Skip to main content Accessibility help
×
Hostname: page-component-599cfd5f84-8nxqw Total loading time: 0 Render date: 2025-01-07T06:00:50.373Z Has data issue: false hasContentIssue false

Chapter 31 - Neocallitropsis

Cupressales: Cupressaceae S.S.

from Part III - Living Arborescent Gymnosperm Genetic Presentations

Published online by Cambridge University Press:  11 November 2024

Christopher N. Page
Affiliation:
University of Exeter
Get access

Summary

Evergreen shrubs or small trees of strongly architectural appearance, with foliage superficially of tropical Araucaria-like form but regularly ranked along the shoots into eight-ranked arrays, combined with an open, markedly candelabriform, overall tree habit.

Type
Chapter
Information
Evolution of the Arborescent Gymnosperms
Pattern, Process and Diversity
, pp. 537 - 554
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitchison, J.C., Clarke, G.L., Meffre, S. & Cluzel, D. 1995. Eocene arc-continent collision in New Caledonia and implications for regional Southwest Pacific tectonic evolution. Geology 23: 161164.2.3.CO;2>CrossRefGoogle Scholar
Aubreville, A. 1964. Les reliques de la flore des conifers tropicaux en Australie et en Nouvelle-Caledonie. Adansonia Ser 2 4: 481492.Google Scholar
Baker, A.J.M. 2004. Research priorities for conservation of metallophyte biodiversity and its sustainable uses in ecological restoration and site. Restoration Ecology 12: 106124.Google Scholar
Baldwin, S.L., Rawling, T. & Fitzgerald, P.G. 2007. Thermochronology of the New Caledonian high-pressure terrane: implications for middle Tertiary plate boundary processes in the southwest Pacific. Geological Society of America Special Papers 419: 117134.Google Scholar
Bartish, I.V., Swenson, U., Munzinger, J. & Anderberg, A.A. 2005. Phylogenetic relationships among New Caledonian Sapotaceae (Ericales): molecular evidence for generic polyphyly and repeat dispersal. American Journal of Botany 92: 667673.CrossRefGoogle Scholar
Batianoff, G.N. & Singh, S. 2001. Central Queensland serpentine landforms, plant ecology and endemism. South African Journal of Science 97: 495499.Google Scholar
Batianoff, G.N., Specht, R.L. & Reeves, R.D. 1991. The serpentine flora of the humid tropics of eastern Australia. Proceedings of the Royal Society of Queensland 101: 137157.Google Scholar
Batianoff, G.N., Reeves, R.D. & Specht, R.L. 1997. The effects of serpentine on vegetation structure, species diversity and endemism in Central Queensland. Pp 147154 in Jaffré, T., Reeves, R.D. & Bacquer, T. (eds.), The Ecology of Ultramafic and Metalliferous Areas. Noumea: Centre ORSTOM.Google Scholar
Batianoff, G.N., Neldner, V.J. & Singh, S. 2000. Vascular plant census and floristic analysis of serpentine landscapes in Central Queensland. Proceedings of the Royal Society of Queensland 109: 130.Google Scholar
Birrel, K.S. & Wright, A.C. 1945. A serpentine soil in New Caledonia. New Zealand Journal of Science and Technology 27: 7276.Google Scholar
Brady, K.U., Kruckeberg, A.R., & Bradshaw, H.D. Jr. 2005. Evolutionary ecology of plant adaptation to serpentine soils. Annual Review of Ecology, Evolution and Systematics 36: 243266.CrossRefGoogle Scholar
Branco, S. & Ree, R.H. 2010. Serpentine soils do not limit mycorrhizal fungal diversity. PLoS One 5: 17.CrossRefGoogle Scholar
Brothers, R.N. & Blake, M.C. 1973. Tertiary plate tectonics and high-pressure metamorphism in New Caledonia. Tectonophysics 17: 337358.CrossRefGoogle Scholar
Chardon, D. & Chevillotte, V. 2006. Morphotectonic evolution of the New Caledonia ridge (Pacific Southwest) from post-obduction tectonosedimentary record. Tectonophysics 420: 473491.CrossRefGoogle Scholar
Chevillotte, V., Cardon, D., Beauvaia, A., Maurizot, P. & Colin, F. 2006. Long-term tropical morphogenesis of New Caledonia (southwest Pacific): importance of positive epeirogeny and climate change. Geomorphology 81: 361375.CrossRefGoogle Scholar
Cluzel, D., Aitchison, J.C. & Picard, C. 2001. Tectonic accretion and underplating of mafic terranes in the late Eocene intraocean forearc of New Caledonia (southwest Pacific): geodynamic implications. Tectonophysics 340: 2359.CrossRefGoogle Scholar
Cluzel, D., Bosch, D., Paquette, J.-L., et al. 2005. Late Oligocene post-emplacement granitoids of New Caledonia: a case for reactivation of subduction and slab breakoff. The Island Arc 14: 254271.CrossRefGoogle Scholar
Cluzel, D., Meffre, S., Maurizot, P. & Crawford, A. 2006. Earliest Eocene (53 Ma) convergence in the Southwest Pacific: evidence from pre-obduction dikes in the ophiolite of New Caledonia. Terra Nova 18: 395402.CrossRefGoogle Scholar
Cluzel, D., Adams, C.J. & Meffre, S. 2010. Discovery of Early Cretaceous rocks in New Caledonia: new geochemical and U–Pb zircon age constraints on the transition from subduction to marginal break-up in the southwest Pacific. Journal of Geology 118: 381397.CrossRefGoogle Scholar
Collot, J., Geli, L., Lafoy, Y., et al. 2008. Tectonic history of northern New Caledonia Basin from deep offshore seismic reflection: relation to late Eocene obduction in New Caledonia southwest. Tectonics 27: TC6006.CrossRefGoogle Scholar
Compton, R.H. 1922. A systematic account of the plants collected in New Caledonia and Isle of Pines. Part II. Botanical Journal of the Linnean Society 45: 421434.CrossRefGoogle Scholar
Croizat, L. 1964. Panbiogeography: Space, Time and Form – The Biological Synthesis. Caracas: Self-published.Google Scholar
De Laubenfels, D.J. 1972. Gymnospermes. Pp 1167 in Aubréville, A. & Leroy, J.F. (eds.), Flore de la Nouvele-Calédonie et Dépendances. Paris: Museum National D’Histoire Naturelle, Laboratoire de Phanerogamie.Google Scholar
Dubois, J., Launay, J. & Recy, J. 1974. Uplift movements in New Caledonia–Loyalty Islands area and their plate tectonics interpretation. Tectonophysics 24: 133150.CrossRefGoogle Scholar
Eissen, J.-P., Crawford, A.J., Cotton, J., et al. 1998. Geochemistry and tectonic significance of basalts in the Poya Terane, New Caledonia. Tectonophysics 284: 203219.CrossRefGoogle Scholar
Enright, N.J., Rigg, L. & Jaffré, T. 2001. Environmental controls on species composition along a (maquiis) shrubland to forest gradient in ultramafics at Mt Do, New Caledonia. South African Journal of Science 97: 573580.Google Scholar
Falcy, M.R. & Estades, C. 2007. Effectiveness of corridors relative to enlargement of habitat patches. Conservation Biology 21: 13411346.CrossRefGoogle ScholarPubMed
Farjon, A. 2005. A Monograph of Cupressaceae and Sciadopitys. Kew: Royal Botanic Gardens.Google Scholar
Farjon, A. & Ortiz García, S. 2005. The early development of ovuliferous cones in Cupressaceae s.lat: a survey of the genera. Pp 2746 in Farjon, A. (ed.), A Monograph of Cupressaceae and Sciadopitys. Kew: Royal Botanic Gardens.Google Scholar
Farjon, A. & Page, C.N. (eds.). 1999. Conifers: Status Survey and Conifer Action Plan. IUCN/SSC Conifer Specialist Group Report. Gland: IUCN.Google Scholar
Farjon, A., Page, C.N. & Schellevis, N. 1993. A preliminary world list of threatened conifer taxa. Biodiversity and Conservation 2: 304326.Google Scholar
Gadek, P.A. & Quinn, C.J. 1985. Biflavones of the subfamily Cupressoideae, Cupressaceae. Phytochemistry 24: 267272.CrossRefGoogle Scholar
Gadek, P.A., Alpers, D.L., Heslewood, M.M. & Quinn, C.J. 2000. Relationships within Cupressaceae sensu lato: a combined morphological and molecular approach. American Journal of Botany 87: 10441057.CrossRefGoogle Scholar
Grandcolas, P., Murienne, J., Robillard, T., et al. 2008. New Caledonia: a very old Darwinian island? Philosophical Transactions of the Royal Society B 363: 33093317.CrossRefGoogle ScholarPubMed
Guillaumin, A. 1911. Catalogue des plantes phanerogames de la Nouvelle-Caledonia et Dependences. Annales du Muśee colonial de Marseille 19: 64.Google Scholar
Guillaumin, A. 1948. Flore de la Nouvelle-Caledonie. Paris.Google Scholar
Guillon, J.H. 1969. Donnees nouvelles sur la composition et la structure du grand massif peridotitique du Sud de la Nouvelle-Caledonia. Cahiers ORSTOM, series Geolologique 1: 725.Google Scholar
Heads, M. 2008. Panbiogeography of New Caledonia, southwest Pacific: basal angiosperms on basement terranes, ultramafic endemics inherited from volcanic island arcs, and old taxa endemic to young islands. Journal of Biogeography 35: 21532175.CrossRefGoogle Scholar
Heads, M. 2010. Biogeographical affinities of the New Caledonian biota: a puzzle with 24 pieces. Journal of Biogeography 37: 11791201.CrossRefGoogle Scholar
Honnay, O. & Jacquemyn, H. 2006. Susceptibility of common and rare plant species to the genetic consequences of habitat fragmentation. Conservation Biology 21: 823831.CrossRefGoogle Scholar
Hope, G.S. & Pask, J. 1998. Tropical vegetational change in the late Pleistocene of New Caledonia. Palaeogeography, Palaeoclimatology, Palaeoecology 142: 121.CrossRefGoogle Scholar
Jaffré, T. 1980. Etudes ecologique du peuplement vegetal des sols derives de roches ultrabasiques en Nouvelle-Caledonie. Trav. et Doc. ORSTOM, Paris no 124: 1274.Google Scholar
Jaffré, T. 1992. Floristic and ecological diversity of the vegetation on ultramafic rocks in New Caledonia. Pp 101107 in Baker, A.J.M. (ed.), The Vegetation of Ultramafic (Serpentine) Soils. Andover: Intercept Publishing.Google Scholar
Jaffré, T. 1995. Distribution and ecology of the conifers of New Caledonia. Pp 171196 in Enright, N.J. & Hill, R.S. (eds.), Ecology of the Southern Conifers. Carlton, VIC: Melbourne University Press.Google Scholar
Jaffré, T. & Latham, M. 1974. Contribution a l’etude des relations sol-vegetation sur massif de roches ultrabasiques de la Cote Ouest de la Nouvelle-Caledonie: Le Boulinda. Adansonia, ser. 2 14: 311336.CrossRefGoogle Scholar
Jaffré, T. & Veillon, J.-M. 1990. Etudes floristique et structurale de deux forets denses humides sur roches ultrabasiques en Nouvelle-Caledonie. Adansonia 3: 243272.Google Scholar
Jaffré, T., Latham, M. & Schmid, M. 1977. Aspect’s de l’influence de l’extraction du mineral de nickel sur la vegetation et les sols en Nouvelle-Caledonia. Cahiers ORSTOM Serie Biologique 12: 307321.Google Scholar
Jaffré, T., Morat, P.H., Veillon, J.-M. & Mackee, H.S. 1987a. Changements dans la vegetation de la Nouvelle Caledonia au cours du Tertaire: la vegetation et la flore des roches ultrabasiques. Adansonia 4: 365391.Google Scholar
Jaffré, T., Veillon, J.M. & Cherrier, J.F. 1987b. Sur la présence de deux Cupressaceae Neocallitropsis pancheri (Carr.) Laubenf. et Libocedrus austrocaledonica Brongn. et Gris dans le massif du Paéoua et localités nouvelles de Gymnospermes en Nouvelle-Calédonie. Adansonia 3: 273288.Google Scholar
Jaffré, T., Morat, P.H. & Veillon, J.-M. 1993. Etudes floristique et phytogeographique de la foret sclerophylle de Nouvelle-Caledonie. Adansonia 15: 107147.Google Scholar
Jaffré, T., Bouchet, P. & Veillon, J.M. 1998. Threatened plants of New Caledonia: is the system of protected areas adequate? Biological Conservation 7: 109135.Google Scholar
Jaffré, T., Dagostini, G. & Rigault, F. 2003. Identification, typologie et cartographie des groupments vegetaux de basse altitude du Grand Sus Caledonien et de le vallee de la Tontoua. Noumea: Rapport de convention IRD.Google Scholar
Jaffré, T., Munzinger, J. & Lowry, P.P. II. 2010. Threats to the conifer species found on New Caledonia’s ultramafic massifs and proposals for urgently needed measures to improve their protection. Biodiversity and Conservation 19: 14851502.CrossRefGoogle Scholar
Keppel, G., Buckley, Y.M. & Possingham, H.P. 2010. Drivers of lowland rainforest community assembly, species diversity and forest structure on islands in the tropical South Pacific. Journal of Ecology 98: 8795.CrossRefGoogle Scholar
Kettle, C.J., Hollingsworth, P.M., Jaffré, T., Moran, B., & Ennos, A. 2007. Identifying the early genetic consequences of habitat degradation in a highly threatened tropical conifer, Araucaria nemorosa Laubenfels. Molecular Ecology 16: 35813591.CrossRefGoogle Scholar
Koppers, A.A.P., Staudigel, H. & Duncan, R.A. 2003. High resolution 40Ar/39Ar dating of the oldest oceanic basement basalts in the western Pacific basin. Geochemistry, Geophysics and Geosystems 4: 8914.CrossRefGoogle Scholar
Ladiges, P.Y. 1998. Biogeography after Burbidge. Australian Systematic Botany 11: 231242.CrossRefGoogle Scholar
Ladiges, P.Y. & Cantrill, D. 2007. New Caledonia–Australia connections: biogeographic patterns and geology. Australian Systematic Botany 20: 383389.CrossRefGoogle Scholar
Lagabrielle, Y., Maurizot, P., Lafoy, Y., et al. 2005. Neogene–Quaternary extensional tectonics in southern New Caledonia (SW Pacific): insights from onshore fault analysis and offshore seismic data. Tectonophysics 403: 128.CrossRefGoogle Scholar
Lande, R. 1993. Risks of population extinction from demographic and environmental stochasticity and random catastrophes. American Naturalist 142: 911927.CrossRefGoogle ScholarPubMed
Lowry, P.P. II. 1998. Diversity, endemism and extinction in the flora of New Caledonia: a review. Pp 181206 in Peng, C.-I. & Lowry, P.P. II (eds.), Rare, Threatened and Endangered Floras of Asia and the Pacific. Taipei: Academica Sinica.Google Scholar
Lowry, P.P. II, Munzinger, J., Bouchet, P., et al. 2004. New Caledonia. Pp 193197 in Mittermeier, R.A. (ed.), Hotspots Revisited: Earth Biologically Richest and Most Threatened Terrestrial Ecosystems. Mexico City: CEMEX.Google Scholar
McCoy, S., Jaffré, T., Rigault, F. & Ash, J.E. 1999. Fire and succession in the ultramafic maquis of New Caledonia. Journal of Biogeography 26: 579594.CrossRefGoogle Scholar
Mittermeier, R.A., Werner, T.B. & Lees, A. 1996. New Caledonia, a conservation imperative for an ancient land. Oryx 30: 104112.CrossRefGoogle Scholar
Morat, Ph. 1993. Our knowledge of the flora of New Caledonia; endemism and diversity in relation to vegetation types and substrates. Biodiversity Letters 1: 7281.CrossRefGoogle Scholar
Morat, Ph., Jaffré, T., Veillon, J.-M. & MacKee, H.S. 1981. Carte de la vegetation de la Nouvelle-Caledonia au 1/1.000.000. Les formations vegetales. Note explicative. Atlas de la Nouvelle-Caledonie. Paris: ORSTOM.Google Scholar
Morat, Ph., Jaffré, T., Veillon, J.-M. & MacKee, H.S. 1986. Affinites floristiques et considerations sur l’origine des maquis miniers de la Nouvelle-Caledonia. Bulletin du Museum Nationale Histoire Naturelle Paris 4B8: 133182.Google Scholar
Morat, Ph., Jaffré, T. & Veillon, J.-M. 1999. Menaces sur les taxons rares de la Nouvelle-Caledonie: Actes du Colloque sur les especes vegetaux manacees de France. Bulletin Societe Botanique du Sud-ost 19: 129144.Google Scholar
Moretti, I. & Turcotte, D.L. 1985. A model for erosion, sedimentation, and flexure with application to New Caledonia. Journal of Geodynamics 3: 155168.CrossRefGoogle Scholar
Mortimer, N., Herzer, R.H., Gans, P.B., et al. 2007. Oligocene–Miocene tectonic evolution of the South Jiji Basin and Northland Plateu, SW Pacific ocean: evidence from petrology and dating of dredged rocks. Marine Geology 237: 124.CrossRefGoogle Scholar
Moseley, M.F. 1943. Contributions to the life history, morphology and phylogeny of Widdringtonia cupressoides. Lloydia 6: 109132.Google Scholar
Murienne, J., Grandcolas, M., Dolors Piulachs, M., et al. 2005. Evolution on a shaky piece of Gondwana: is local endemism recent in New Caledonia ? Cladistics 21: 27.CrossRefGoogle ScholarPubMed
Myers, N. 1988. Threatened biotas: ‘hot spots’ in tropical forests. Environmentalist 3: 187208.CrossRefGoogle Scholar
Myers, N. 1990. The biodiversity challenge: expanded hot-spots analysis. Environmentalist 10: 243256.CrossRefGoogle ScholarPubMed
Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonesca, G.A.B. & Kent, J. 2000. Biodiversity hotspots for conservation priorities. Nature 403: 853858.CrossRefGoogle ScholarPubMed
Nasi, R., Jaffré, T. & Sarrailh, J.M. 2002. Les forets de montagnes de la Nouvelle-Caledonia. Bois Forest Tropical 274: 517.Google Scholar
Neall, V.E. & Trewick, S.A. 2008. The age and origin of the Pacific Islands; a geological overview. Philosophical Transactions of the Royal Society B 363: 32933308.CrossRefGoogle ScholarPubMed
Page, C.N. 1989. The role of Edinburgh Royal Botanic Garden in the international conservation of conifers. International Dendrology Society Yearbook 1989: 112115.Google Scholar
Page, C.N. 1990. Cupressaceae. Pp 302316 in Kubitsky, K. & Green, P.S. (eds.), The Families and Genera of Vascular Plants: I. Pteridophytes and Gymnosperms. Berlin: Springer.Google Scholar
Page, C.N. 1994. The ex-situ conservation of temperate rainforest conifer tree species: a British-based programme. Biodiversity and Conservation 3: 191199.CrossRefGoogle Scholar
Page, C.N. 1997. The ex-situ cultivation of conifers, its limitations and potential role. International Dendrology Society Bulletin 1997: 5153.Google Scholar
Page, C.N. 2002. Ecological strategies in fern evolution: a neopteridological overview. Review of Palaeobotany and Palynology 119: 133.CrossRefGoogle Scholar
Page, C.N. 2003. The conifer flora of New Caledonia: stasis, evolution and survival in an ancient group. Pp 149155 in Mill, R.R. (ed.), Proceedings of the Fourth International Conifer Conference. Conifers for the Future? Brugge: International Society for Horticultural Science.Google Scholar
Page, C.N. 2004. Adaptive ancientness of vascular plants to exploitation of low-nutrient substrates: a neobotanical overview. Pp 445466 in Hemsley, A.R. & Poole, I. (eds.), The Evolution of Plant Physiology: From Whole Plants to Ecosystems. Amsterdam: Elsevier Academic Press.Google Scholar
Paris, J.-P. 1981. Geologie de la Nouvelle Caledonia. Paris: Bureau de Recherches Geologiques et Mineres Memoire 31: 1274.Google Scholar
Pascal, M., Richer de Forges, G., Le Guyader, H. & Simberloff, D. 2008. Mining and other threats to New Caledonia biodiversity hotspot. Conservation Biology 22: 498499.CrossRefGoogle ScholarPubMed
Piggin, J. & Bruhl, J.J. 2010. Phylogeny reconstructions of Callitris Vent (Cupressaceae) and its allies leads to inclusion of Actinostrobos within Callitris. Australian Systematic Botany 23: 6993.CrossRefGoogle Scholar
Pillon, Y., Munzinger, J., Amir, H. & Lebrun, M. 2010. Ultramafic soils and species sorting in the flora of New Caledonia. Journal of Ecology 98: 11081116.CrossRefGoogle Scholar
Proctor, J. 1999. Toxins, nutrient shortages and droughts: the serpentine challenge. Trends in Ecology and Evolution 14: 334335.CrossRefGoogle Scholar
Pye, M.G., Gadek, P.A. & Edwards, K.J. 2003. Divergence, diversity and species of the Australasian Callitris (Cupressaceae) and allied genera: evidence from ITS sequence data. Australian Systematic Botany 16: 505514.CrossRefGoogle Scholar
Raharvelomanana, P., Bianchini, J.-P., Faure, R., Cambon, A. & Azzaro, M. 1996. Two guiane and eudesmane-type sesquiterpenoids from Neocallitropsis pancheri. Phytochemistry 41: 243246.CrossRefGoogle Scholar
Rawling, T.J. & Lister, G.S. 1999. Oscillating modes of orogeny in the Southwest Pacific and the tectonic evolution of New Caledonia. Geological Society of London Special Publications 154: 109127.CrossRefGoogle Scholar
Sarlin, P. 1954. Bois et forets de la Nouvelle-Caledonie. Paris: Virot.Google Scholar
Sarlin, P. 1956. La vegetation canaque. Memoirs du Museum national d’Histoire Naturelle, B7.Google Scholar
Saunders, D.A., Hobs, R.J. & Margules, C.R. 1991. Biological consequences of ecosystem fragmentation: a review. Conservation Biology 5: 1832.CrossRefGoogle Scholar
Saxton, W.T. 1913. Contributions to the life-history of Tetraclinis articulata Masters with some notes on the phylogeny of the Cupressoideae and Callitroideae. Annals of Botany 27: 577-605.CrossRefGoogle Scholar
Schellart, W.P., Lister, G.S. & Toy, V.G. 2006. A Late Cretaceous and Cenozoic reconstruction of the Southwest Pacific region: tectonics controlled by subduction and slab rollback processes. Earth Science Reviews 76: 191233.CrossRefGoogle Scholar
Soltis, P. & Gitzendamner, M.A. 1999. Molecular systematics and the conservation of rare species. Conservation Biology 13: 471483.CrossRefGoogle Scholar
Tanner, E.J.V. & Bellingham, P.J. 2006. Less diverse forest is more resistant to hurricane disturbance: evidence from Montane rainforest in Jamaica. Journal of Ecology 94: 10031010.CrossRefGoogle Scholar
Thomas, P. (with contributions from Munzinger, J., Lowry, P.P. II., Jaffré, T.) 2009. Neocallitropsis pancheri . In IUCN 2010. IUCN Red List of Threatened Species. Version 2010.4. www.iucnredlist.org.Google Scholar
Trescases, J.-J. 1973. Weathering and geochemical behaviour of the elements of ultramafic rocks in New Caledonia. Bureau of Mineral Research, Geology and Geophysics, Canberra 141: 149161.Google Scholar
Trescases, J.-J. 1975. L’evolution geochimique supergene des roches ultrabasiques en zone tropicale. Formation des gisements nickeliferes de Nouvelle-Caledonie. Memoires ORSTOM 78: 1259.Google Scholar
Vandermeer, J., de la Cerda, I.G., Boucher, D., Perfecto, I. & Ruiz, J. 2000. Hurricane disturbance and tropical tree species diversity. Science 290: 788791.CrossRefGoogle Scholar
Veillon, J.-M. 1993. Protection of floristic diversity in New Caledonia. Biodiversity Letters 1: 8891.CrossRefGoogle Scholar
Virot, R. 1956. La vegetation Canaque. Mémoires du Museum national d’histoire naturelle Paris B 7: 1400.Google Scholar
Watt, A. 1999. Conifers of New Caledonia. Pp 4149 in Farjon, A. & Page, C.N. (eds.), Conifers: Status Survey and Conifer Action Plan. Gland: IUCN.Google Scholar
Webb, L.J. 1958. Cyclones as an ecological factor in tropical lowland rainforest, North Queensland. Australian Journal of Botany 6: 220230.CrossRefGoogle Scholar
Whiting, S.N., Reeves, R.D., Richards, D., et al. 2004. Research priorities for conservation of metallophyte diversity and their potential for restoration and site remediation. Restoration Ecology 12: 106116.CrossRefGoogle Scholar
Wilson, E.O. 1992. The Diversity of Life. Cambridge, MA: Harvard University Press.Google Scholar
Young, A. & Boyle, T. 2000. Forest fragmentation. Pp 123124 in Young, A. (ed.), Forest Conservation: Genetics. Collingwood: CSIRO Publishing.CrossRefGoogle Scholar
Young, A., Boyle, T. & Brown, T. 1996. The population genetic consequences of habitat fragmentation for plants. Trends in Ecology and Evolution 11: 413418.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Neocallitropsis
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009262965.035
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Neocallitropsis
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009262965.035
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Neocallitropsis
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009262965.035
Available formats
×