Asian monsoon climate to the uplift of the Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology 183: 223245.CrossRefGoogle Scholar
Lockwood, J.D., Aleksić, J.M., Zou, J., et al. 2013. A new phylogeny for the genus Picea from plastid, mitochondrial, and nuclear sequences. Molecular Phylogenetics and Evolution 69: 717727.CrossRefGoogle ScholarPubMed
Lopatina, D.A. 2003. Comparative analysis of the Eocene-Miocene micro- and macrofloras of the Eastern Sikhote Alin’. Stratigraphy and Geological Correlation, 11: 7490.Google Scholar
Lozhkin, A.V. & Anderson, P.M. 1995. The last interglaciation in northeast Siberia. Quaternary Research 43(2): 147158.CrossRefGoogle Scholar
Lozhkin, A.V., Anderson, P.M., Vartanyan, S.L., et al. 2001. Late Quaternary paleoenvironments and modern pollen data from Wrangel Island (Northern Chukotka). Quaternary Science Reviews 20: 217233.CrossRefGoogle Scholar
MacGintie, H.D. 1933. The trout creek flora of southeastern Oregon. Carnegie Institution of Washington Publications 416: 2168.Google Scholar
Malcolm, D.C. 1987. Some ecological aspects of Sitka spruce. Proceedings of the Royal Society of Edinburgh 93B: 8592.Google Scholar
Mandryk, C.A., Josenhans, H., Fedje, D.W. & Mathewes, R.W. 2001. Late Quaternary paleoenvironments of Northwestern North America: implications for inland versus coastal migration routes. Quaternary Science Reviews 20: 301314.CrossRefGoogle Scholar
Matthews, J.V. Jr 1982. East Beringia during Late Wisconsin time: a review of the biotic evidence. Pp. 127150 in Hopkins, D., Matthews, J., Young, S. (eds), Paleoecology of Beringia. New York: Academic Press.CrossRefGoogle Scholar
Mehrotra, R., Liu, X.Q., Li, C.S., Wang, Y.F. & Chauhan, M. 2005 Comparison of the Tertiary flora of southwest China and northeast India and its significance in the antiquity of the modern Himalayan flora. Review of Palaeobotany and Palynology 135: 145163.CrossRefGoogle Scholar
Mellert, K.H. & Wald, J. 2014. Nutrient formation and site-related growth potential of Norway spruce (Picea abies (L.) Karst.) in the Bavarian Alps. European Journal of Forest Science 133: 433–451.CrossRefGoogle Scholar
Miller, C.N. 1969. Pinus avonensis, a new species of petrified cones from the Oligocene of Western Montana. American Journal of Botany 56: 972978.CrossRefGoogle Scholar
Miller, C.N. 1970. Picea diettertiana, a new species of petrified cones from the Oligocene of Western Montana. American Journal of Botany 57(5): 579589.CrossRefGoogle Scholar
Miller, C.N. 1972. Pityostrobus palmeri, a new species of petrified conifer cones from the late Cretaceous of New Jersey. American Journal of Botany 59: 352358.CrossRefGoogle Scholar
Miller, C.N. 1974. Pityostrobus hallii, a new species of structurally preserved conifer cones from the late Cretaceous of Maryland. American Journal of Botany 61: 798804.CrossRefGoogle Scholar
Miller, C.N. 1976. Early evolution in the Pinaceae. Review of Palaeobotany and Palynology 21: 101117.CrossRefGoogle Scholar
Miller, C.N. 1982. Current status of Paleozoic and Mesozoic conifers. Review of Palaeobotany and Palynology 37: 99114.CrossRefGoogle Scholar
Miller, C.N. 1988. The origin of modern conifer families. Pp 448486 in Beck, C.B. (ed.), Origin and Evolution of Gymnosperms. New York: Columbia University Press.Google Scholar
Miller, C.N. 1989. A new species of Picea based on silicified seed cones from the Oligocene of Washington. American Journal of Botany 76: 747754.CrossRefGoogle Scholar
Miller, H.G & Miller, J.D. 1987. Nutritional requirements of Sitka spruce. Proceedings of the Royal Society of Edinburgh 93B: 7583.Google Scholar
Mimura, M. & Aitken, S.N. 2007. Adaptive gradients and isolation-by-distance with postglacial migration in Picea sitchensis. Heredity 99: 224232.CrossRefGoogle ScholarPubMed
Mitchell, A.F. 1972. Conifers in the British Isles. A Descriptive Handbook. London: HMSO.Google Scholar
Mizushima, M. 1972. Taxonomic comparison of vascular plants found in western North America and Japan. Pp. 8391 in Graham, A. (ed.), Floristics and Palaeofloristics of Asia and Eastern North America. Amsterdam: Elsevier.Google Scholar
Molina, R. & Trappe, J.M. 1982. Patterns of ectomycorrhizal host specificity and potential among Pacific Northwest conifers and fungi. Forest Science 28(3): 423458.Google Scholar
Molnar, P. & England, P. 1990. Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg?. Nature 346: 2934.CrossRefGoogle Scholar
Molnar, P. & Tapponnier, P. 1975. Cenozoic tectonics of Asia: effects of a continental collision – features of recent continental tectonics in Asia can be interpreted as results of the India–Eurasia collision. Science 189: 419426.CrossRefGoogle ScholarPubMed
Molnar, P., England, P. & Martinod, J. 1993. Mantle dynamics, uplift of the Tibetan Plateau and the Indian monsoon. Reviews in Geophysics 31: 357396.CrossRefGoogle Scholar
Morgenstern, E.K. & Farrar, J.L. 1964. Introgressive hybridisation in red spruce and black spruce. University of Toronto Faculty of Forestry Technical Report 4.Google Scholar
Muhs, D.R., Ager, T.A. & Begét, J.E. 2001. Vegetation and paleoclimate of the last interglacial period, central Alaska. Quaternary Science Reviews 20: 4161.CrossRefGoogle Scholar
Nascimbene, J., Marini, L., Motta, R. & Nimis, P.L. 2009. Influence of tree age, tree size and crown structure on lichen communities in mature Alpine spruce forests. Biodiversity and Conservation 18: 15091522.CrossRefGoogle Scholar
Nascimbene, J., Marini, L. & Ódor, P. 2012. Drivers of lichen species richness at multiple spatial scales in temperate forests. Plant Ecology & Diversity 5(3): 355363.CrossRefGoogle Scholar
Ogilvie, R. & von Rudolff, E. 1968. Chemosystematic studies in the genus Picea (Pinaceae). IV. The introgression of White and Engelmann spruce along the Bow River, Canada. Canadian Journal of Botany 46: 901908.CrossRefGoogle Scholar
Page, C.N. 1979a. The diversity of ferns: an ecological perspective. Pp 1056 in Dyer, A.F. (ed.), The Experimental Biology of Ferns. London: Academic Press.Google Scholar
Page, C.N. 1979b. The experimental biology of ferns. Pp 551579 in Dyer, A.F. (ed.), The Experimental Biology of Ferns. London: Academic Press.Google Scholar
Page, C.N. 1979c. Macaronesian heathlands. Pp 117123 in Specht, R.L. (ed.), Ecosystems of the World No 9A: Heathlands and Related Shrublands. Amsterdam: Elsevier.Google Scholar
Page, C.N. 1988. New and maintained genera in the conifer families Podocarpaceae and Pinaceae. Notes from the Royal Botanic Garden Edinburgh 45: 377395.Google Scholar
Page, C.N. 1997. The ex-situ cultivation of conifers, its limitations and potential role. International Dendrology Society Bulletin 1997: 5153.Google Scholar
Page, C.N. & Hollands, R.C. 1987. The taxonomic and biogeographic position of Sitka spruce. Proceedings of the Royal Society of Edinburgh B 93: 1324.Google Scholar
Page, C.N. & Rushforth, K.D. 1980. Picea farreri, a new temperate conifer from Upper Burma. Notes from the Royal Botanic Garden Edinburgh 38: 129136.Google Scholar
Passey, B.H., Ayliffe, L.K., Kaakinen, A., et al. 2009. Strengthened East Asian summer monsoons during a period of high-latitude warmth? Isotopic evidence from Mio-Pliocene fossil mammals and soil carbonates from northern China. Earth and Planetary Science Letters 277: 443452.CrossRefGoogle Scholar
Passmore, D.G., Harrison, S., Winchester, V., et al. 2008. Late Holocene debris flows and valley floor development in the northern Zailiiskiy Alatau, Tien Shan mountains, Kazakhstan. Arctic Antarctic and Alpine Research 40(3): 548560.CrossRefGoogle Scholar
Penny, J.S. 1947. Studies on conifers of the Magothy flora. American Journal of Botany 34: 281296.CrossRefGoogle Scholar
Péwé, T. L. (ed.) 1997. Eva Interglaciation Forest Bed, Unglaciated East-Central Alaska: Global Warming 125,000 Years Ago. Boulder, CO: Geological Society of America.CrossRefGoogle Scholar
Pisaric, M.F., MacDonald, G.M., Cwynar, L.C. & Velichko, A.A. 2001. Modern pollen and conifer stomates from north-central Siberian lake sediments: their use in interpreting late Quaternary fossil pollen assemblages. Arctic Antarctic and Alpine Research 33(1): 1927.CrossRefGoogle Scholar
Poage, N.J. & Tappeiner, J.C. II 2005. Tree species and size structure of old-growth Douglas-fir forests in central western Oregon, USA. Forest Ecology and Management 204: 329343.CrossRefGoogle Scholar
Potzger, J.E. & Tharp, B.C. 1943. Pollen record of Canadian spruce and fir from a Texas bog. Science 98: 584.CrossRefGoogle Scholar
Prunier, J., Verta, J.-P. & Mackay, J.J. 2016. Conifer genomics and adaptation: at the crossroads of genetic diversity and genome function. New Phytologist 209: 4262.CrossRefGoogle ScholarPubMed
Qian, H., Ricklefs, R.E. 2000. Large-scale processes and the Asian bias in species diversity of temperate plants. Nature 407: 180182.CrossRefGoogle Scholar
Ran, S.H., Wei, X.X. & Wang, X.Q. 2006. Molecular phylogeny and biogeography of Picea (Pinaceae): implications for phylogeographic studies using cytoplasmic cytotypes. Molecular Phylogenetics and Evolution 41: 405419.CrossRefGoogle Scholar
Ravazzi, C. 2002. Late Quaternary history of spruce in southern Europe. Review of Palaeobotany and Palynology 120: 131177.CrossRefGoogle Scholar
Ritchie, J.C. 1984. Past and Present Vegetations of the Far Northwest of Canada. Toronto: University of Toronto Press.CrossRefGoogle Scholar
Ritchie, J.C. & Yarranton, G.A. 1978. The Late-Quaternary history of the boreal forest of central Canada, based on standard pollen stratigraphy and principal components analysis. Journal of Ecology 66: 199212.CrossRefGoogle Scholar
Roche, L. 1969. A genecological study of the genus Picea in British Columbia. New Phytologist 68: 505554.CrossRefGoogle Scholar
Ruddiman, W.F. & Kutzbach, J.E. 1989. Forcing of late Cenozoic northern hemisphere climate by plateau uplift in southern Asia and the American West. Journal of Geophysical Research: Atmospheres 94: 1840918427.CrossRefGoogle Scholar
Rushforth, K. 1986. Mexico’s spruces: rare members of an important genus. Kew Magazine 3: 119124.Google Scholar
Rushforth, K. 2007. Spruces (Picea: Pinaceae) in the Yarlung Tsangpo drainage of southeast Tibet (Xizang, China). International Dendrological Society Yearbook 2007: 4253.Google Scholar
Russell, R.E., Saab, V.A., Dudley, J.G. & Rotella, J.J. 2006. Snag longevity in relation to wildfire and postfire salvage logging. Forest Ecology and Management 232: 179187.CrossRefGoogle Scholar
Sax, K. & Sax, H.J. 1933. Chromosome number and morphology in the conifers. Journal of the Arnold Arboretum 14: 356375.CrossRefGoogle Scholar
Schofield, W.B. 1969. Phytogeography of northwestern north America: bryophytes and vascular plants. Madrono 20: 155207.Google Scholar
Schulze, E.D., Lloyd, J., Kelliher, F.M., et al. 1999. Productivity of forests in the Eurosiberian boreal region and their potential to act as a carbon sink: a synthesis. Global Change Biology 5(6): 703722.CrossRefGoogle Scholar
Sea, D.S. & Whitlock, C. 1995. Postglacial vegetation and climate of the Cascade Range, central Oregon. Quaternary Research 43(3): 370381.CrossRefGoogle Scholar
Sears, P.B. & Clisby, K.H. 1955. Palynology in southern North America: Part IV: Pleistocene climate in Mexico. Geological Society of America Bulletin 66(5): 521530.CrossRefGoogle Scholar
Seeber, L. & Gornitz, V. 1983. River profiles along the Himalayan arc as indicators of active tectonics. Tectonophysics 92(4): 335367.CrossRefGoogle Scholar
Seely, B., Welham, C. & Kimmins, H. 2002. Carbon sequestration in a boreal forest ecosystem: results from the ecosystem simulation model, FORECAST. Forest Ecology and Management 169: 123135.CrossRefGoogle Scholar
Serebryany, L.R., Tishkov, A.A., Solomina, O.N., Malyasova, E.S., & Ilves, E.O. 1984. A reconstruction of the development of vegetation in the High Arctic. Izvestiya Akademii Nauk USSR Geographic Series 6: 7584.Google Scholar
Sharp, A.J. 1972. The possible significance of some exotic disturbances of plants occurring in Japan and far North America. Pp 6164 in Graham, A. (ed.), Floristics and Palaeofloristics of Asia and Eastern North America. Amsterdam: Elsevier.Google Scholar
Shi, Y., Yu, G., Liu, X., Li, B. & Yao, T. 2001. Reconstruction of the 30–40 ka BP enhanced Indian monsoon climate based on geological records from the Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology 169: 6983.CrossRefGoogle Scholar
Shichi, K., Kawamuro, K., Takahara, H., et al. 2007. Climate and vegetation changes around Lake Baikal during the last 350,000 years. Palaeogeography, Palaeoclimatology, Palaeoecology 248: 357375.CrossRefGoogle Scholar
Shilo, N.A., Lozhkin, A.V., Titov, E.E. & Shumilov, Y.u. V. 1983. The Kirgilyakh Mammoth (Paleogeographic Aspect). Moscow: Nauka.Google Scholar
Shreve, F. 1944. Rainfall of northern Mexico. Ecology 25: 105111.CrossRefGoogle Scholar
Shroder, J.F. Jr & Bishop, M.P. 1998. Mass movement in the Himalaya: new insights and research directions. Geomorphology 26: 1335.CrossRefGoogle Scholar
Sillett, S.C., McCune, B., Peck, J.E., Rambo, T.R. & Ruchty, A. 2000. Dispersal limitations of epiphytic lichens result in species dependent on old‐growth forests. Ecological Applications 10(3): 789799.CrossRefGoogle Scholar
Simakova, A.N. 2006. The vegetation of the Russian Plain during the second part of the Late Pleistocene (33–18 ka). Quaternary International 149(1): 110114.CrossRefGoogle Scholar
Siqqurgeirsson, A. & Szmidt, A.E. 1993. Phylogenetic and biogeographic implications of chloroplast DNA variation in Picea. Nordic Journal of Botany 13: 233246.CrossRefGoogle Scholar
Sladkov, A.N. 1967. Introduction to Spore-Pollen Analysis. Moscow: Nauka.Google Scholar
Spicer, R.A., Harris, N.B.W., Widdowson, M., et al. 2003. Constant elevation of southern Tibet over the past 15 million years. Nature 421: 622624.CrossRefGoogle ScholarPubMed
Staplin, F.L., Pocock, S.J. & Jansonius, J. 1967. Relationship among gymnosperrnous pollen. Review of Paleobotany and Palynology 3: 297310.CrossRefGoogle Scholar
Stebich, M., Mingram, J., Han, J. & Liu, J. 2009. Late Pleistocene spread of (cool-) temperate forests in Northeast China and climate changes synchronous with the North Atlantic region. Global and Planetary Change 65: 5670.CrossRefGoogle Scholar
Stockey, R.A. & Wiebe, N.J.P. 2008. Lower Cretaceous conifers from Apple Bay, Vancouver Island: Picea-like leaves, Midoriphyllum piceoides gen. et sp. nov. (Pinaceae). Botany Botanique 86: 649657.CrossRefGoogle Scholar
Sun, X. & Wang, P. 2005. How old is the Asian monsoon system? Palaeobotanical records from China. Palaeogeography, Palaeoclimatology, Palaeoecology 222: 181222.CrossRefGoogle Scholar
Sun, Y., Abbott, R.J., Lu, Z., et al. 2018. Reticulate evolution within a spruce (Piceae) species complex revealed by population genomic analysis. Evolution 72: 26692681.CrossRefGoogle Scholar
Svensson, M., Jansson, P.E., Gustafsson, D., et al. 2008. Bayesian calibration of a model describing carbon, water and heat fluxes for a Swedish boreal forest stand. Ecological Modelling 213: 331344.CrossRefGoogle Scholar
Szeicz, J.M. & MacDonald, G.M. 1995. Recent white spruce dynamics at the subarctic treeline of northwestern Canada. Journal of Ecology 83: 873885.CrossRefGoogle Scholar
Szeicz, J.M. & MacDonald, G.M. 2001. Montane climate and vegetation dynamics in easternmost Beringia during the Late Quaternary. Quaternary Science Reviews 20: 247257.CrossRefGoogle Scholar
Taggart, R.E. & Cross, A.T. 2009. Global greenhouse to icehouse and back again: the origin and future of the boreal forest biome. Global and Planetary Change 65: 115121.CrossRefGoogle Scholar
Takahara, H. & Kitagawa, H. 2000. Vegetation and climate history since the last interglacial in Kurota Lowland, western Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 155: 123134.CrossRefGoogle Scholar
Tapponnier, P., Zhiqin, X., Roger, F., et al. 2001. Oblique stepwise rise and growth of the Tibet Plateau. Science 294: 16711677.CrossRefGoogle ScholarPubMed
Tarasov, P.E., Webb, T. III, Andreev, A.A., et al. 1998. Present‐day and mid‐Holocene biomes reconstructed from pollen and plant macrofossil data from the former Soviet Union and Mongolia. Journal of Biogeography 25(6): 10291053.CrossRefGoogle Scholar
Tatewaki, M. & Igarashi, T. 1971. Forest vegetation in the Teshio and the Nakagawa district experimental forests of Hokkaido University. Research Bulletin of Hokkaido University 28: 1192.Google Scholar
Teoh, S.B. & Rees, H. 1977. B chromosomes in white spruce. Proceedings of the Royal Society of London 198: 325344.Google Scholar
Tomirdiaro, S.V. 1980. Loess-ice Formation in Eastern Siberia during the Late Pleistocene and the Neoholocene. Moscow: Nauka.Google Scholar
Tomirdiaro, S.V. 1982. Evolution of lowland landscapes in northeastern Asia during late Quaternary time. Pp 2937 in Hopkins, D., Matthews, J., Young, S. (eds), Paleoecology of Beringia. New York: Academic Press.CrossRefGoogle Scholar
Trappe, J.M. 1962. Fungus associates of ectotrophic mycorrhizae. The Botanical Review 28(4): 538606.CrossRefGoogle Scholar
Tryon, R. 1969. Taxonomic problems in the geography of North American ferns. Bioscience 19: 790795.CrossRefGoogle Scholar
Tsukada, M. 1985. Map of vegetation during the last glacial maximum in Japan. Quaternary Research 23(3): 369381.CrossRefGoogle Scholar
Tsumura, Y., Yoshimura, K., Tomaru, N. & Ohba, K. 1995. Molecular phylogeny of conifers using RFLP analysis of PCR amplified specific chloroplast genes. Theoretical and Applied Genetics 91: 12221236.CrossRefGoogle ScholarPubMed
Van Alstine, R.E. 1969. Geology and mineral deposits of the Poncha Springs NE quadrangle, Chaffee Country, Colorado. US Geological Survey Professional. Paper 626: 1–52.Google Scholar
Van Pelt, R., O’Keefe, T.C., Latterell, J.J. & Naiman, R.J. 2006. Riparian forest stand development along the Queets river in Olympic National Park, Washington. Ecological Monographs 76(2): 277298.CrossRefGoogle Scholar
Vance, D., Bickle, M., Ivy-Ochs, S. & Kubik, P.W. 2003. Erosion and exhumation in the Himalaya from cosmogenic isotope inventories of river sediments. Earth and Planetary Science Letters 206(3–4): 273288.CrossRefGoogle Scholar
Velenovský, J. 1889. Květena Českého cenomanu [Flora of the Bohemian Cenomanian]. Rozpravy Královské České Společnosti Nauk 7(3): 175.Google Scholar
Walker, D. 1986. Late Pleistocene–Early Holocene vegetational and climatic changes in Yunnan Province, southwest China. Journal of Biogeography 13: 477486.CrossRefGoogle Scholar
Wang, T., Ren, H.B. & Ma, K.P. 2005. Climatic signals in tree ring of Picea schrenkiana along an altitudinal gradient in the central Tianshan Mountains, northwest China. Trees 19: 735741.CrossRefGoogle Scholar
Wang, W.M., Saito, T. & Nakagawa, T. 2001. Palynostratigraphy and climatic implications of Neogene deposits in the Himi area of Toyama Prefecture, Central Japan. Review of Palaeobotany and Palynology 117(4): 281295.CrossRefGoogle Scholar
Wang, X.Q. & Tank, D. & Sang, T. 2000. Phylogeny and divergence times in Pinaceae: evidence from three genomes. Molecular Biology and Evolution 17: 773781.CrossRefGoogle ScholarPubMed
Wang, Y., Sen, O.L. & Wang, B. 2003. A highly resolved regional climate model (IPRC-RegCM) and its simulation of the 1998 severe precipitation event over China. Part I: Model description and verification of simulation. Journal of Climate 16(11): 17211738.2.0.CO;2>CrossRefGoogle Scholar
Waring, R.H. & Franklin, J.F. 1979. Evergreen coniferous forests of the Pacific Northwest. Science 204: 13801386.CrossRefGoogle ScholarPubMed
Warner, B.G., Mathews, R.W. & Clague, J.J. 1982. Ice-free conditions on the Queen Charlotte Islands, British Columbia, at the height of the Late Wisconsin glaciation. Science 218 (4573): 675677.CrossRefGoogle ScholarPubMed
Wasson, R.J., Juyal, N., Jaiswal, M., et al. 2008. The mountain-lowland debate: deforestation and sediment transport in the upper Ganga catchment. Journal of Environmental Management 88(1): 5361.CrossRefGoogle ScholarPubMed
Wasson, R.J., Sundriyal, Y.P., Chaudhary, S., et al. 2013. A 1000-year history of large floods in the Upper Ganga catchment, central Himalaya, India. Quaternary Science Reviews 77: 156166.CrossRefGoogle Scholar
Wetterich, S., Kuzmina, S., Andreev, A.A., et al. 2008. Palaeoenvironmental dynamics inferred from late Quaternary permafrost deposits on Kurungnakh Island, Lena Delta, northeast Siberia, Russia. Quaternary Science Reviews 27: 15231540.CrossRefGoogle Scholar
Wheeler, E.A. & Arnette, C.G. Jr 1994. Identification of Neogene woods from Alaska-Yukon. Quaternary International 22: 91102.CrossRefGoogle Scholar
Whipple, K.X. 2004. Bedrock rivers and the geomorphology of active orogens. Annual Review of Earth and Planetary Sciences 32: 151185.CrossRefGoogle Scholar
Whitlock, C. & Dawson, M.R. 1990. Pollen and vertebrates of the Early Neogene Haughton Formation, Devon Island, Arctic Canada. Arctic 43: 324330.CrossRefGoogle Scholar
Williams, C.J., Mendell, E., Murphy, J., et al. 2008 . Paleoenvironmental reconstruction of a Middle Miocene forest from the western Canadian Arctic. Palaeogeography, Palaeoclimatology, Palaeoecology 261: 160176.CrossRefGoogle Scholar
Willyard, A., Syring, J., Gernandt, D.S., Liston, A. & Cronn, R. 2007. Fossil calibration of molecular divergence infers a moderate mutation rate and recent radiations for Pinus. Molecular Biology and Evolution 24: 90101.CrossRefGoogle ScholarPubMed
Wilmking, M., Harden, J. & Tape, K. 2006. Effect of tree line advance on carbon storage in NW Alaska. Journal of Geophysical Research: Biogeosciences 111(G2).CrossRefGoogle Scholar
Woillard, G.M. 1978. Grande Pile peat bog: a continuous pollen record for the last 140,000 years. Quaternary Research 9(1): 121.CrossRefGoogle Scholar
Wolfe, J.A. 1969. Neogene floristic and vegetational history of the Pacific Northwest. Madrono 20: 83110.Google Scholar
Wolfe, J.A. 1972. An interpretation of Alaskan Tertiary floras. Pp 201233 in Graham, A. (ed.), Floristics and Paleofloristics of Asia and Eastern North America. Amsterdam: Elsevier.Google Scholar
Wonkka, C.L., Lafon, C.W., Hutton, C.M. & Joslin, A.J. 2013. A CSR classification of tree life history strategies and implications for ice storm damage. Oikos 122(2): 209222.CrossRefGoogle Scholar
Wright, J.W. 1955. Species crossability in spruce in relation to distribution and taxonomy. Forest Science 1: 319349.Google Scholar
Young, R.E. 1972. The Systematics and Areal Distribution of Pelagic Cephalopods from the Seas off Southern California. Washington, DC: US GPO.CrossRefGoogle Scholar
Yurtsev, B.A. 2001. The Pleistocene ‘Tundra-Steppe’ and the productivity paradox: the landscape approach. Quaternary Science Reviews 20: 165174.CrossRefGoogle Scholar
Zagwijn, W.H. 1996. An analysis of Eemian climate in western and central Europe. Quaternary Science Reviews 15: 451469.CrossRefGoogle Scholar
Zazula, G.D., Froese, D.G., Elias, S.A., Kuzmina, S. & Mathewes, R.W. 2007. Arctic ground squirrels of the mammoth-steppe: paleoecology of Late Pleistocene middens (∼ 24 000–29 450 14C yr BP). Yukon Territory Canada Quaternary Science Reviews 26(7–8): 9791003.Google Scholar
Zhang, Z.H. & Wu, X., 1992. Utilizing two Qinghai tree-ring chronologies to reconstruct and analyze local historical precipitation. Quarterly Journal of Applied Meteorology 3: 6169.Google Scholar
Zhao, Y.-X., Luo, J.-R., Li, C.-S. & Yi, T.-M. 2008. Palaeophytochemical constituents from the Miocene-fossil wood of Picea likiangensis in Xun-dian of Yunnan, China. Bulletin of the Korean Chemical Society 29: 16131616.Google Scholar
Zhaoguang, C.A.I. (ed.). 1986. An Atlas of Rangeland and its Main Plant Resources on the Qinghai–Tibet Plateau. Qinghai: Agricultural Publishing House.Google Scholar
Zheng, H., Ouyang, Z., Xu, W., et al. 2008. Variation of carbon storage by different reforestation types in the hilly red soil region of southern China. Forest Ecology and Management 255(3–4): 11131121.CrossRefGoogle Scholar
Zhu, H. & Baker, R.G. 1995. Vegetation and climate of the last glacial–interglacial cycle in southern Illinois, USA. Journal of Paleolimnology 14: 337354.CrossRefGoogle Scholar
Zhu, H.F., Wang, L.L., Shao, X.M. & Fang, X.Q. 2004. Tree-ring width response of Picea schrenkiana to climate change. Acta Geographica Sinica 59: 863870 (in Chinese).Google Scholar
Zhu, J., Sun, L., Li, L., et al. 2013. Population genetic evidence for speciation pattern and gene flow between Picea wilsonii, P. morrisonicola and P. neoveitchii. Annals of Botany 112: 18291844.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Picea
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009262965.006
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Picea
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009262965.006
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Picea
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009262965.006
Available formats
×