Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-18T03:32:48.908Z Has data issue: false hasContentIssue false

Part III - Living Arborescent Gymnosperm Genetic Presentations

Published online by Cambridge University Press:  11 November 2024

Christopher N. Page
Affiliation:
University of Exeter
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Evolution of the Arborescent Gymnosperms
Pattern, Process and Diversity
, pp. 15 - 616
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Allnutt, T.R., Newton, A., Lara, A., et al. 2002. Genetic variation in Fitzroya cupressoides (alerce), a threatened South American conifer. Molecular Ecology 8: 975987.CrossRefGoogle Scholar
Armesto, J.J., Villagran, C., Aravena, C., et al. 1995. Conifer forests of the Chilean Coastal Range. Pp 156170 in Enright, N.J. & Hill, R.S. (eds.), Ecology of the Southern Conifers. Carlton, VIC: Melbourne University Press.Google Scholar
Barker, P.F. & Burrell, J. 1977. The opening of Drake passage. Marine Geology 25(1–3): 1534.CrossRefGoogle Scholar
Battles, J.J., Armesto, J.J., Vann, D.R., et al. 2002. Vegetation composition, structure and biomass of two unpolluted watersheds in the Cordillera de Piuchue, Chiloé Island, Chile. Plant Ecology 158: 519.CrossRefGoogle Scholar
Berry, E.W. 1928. Tertiary fossil plants from the Argentine Republic. Proceedings of the U.S. National Museum 73: 127.Google Scholar
Beu, A.G., Griffin, M. & Maxwell, P.A. 1997. Opening of Drake Passage gateway and Late Miocene to Pleistocene cooling reflected in Southern Ocean molluscan dispersal: evidence from New Zealand and Argentina. Tectonophysics 281: 8397.CrossRefGoogle Scholar
Bodnar, J. & Escapa, I.H. 2016. Towards a whole plant reconstruction of Austrohamia (Cupressaceae): new fossil wood from the Lower Jurassic of Argentina. Reviews of Palaeobotany and Palynology 234: 181197.CrossRefGoogle Scholar
Boninsegna, J.A. & Holmes, R.L. 1985. Fitzroya cupressoides yields a 1534-year long South American chronology. Tree Ring Research 45: 3742.Google Scholar
Burbidge, N.T. 1960. The phytogeography of the Australian region. Australian Journal of Botany 8: 57212.CrossRefGoogle Scholar
Cunningham, W.D., Dalziel, I.W.D., Lee, T.Y. & Lawver, L.A. 1995. Southernmost South America–Antarctic Peninsula relative plate motions since 84 Ma: implications for the tectonic evolution of the Scotia Arc region. Journal of Geophysical Research – Solid Earth 100: 82578266.CrossRefGoogle Scholar
Dettmann, M.E. 1989. Antarctic: Cretaceous cradle of austral temperate rainforests ? Pp 89105 in Crane, J.A. (ed.) Origins and Evolution of the Antarctic Biota. London: Geological Society of London.Google Scholar
Dettmann, M.E. & Jarzen, D.M. 1990. The Antarctic/Australasian rift valley: Late Cretaceous cradle of northeastern Australasian relicts? Review of Palaeobotany and Palynology 65: 131144.CrossRefGoogle Scholar
Devall, M.S., Parresol, B.R. & Armesto, J.J. 1998. Dendroecological analysis of a Fitzroya cupressoides and a Nothofagus nitida stand in the Cordillera Pelada, Chile. Forest Ecology and Management 108: 135145.CrossRefGoogle Scholar
DiesterHass, L. & Zahn, R. 1996. Eocene-Oligocene transition in the Southern Ocean: history of water mass circulation and biological productivity. Geology 24: 163166.2.3.CO;2>CrossRefGoogle Scholar
Dingle, R.V. & Lavelle, M. 1998. Late Cretaceous Cenozoic climatic variations of the northern Antarctic Peninsula: new geochemical evidence and review. Palaeogeography, Paleoclimatology, Palaeoecology 141: 215232.CrossRefGoogle Scholar
Dong, C., Wang, Y.-D., Yang, X.-J. & Sun, B.-N. 2018. Whole plant reconstruction and updated phylogeny of Austrohamia acanthobracteata (Cupressaceae) from the Middle Jurassic of northwest China. International Journal of Plant Sciences 179: 640652.CrossRefGoogle Scholar
Donoso, C., Cortes, M. & Soto, L. 1980. Antecedentes sobre semillas y germinacion de Alerce, Ciprés de las Guaitecas, Ciprés de la Cordillera y Tineo. Bosque 3: 96100.CrossRefGoogle Scholar
Donoso, C., Grez, R. & Sandoval, V. 1990. Caracterización del tipo forestal alerce. Bosque 11: 2134.CrossRefGoogle Scholar
Donoso, C., Cortes, M. & Escobar, B. 1993. Efecto del árbol semillero y la época de cosecha de semillas en la capacidad germinativa en vivero de Fitzroya cupressoides. Bosque 14: 6371.CrossRefGoogle Scholar
Doyle, J. & Saxton, W.I. 1933. Contribution ot the life-history of Fitzroya. Proceedings of the Royal Irish Academy B41: 191217.Google Scholar
Escapa, I., Cuneo, N.R. & Axsmith, B. 2008. A new genus of Cupressaceae (sensu lato) from the Jurassic of Patagonia: implications for conifer megasporangiate cone homologies. Review of Palaeobotany and Palynology 151: 110122.CrossRefGoogle Scholar
Exon, N.F., Berry, R.F., Crawford, A.J. & Hill, P.J. 1997. Geological evolution of the east Tasman Plateau, a continental fragment southeast of Tasmania. Australian Journal of Earth Sciences 44: 597608.CrossRefGoogle Scholar
Farjon, A. & Page, C.N. (eds) 1999. Conifers: Status Survey and Conifer Action Plan. IUCN/SSC Conifer Specialist Group Report. Gland: International Union for the Conservation of Nature.Google Scholar
Florin, R. 1940. The Tertiary fossil conifers of southern Chile and their phytogeographical significance. K. Svenska Vetenskaps Akademie Handl. 19(2): 1107.Google Scholar
Fraver, S., González, M.E., Silla, F., Lara, A & Gardner, M. 1999. Composition and structure of remnant Fitzroya cupressoides forests of Southern Chile’s central depression. Journal of the Torrey Botanical Society 126: 4957.CrossRefGoogle Scholar
Frenguelli, J. 1949a. Los estratos con ‘Estheria’ en el Chubut. Revista de la Asociación Geológica Argentina 4: 1124.Google Scholar
Frenguelli, J. 1949b. Adenda a la flora del Gondwana Superior en la Argentina.I. ‘Palissya conferta’ Feist. y Palissya Jabalpurensis Feist. En el Jurásico Superior del Chubut, Patagonia. Physis 20: 139146.Google Scholar
Gardner, M.F. & Lara, A. 2003. The conifers of Chile: an overview of their distribution and ecology. Pp 165170 in Mill, R.R. (ed.). Conifers for the Future? Proceedings of the Fourth International Conifer Conference. Wye: Acta Horticulturae.Google Scholar
Gardner, M.F., Thomas, P., Lara, A. & Escobar, B. 1999. Fitzroya cupressoides. Curtis’s Botanical Magazine 16: 229240.CrossRefGoogle Scholar
Godoy, R., Carillo, R., Hildebrand-Vogel, R. & Vogel, A. 1994. The importance of mycorrhizae in the Fitzroya cupressoides forests of southern Chile. Verhandlungen – Gesellschaft fur Ökologie 23: 135141.Google Scholar
Grosfeld, J. & Barthelemy, D. 2001. Dioecy in Fitzroya cupressoides (Molina) I.M.Johnst. and Pilgerodendron uviferum (D.Don) Florin (Cupressaceae). Comptes Rendus de l’Academie des Sciences, ser III Life Science 324: 245250.Google Scholar
Gutiérrez, A.G., Armest, J.J. & Aravena, J.C. 2004. Disturbance and regeneration dynamics of an old-growth North Patagonian rain forest in Chiloé Island, Chile. Journal of Ecology 92: 598608.CrossRefGoogle Scholar
Hair, J.B. 1968. The chromosomes of the Cupressaceae. 1. Tetraclineae and Actinostrobeae (Callitroideae). New Zealand Journal of Botany 6: 277284.CrossRefGoogle Scholar
Heine, C., Muller, R.D. & Steinberger, B. 2010. Integrating deep earth dynamics in paleogeographic reconstructions of Australia. Tectonophysics 483: 135150.CrossRefGoogle Scholar
Heusser, C.J. 1966. Late-Pleistocene pollen diagrams from the Province of Llanquihue, southern Chile. Proceedings of the American Philosophical Society 110: 269305.Google Scholar
Heusser, C.J. 1982. Palynology of cushion bogs of the Cordillera Pelada, Province of Valdivia, Chile. Quaternary Research 17: 7192.CrossRefGoogle Scholar
Heusser, C.J. 1990. Ice age vegetation and climate of sub-topical Chile. Palaeogeography, Palaeoclimatology, Palaeoclimatology 80: 107127.CrossRefGoogle Scholar
Hill, R.S. & Brodribb, T.J. 1999. Southern conifers in time and space. Australian Journal of Botany 47: 639696.CrossRefGoogle Scholar
Hill, R.S. & Paull, R. 2003. Fitzroya (Cupressaceae) macrofossils from Cenozoic sediments in Tasmania, Australia. Review of Palaeobotany and Palynology 126: 145152.CrossRefGoogle Scholar
Hill, R.S. & Scriven, L.J. 1995. The angiosperm-dominated woody vegetation of Antarctica: a review. Review of Palaeobotany and Palynology 86: 175198.CrossRefGoogle Scholar
Hill, R.S. & Whang, S.S. 1996. A new species of Fitzroya (Cupressaceae) from Oligocene sediments in north-western Tasmania. Australian Systematic Botany 9: 867875.CrossRefGoogle Scholar
Jordan, G.J. & Hill, R.S. 2002. Cenozoic plant macrofossil sites of Tasmania. Papers and Proceedings of the Royal Society of Tasmania 136: 127139.CrossRefGoogle Scholar
Jovane, L., Coccioni, R., Marsili, A. & Acton, G. 2009. Late Eocene Earth: Hothouse icehouse and impacts. Geological Society of America Special Papers 452: 149168.Google Scholar
Konar, R.M. 1962. Investigations on the development of the male cones in Fitzroya cupressoides (Mol.) Johnst. and Pilgerodendron uviferum (Dom.) Flor. Phytomorphology 12: 191195.Google Scholar
Lanyon, R., Varne, R. & Crawford, A.J. 1993. Tasmanian Tertiary basalts, the Balleny Plume, and the opening of the Tasman Sea (southwest Pacific Ocean) Geology 21: 555558.2.3.CO;2>CrossRefGoogle Scholar
Lara, A. 1991a. The dynamics and disturbance regimes of Fitzroya cupressoides forests in the South-Central Andes of Chile. PhD Thesis, University of Colorado, Boulder.Google Scholar
Lara, A. 1991b. A Strategy for the Conservation of Alerce (Fitzroya cupressoides) Forests in Chile. Gland: WWF.Google Scholar
Lara, A. & Villalba, R. 1993. A 3620-year temperature record from Fitzroya cupressoides tree rings in southern South America. Science 260: 11041106.CrossRefGoogle ScholarPubMed
Lara, A., Fraver, S., Aravena, J. & Wolodarsky-Franke, A. 1999. Fire and the dynamics of Fitzroya cupressoides (alerce) forests of Chile’s Cordillera Pelada. Ecoscience 6: 100109.CrossRefGoogle Scholar
Lara, A., Gardner, M.F. & Vergara, R. 2003. The use and conservation of Fitzroya cupressoides (Alerce) forests in Chile. Acta Horticultura 615: 381386.CrossRefGoogle Scholar
Lawver, L.A. & Gahagan, L.M. 2003. Evolution of Cenozoic seaways in the circum-Antarctic region. Palaeogeography, Palaeoclimatology, Palaeoecology 198: 1137.CrossRefGoogle Scholar
Lusk, C.H. & Matus, F. 2000. Juvenile tree growth rates and species-sorting on fine-scale soil fertility gradients in a Chilean temperate rainforest. Journal of Biogeography 27: 10111020.CrossRefGoogle Scholar
Lusk, C.H., Contreras, O. & Figueroa, J. 1997. Growth, biomass allocation and plant nitrogen concentration in seedlings of Chilean temperate rainforest trees: effects of nutrient availability. Oecologia 109: 4958.CrossRefGoogle Scholar
Mancini, M.V. 1998. Vegetational changes during the Holocene in extra-Andean Patagonia, Santa Cruz province, Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology 138: 207219.CrossRefGoogle Scholar
Mancini, M.V., Prieto, A.R., Paez, M.M. & Schabitz, F. 2008. Late Quaternary vegetation and climate of Patagonia. Developments in Quaternary Sciences 11: 351367.CrossRefGoogle Scholar
Markgraf, V. 1983. Late and Postglacial vegetation and palaeoclimatic changes in subantarctic, temperate and arid environments in Argentina. Palynology 7: 4370.CrossRefGoogle Scholar
Markgraf, V. 1984. Late Pleistocene and Holocene vegetation history of temperate Argentina: Lago Morenito, Bariloche. Dissertationes Botanicae 72: 235254.Google Scholar
Markgraf, V. 1993. Paleoenvironments and paleoclimates in Tierra del Fuego and southernmost Patagonia, South America. Palaeogeography, Palaeoclimatology, Palaeoecology 102: 5368.CrossRefGoogle Scholar
Marks, K.M., Stock, J.M. & Quinn, K.J. 1999. Evolution of the Australian–Antarctic discordance since Miocene time. Journal of Geophysical Research – Solid Earth 104: 49674981.CrossRefGoogle Scholar
McGowran, B., Li, Q.Y., Cann, J., et al. 1997. Biogeographic impact of the Leeuwin Current in southern Australia since the late Middle Eocene. Palaeogeography, Palaeoclimatology, Palaeoecology 136: 1940.CrossRefGoogle Scholar
Molino, J.F. & Sabatier, D. 2001. Tree diversity in tropical rain forests: a validation of the intermediate disturbance hypothesis. Science 294(5547): 17021704.CrossRefGoogle ScholarPubMed
Moore, D.M. 2000. Biogeography: Chile refuges. Nature 408: 532533.CrossRefGoogle ScholarPubMed
Moreno, P.I. 1997. Vegetation and climate near Lago Llanquihue in the Chilean lake district between 200 and 9500, 14Cyr BP. Journal of Quaternary Science 12: 485500.3.0.CO;2-4>CrossRefGoogle Scholar
Moreno, P.I. 2004. Millennial-scale climate variability in northwest Patagonia over the last 15,000 yr. Journal of Quaternary Science 19: 3547.CrossRefGoogle Scholar
Neall, V.E. & Trewick, S.A. 2008. The age and origin of the Pacific Islands: a geological overview. Philosophical Transactions of the Royal Society B 363: 32933308.CrossRefGoogle ScholarPubMed
Neira, E. & Lara, A. 2000. Desarrollo de cronologias de ancho de anolos para alrece (Fitzroya cupressoides) en Contao y Morador (Chile). Revista Chilena de Historia Natural 73: 693703.CrossRefGoogle Scholar
Parker, T. & Donoso, C. 1993. Natural regeneration of Fitzroya cupressoides in Chile and Argentina. Forest Ecology and Management 59: 6385.CrossRefGoogle Scholar
Paull, R. & Hill, R.S. 2010. Early Oligocene Callitris and Fitzroya (Cupressaceae) from Tasmania. American Journal of Botany 97: 809820.CrossRefGoogle ScholarPubMed
Pérez, C.A., Carmona, M.R., Aravena, J.C., Farina, J.M. & Armesto, J.J. 2009. Environmental controls and patterns of cumulative radial increment of evergreen tree species in montane, temperate rainforests of Chiloé Island, southern Chile. Austral Ecology 34: 259271.CrossRefGoogle Scholar
Porter, S.C. 1981. Pleistocene glaciation in the southern Lake District of Chile. Quaternary Research 16: 263292.CrossRefGoogle Scholar
Premoli, A.C., Kitzberger, T. & Veblen, T.T. 2000. Isozyme variation and recent biogeographical history of the long-lived conifer Fitzroya cupressoides. Journal of Biogeography 27: 251260.CrossRefGoogle Scholar
Premoli, A.C., Vergara, R., Souto, C.P., Lara, A. & Newton, A.C. 2003. Lowland valleys shelter the ancient conifer Fitzroya cupressoides in the Central Depression of southern Chile. Journal of the Royal Society of New Zealand 33: 623631.CrossRefGoogle Scholar
Quintanilla-Pérez, V. 2005. Fragilidad del bosque de Fitzroya cupressoides (Mol.) I.M. Johnst., en Andino Patagonico Chileao. Pirineos 160: 6986.CrossRefGoogle Scholar
Rack, F.R. 1993. A geologic perspective on the Miocene evolution of the Antarctic Circumpolar Current system. Tectonophysics 222: 397415.CrossRefGoogle Scholar
Roig, F.A. 1992. Comparative wood anatomy of southern South American Cupressaceae. IAWA Journal 13(2): 151162.CrossRefGoogle Scholar
Roig, F.A. & Villalba, R. 2008. Understanding climate from Patagonian tree rings. Developments in Quaternary Science 11: 411435.CrossRefGoogle Scholar
Rollet, N., Royer, J.Y., Exon, N.F. & Hill, P.J. 1996. The South Tasmanian rise (South Tasmania); a collage of two fragments of eastern Gondwana ? Comptes Rendus de l’Academie des Sciences Ser. Ii, Fasc. A. – Sciences de la Terre et des Planetes 323: 865872.Google Scholar
Royer, J.Y. & Rollet, N. 1997. Plate-tectonic setting of the Tasmanian region. Australian Journal of Earth Sciences 44: 543560.CrossRefGoogle Scholar
Sanhi, B. & Singh, T.C.N. 1931. Notes on the vegetative anatomy and female cones of Fitzroya patagonica (Hook. fils). Journal of the Indian Botanical Society 10: 120.Google Scholar
Scriven, L.J. & Hill, R.S. 1996. Relationships amongst Tasmanian Tertiary Nothofagus (Nothofagaceae) populations. Botanical Journal of the Linnean Society 121: 345364.Google Scholar
Shi, G., Leslie, A.G., Heredneen, P.S., et al. 2014. Whole-plant reconstruction and phylogenetic relationships of Elatides zhoui sp.nov. (Cupressaceae) from the early Cretaceous of Mongolia. International Journal of Plant Science 175: 911930.CrossRefGoogle Scholar
Silla, F., Fraver, S., Lara, A., Allnutt, T.R. & Newton, A. 2002. Regeneration and stand dynamics of Fitzroya cupressoides (Cupressaceae) forests of southern Chile’s Central Depression. Forest Ecology and Management 165: 213224.CrossRefGoogle Scholar
Smith-Ramírez, C. 2007. Regeneration of Fitzroya cupressoides after indigenous and non-indigenous timber harvesting in southern Chilean forests. Forest Ecology and Management 248: 193201.CrossRefGoogle Scholar
Soto, D.P. 2009. New record of Fitzroya cupressoides (Molina) I.M.Johnst. population in its northern limit in Isla del Rey, Chile. Gayana Botánica 66(1):103106.CrossRefGoogle Scholar
Veblen, T. & Ashton, D. 1982. The regeneration status of Fitzroya cupressoides in the Cordillera Pelada, Chile. Biological Conservation 23: 141161.CrossRefGoogle Scholar
Veblen, T., Delmastro, R. & Schlatter, J. 1976. The conservation of Fitzroya cupressiodes and its environment in southern Chile. Environmental Conservation 3: 291301.CrossRefGoogle Scholar
Veblen, T.T., Burns, B.R., Kitzberegeerr, A.L. & Villalba, R. 1995. The ecology of the conifers of southern South America. Pp 120155 in Enright, N.J. & Hill, R.S. (eds.), Ecology of the Southern Conifers. Washington, DC: Smithsonian Institution Press.Google Scholar
Veevers, J.J., Powell, C.M. & Roots, S.R. 1991. Review of sea-floor spreading around Australia. 1. Synthesis of the patterns of spreading. Australian Journal of Earth Sciences 38: 373389.CrossRefGoogle Scholar
Villagran, C. 1988. Expansion of Magellanic moorland during the Late Pleistocene: palynological evidence from northern Isla de Chiloe, Chile. Quaternary Research 29: 294306.CrossRefGoogle Scholar
Villagran, C. 1991. Historia de los bosques templados del sur de Chile durante el Tardiglacial y Postglacial. Revista Chilena de Historia Natural 64: 447460.Google Scholar
Villagran, C. & Armesto, J.J. 1993. Full and late glacial paleoenvironment scenarios for the west coast of southern South America. Pp 195207 in Mooney, H.A., Fuentes, E.R. & Kronberg, B.I. (eds.), Earth System Responses to Global Change: Contrast between North and South America. New York: Academic Press.Google Scholar
Villagran, C. & Hinojosa, L.F. 1997. History of the forests of southern South America. 2. Phytogeographical analysis. Revista Chilena de Historia Natural 70: 241267.Google Scholar
Vuilleumier, F. 1971. Pleistocene changes in the fauna and flora of South America. Science 173: 771780.CrossRefGoogle ScholarPubMed
Waldmann, N., Ariztegui, D., Anselmetti, F.S., Coronato, A. & Austin, J.A. 2010. Geophysical evidence of multiple glacier advances in Lago Fagano (54 degrees S), southernmost Patagonia. Quaternary Science Reviews 29: 11881200.CrossRefGoogle Scholar
Wolodarsky-Franke, A. & Lara, A. 2005. The role of ‘forensic’ dendrochronology in the conservation of alerce (Fitzroya cupressoides (Molina) Johnston) forests in Chile. Dendrochronologia 22: 235240.CrossRefGoogle Scholar
Yang, Z.Y., Ran, J.H. & Wang, X.Q. 2012. Three genome-based phylogeny of Cupressaceae sl: further evidence for the evolution of gymnosperms and Southern Hemisphere biogeography. Molecular Phylogenetics and Evolution 64(3): 452470.CrossRefGoogle ScholarPubMed
Zarin, D.J., Johnson, A.H. & Thomas, S.M. 1998. Soil organic carbon and nutrient status in old-growth montane coniferous watersheds, Isla Chiloé, Chile. Plant and Soil 201: 251258.CrossRefGoogle Scholar
Zhang, J.W., D’Rozario, A., Wang, L.J., Li, Y. & Yao, J.X. 2012. A new species of the extinct genus Austrohamia (Cupressaceae s.l.) in the Daohgou Jurassic flora of China and its phytogeographical implications. Journal of Systematics and Evolution 50: 7282.CrossRefGoogle Scholar

References

Basilici, G., Martinetto, E., Pavia, G. & Violanti, D. 1997. Paleoenvironmental evolution in the Pliocene marine-coastal succession of Val Chiusella (Ivrea, NW Italy). Bollettino della Societa Paleontologica Italiana 36(1–2): 2352.Google Scholar
Boulter, M.C. 1970. Cryptomeria, a significant component of the European Tertiary. Palaeontologische Abhandlingen, Abteilung B; Palaeobotanik 3: 279286.Google Scholar
Brunsfeld, S.J., Soltis, P.S., Soltis, D.E., Gadek, P.A. & Quinn, C.J. 1994. Phylogenetic relationships amongst the genera of the Taxodicaeae and Cupressaceae: evidence from rbcL sequences. Systematic Botany 19: 253262.CrossRefGoogle Scholar
Budantsev, L.Y. 1997. Late Eocene flora of Western Kamchatka. Proceedings of the Botanical Institute Russian Academy of Sciences 19: 3115.Google Scholar
Chadwick, O.A., Derry, L.A., Vitousek, P.M., Huebert, B.J. & Hedin, L.O. 1999. Changing sources of nutrients during four million years of ecosystem development. Nature 397: 491497.CrossRefGoogle Scholar
Chapin, F.S., Walker, L.R., Fastic, C.L. & Sharman, L.C. 1994. Mechanisms of primary succession following deglaciation at Glacier Bay, Alaska. Ecological Monographs 36: 149175.CrossRefGoogle Scholar
Chen, Y., Tang, S.Z., Zhao, M.S. Ni, B.Y. & Chen, X.Y. 2008. Demographic genetic structure of Cryptomeria japonica var sinensis in Taimushan Nature Reserve, China. Journal of Integrative Plant Biology 50: 11711177.CrossRefGoogle ScholarPubMed
Cheng, S.S., Chang, H.T., Wu, C.L. & Chang, S.T. 2007. Anti-termitic activities of essential oils from coniferous trees against Coptotermes formosanus. Bioresource Technology 98(2): 456459.CrossRefGoogle ScholarPubMed
Cheng, Y., Nicholson, G., Tripp, K. & Chaw, S.-M. 2000. Phylogeny of Taxaceae and Cephalotaxaceae genera inferred from chloroplast matK gene and nuclear rDNA ITS region. Molecular Phylogenetics and Evolution 14: 353365.CrossRefGoogle ScholarPubMed
Chiba, S. 1950. Triploids and tetraploids of Sugi (Cryptomeria japonica D. Don) selected in the forest nursery. Bulletin of the Government Forestry Experimental Station 49: 99108 (seen as abstract only).Google Scholar
Chiba, Y. 1998. Simulation of CO2 budget and ecological implications of sugi (Cryptomeria japonica) man-made forests in Japan. Ecological Modelling 111: 269281.CrossRefGoogle Scholar
Chochieva, K.I. 1980. The family of Taxodiaceae in the fossil flora of Georgia. Izvestiya Akademii Nauk Gruzinsloi SSR Seriya Biologicheskaya (Bulletin of the Academy of Sciences of the Georgian Soviet Socialist Republic, ser. Biological) 6(1): 6166 (in Russian, with English summary).Google Scholar
Claus, A. & George, E. 2005. Effect of stand age on fine-root biomass and biomass distribution in three European forest chronosequences. Canadian Journal of Forest Research 35: 16171625.CrossRefGoogle Scholar
Coccolini, G.B.L. Sugi tree stands in ancient Italy. International Geological Congress, Abstracts (2008): 33 (seen as abstract only).Google Scholar
Crews, T. 1995. Changes in soil phosphorous and ecosystem dynamics across a long soil chronosequence in Hawaii. Ecology 111: 407424.Google Scholar
Danjon, F., Barker, D.H., Drexhage, M. & Stokes, A. 2008. Using three-dimensional plant root architecture in models of shallow-slope stability. Annals of Botany 101(8): 12811293.CrossRefGoogle ScholarPubMed
Dark, S.O.S. 1932. Chromosomes of Taxus, Sequoia, Cryptomeria and Thuya. Annals of Botany 46: 965977.CrossRefGoogle Scholar
deFerre, Y. 1952. Additions et corrections ä l’etude du genre Keteleeria. 1. Keteleeria Roulletii Bull Soc Hist Nat Toulouse 87: 340342.Google Scholar
Denk, T., Grimsson, F. & Kvaček, Z. 2005. The Miocene floras of Iceland and their significance for late Cainozoic North Atlantic biogeography. Botanical Journal of the Linnean Society 149: 369417.CrossRefGoogle Scholar
Dietrich, W.E. & Perron, J.T. 2006. The search for a topographic signature of life. Nature 439: 411418.CrossRefGoogle ScholarPubMed
Earle, C. 2007. Cryptomeria japonica. The Gymnosperm database. www.conifers.org/cu/cr/index.htm.Google Scholar
Endlicher, I.L. 1847. Synopsis Coniferarum. Sangalli: Scheitlin & Zollikofer.Google Scholar
Farjon, A. 1998. World Checklist and Bibliography of Conifers. Kew: Royal Botanic Gardens.Google Scholar
Ferguson, D.K. 1967. On the phytogeography of Coniferales in the European Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology 33: 73110.CrossRefGoogle Scholar
Fujiki, T. & Ozawa, T. 2008. Vegetation change in the main island of Okinawa, southern Japan from late Pliocene to early Pleistocene. Quaternary International 184(1): 7583.CrossRefGoogle Scholar
Fujimaki, R., Tateno, R. & Tokuchi, N. 2007. Root development across a chronosequence in a Japanese cedar (Cryptomeria japonica D. Don) plantation. Journal of Forest Research 12(2): 96102.CrossRefGoogle Scholar
Fukuda, M., Lehara, T. & Matsumoto, M. 2003. Carbon stock estimates for sugi and hinoki forests in Japan. Forest Ecology and Management 184: 116.CrossRefGoogle Scholar
Fukushima, K., Tateno, R. & Tokuchi, N. 2011. Nitrogen dynamics during stand development after clear-cutting of Japanese cedar (Cryptomeria japonica) plantations. Journal of Forest Research 16: 394404.CrossRefGoogle Scholar
Genet, M., Stokes, A., Fourcaud, T., Hu, X. & Lu, Y. 2006. Soil fixation by tree roots: changes in root reinforcement parameters with age in Cryptomeria japonica D. Don. plantations. Pp 535542 in Marui, H., Marutani, T., Watanabe, N., et al. (eds.), Interpraevent 2006, Disaster Mitigation of Debris Flows, Slope Failures and Landslides.Tokyo: Universal Academy Press.Google Scholar
Genet, M., Kokutse, N., Stokes, A., et al. 2008. Root reinforcement in plantations of Cryptomeria japonica D. Don: effect of tree age and stand structure on slope stability. Forest Ecology and Management 256(8): 15171526.CrossRefGoogle Scholar
Gota, Y., Kondo, T., Hayashi, E., et al. 2004. Influences of genetic and environmental factors on the concentration of the allergen cry j 1 in sugi (Cryptomeria japonica) pollen. Tree Physiology 24: 409414.CrossRefGoogle Scholar
Gray, D.H. & Sotir, R.D. 1996. Biotechnical and Soil Bioengineering Slope Stabilization. New York: Wiley.Google Scholar
Greenway, D.R. 1987. Vegetation and slope stability. Pp 187230 in Anderson, M.G. & Richards, K.S. (eds.), Slope Stability. New York: Wiley.Google Scholar
Grímsson, F. & Zetter, R. 2011. Combined LM and SEM study of the middle Miocene (Sarmatian) palynoflora from the Lavanttal Basin, Austria: part II. Pinophyta (Cupressaceae, Pinaceae and Sciadopityaceae). Grana 50: 262310.CrossRefGoogle Scholar
Hamaoka, T. 1933. Regeneration of Cryptomeria japonica in natural forest of Yakushima Island. Journal of the Society of Forestry 15: 150162 (in Japanese).Google Scholar
Harris, T.M. 1935 The fossil flora of Scoresby Sound, east Greenland. Pt. 4. Ginkgoales, Coniferales, Lycopodiales and isolated fructifications. Meddel. Grønland 112: 1176.Google Scholar
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Hase, Y. & Hatanaka, K.I. 1984. Pollen stratigraphical study of the Late Cenozoic sediments in Southern Kyushu, Japan. The Quaternary Research (Daiyonki-Kenkyu) 23(1): 120.CrossRefGoogle Scholar
Hayashi, Y. 1960. Taxonomical and Phytogeographical Study of Japanese Conifers. Tokyo: Norin-Shuppan.Google Scholar
Heusser, C.J. 1990. Ice age vegetation and climate of sub-topical Chile. Palaeogeography, Palaeoclimatology and Palaeoecology 80: 107127.CrossRefGoogle Scholar
Hirayama, K. & Sakimoto, M. 2005. Seedling demography and establishment of Cryptomeria japonica in cool-temperate, old-growth, conifer hardwood forest in the snowy region of Japan. Journal of Forest Research 10: 6771.CrossRefGoogle Scholar
Hongo, M. 2009. Middle Pleistocene pollen biostratigraphy in the Osaka sedimentary basin, southwest Japan, with special reference to paleoenvironmental change. Journal of the Geological Society of Japan 115: 6479.Google Scholar
Igarashi, Y. 1994. Quaternary forest and climate history of Hokkaido, Japan, from marine sediments. Quaternary Science Reviews 13(4): 335344.CrossRefGoogle Scholar
Igarashi, Y. & Oba, T. 2006. Fluctuations in the East Asian monsoon over the last 144 ka in the northwest Pacific based on a high-resolution pollen analysis of IMAGES core MD01–2421. Quaternary Science Reviews 25(13–14): 14471459.CrossRefGoogle Scholar
Iwauchi, A. & Hase, Y. 1992. Late Cenozoic vegetation and paleoenvironment of northern and central Kyushu, Japan – part 5. Yoshino area (Middle Pleistocene). Journal Geological Society of Japan 98: 205221.Google Scholar
Jaehnichen, H. 1998. Erstnachweis von Taiwania, Cryptomeria und Liquidambar aus dem Biterfelder und Baltischen Bernstein. Mitteilungen aus dem Museum fuer Naturkunde in Berlin 1: 167178 (seen as abstract only).Google Scholar
Jenny, H. 1980. Soil Genesis with Ecological Perspectives. New York: Springer.Google Scholar
Kado, T., Yoshimaru, H., Tsumura, Y. & Tachoda, H. 2003. DNA variation in a conifer, Cryptomeria japonica (Cupressaceae sensu lato). Genetics 164: 15471559.CrossRefGoogle Scholar
Kado, T., Ushio, Y., Yoshimaru, H., Tsumura, Y. & Tachida, H. 2006. Contrasting patterns of DNA variation in natural populations of closely related conifers, Cryptomeria japonica and Taxodium distichum (Cupressaceae sensu lato). Genes and Genetic Systems 81: 103113.CrossRefGoogle ScholarPubMed
Kamada, M. 2005. Hierarchically structured approach for restoring natural forest: trial in Tokushima Prefecture, Shikoku, Japan. Landscape and Ecological Engineering 1: 6170.CrossRefGoogle Scholar
Kitayama, K. & Mueller-Dombois, D. 1995. Vegetation changes during long-term soil development in the Hawaiian montane rainforest zone. Vegetatio 111: 120.CrossRefGoogle Scholar
Kiyonaga, J. 1990. Pollen analysis of Holocene sediments from lowland along the Kashio River, southwestern part of Yokohama, Japan. The Quaternary Research (Daiyonki-Kenkyu) 29(4): 351360.CrossRefGoogle Scholar
Kobayashi, T., Nakagawa, Y., Tamaki, M., Hiraki, T. & Aikawa, M. 2001. Cloud water deposition to forest canopies of Cryptomeria japonica at Mt. Rokko, Kobe, Japan. Water Air and Soil Pollution 130: 601606.CrossRefGoogle Scholar
Kondo, T. & Kuramoto, N. 2007. Cryptomeria japonica. Pp 211221 in Kole, C. (ed.), Genome Mapping and Molecular Breeding in Plants. Berlin: Springer.Google Scholar
Kondo, T., Hizume, M. & Kubota, R. 1982. Variation of fluorescent chromosome bands of Cryptomeria japonica. Journal of the Japanese Forestry Society 67: 184189.Google Scholar
Kondo, Y., Ipsen, H., Lowenstein, H., Karpas, A. & Hsieh, L. 1997. Comparison of concentrations of Cry j 1 and Cry j 2 in diploid and triploid Japanese cedar (Cryptomeria japonica) pollen extracts. Allergy 52: 455459.CrossRefGoogle ScholarPubMed
Kong, W.S. 1995. The distribution of conifers and taxads in time and space in the Korean Peninsula. Journal of the Korean Geographical Society 30(1): 113.Google Scholar
Kong, W.S. 2000. Vegetational history of the Korean Peninsula. Global Ecology and Biogeography 9(5): 391402.CrossRefGoogle Scholar
Kurata, S. 1965. Notes of Japanese ferns (35). Journal of Geobotany 13: 75.Google Scholar
Kurata, S. 1971. Illustrated Important Forest Trees of Japan. Tokyo: Chikyu Shuppan.Google Scholar
Kuroda, T. & Ozawa, T. 1996. Paleoclimatic and vegetational changes during the Pleistocene and Holocene in the Ryukyu Islands inferred from pollen assemblages. Journal of Geography (Chigaku Zasshi) 105(3): 328342.CrossRefGoogle Scholar
Kusumi, J., Tsumura, Y., Yoshimaru, H. & Tacida, H. 2000. Phylogenetic relationships in Taxodiaceae and Cupressaceae sensu stricto based on matK gene, chiL gene, trnL–trnF IGS region, and trnL intron sequence. American Journal of Botany 87: 14801488.CrossRefGoogle Scholar
Li, C.-X. & Yang, Q. 2003. [Phylogenetic relationships among the genera of Taxodiaceae and Cupressaceae from 28S rDNA sequences]. Yi chuan = Hereditas / Zhongguo yi chuan xue hui bian ji 25: 177–80.Google ScholarPubMed
Li, L. & Hsu, P. 1984. Karyotype analysis in Platycladus orientalis and Fokienia hodginsii. Acta Botanica Yunnanica 9: 447451.Google Scholar
Li, Z., Saito, Y., Matsumoto, E., et al., 2006. Palynological record of climate change during the last deglaciation from the Song Hong (Red River) delta, Vietnam. Palaeogeography, Palaeoclimatology, Palaeoecology 235(4): 406430.CrossRefGoogle Scholar
Liu, T.S. & Su, H.J. 1983. Biosystematic Studies on Taiwania and Numerical Evaluations on the Systematics of Taxodiaceae. Taipei: Taiwan Museum.Google Scholar
Ma, Q.W., Li, C.S. & Li, F.L. 2007a. Epidermal structures of Cryptomeria japonica and implications to the fossil record. Acta Palaeobotanica 47: 281289.Google Scholar
Ma, Q.W., Li, C.S. & Li, F.L. 2007b. Epidermal structures of giant redwood and comparison with those of coast redwood and dawn redwood. Journal of Beijing Forestry University 29: 711 (in Chinese with English abstract).Google Scholar
Machida, H. & Arai, F. 1983. Extensive ash falls in and around the Sea of Japan from large late Quaternary eruptions. Journal of Volcanology and Geothermal Research 18(1–4): 151164.CrossRefGoogle Scholar
Maekawa, F. 1974. Origin and characteristics of Japan’s flora. Pp 3386 in Numa-Ta, N. (ed.), The Flora and Vegetation of Japan. Tokyo: Kodansha.Google Scholar
Martinetto, E. 2001. The role of central Italy as a centre of refuge for thermophilous plants in the late Cenozoic. Acta Palaeobotanica 41(2): 299319.Google Scholar
Masui, J. 1951. Relation between the geology and the growth of Cryptomeria in the Kaneyama district, Yamagata prefecture. Japanese Association of Mineralogists 35: 107116.Google Scholar
Matsushita, M. 1990. Holocene vegetation history of the Matsuzaki Lowland of the Izu Peninsula, central Japan. Japanese Journal of Ecology 40(1): 15.Google Scholar
Mehra, P.N. & Khoshoo, T.N. 1956. Chromosome counts of selected genera of conifers. Journal of Genetics 54: 181185.CrossRefGoogle Scholar
Miller, C.N. 1999. Implications of fossil conifers for the phylogenetic relationships of living families. The Botanical Review 65: 239277.CrossRefGoogle Scholar
Miura, M. & Yamamoto, S.I. 2003. Structure and dynamics of a Castanopsis cuspidata var. sieboldii population in an old-growth, evergreen, broad-leaved forest: the importance of sprout regeneration. Ecological Research 18: 115129.CrossRefGoogle Scholar
Miura, S., Hirai, K. & Yamada, T. 2002. Transport rates of surface materials on steep forested slopes induced by raindrop splash erosion. Journal of Forest Research 7(4): 201211.CrossRefGoogle Scholar
Morford, S.L., Houlton, B.Z. & Dahlgren, R.A. 2011. Increased forest ecosystem carbon and nitrogen storage from nitrogen rich bedrock. Nature 477: 7881.CrossRefGoogle Scholar
Moriguchi, Y., Matsumoto, A., Saito, M., Tsumura, Y. & Taira, H. 2001. DNA analysis of clonal structure of an old-growth, isolated forest of Cryptomeria japonica in a snowy region. Canadian Journal of Forest Research 31: 377383.CrossRefGoogle Scholar
Morita, Y., Yagi, H., Inokuchi, T. & Yamazaki, T. 2002. Vegetation history of the southern Tohoku district, based on pollen analysis of Aranuma in the Shirataka Lakes, Yamagata prefecture. The Quaternary Research (Daiyonki-Kenkyu) 41(5): 375387.CrossRefGoogle Scholar
Murai, S. 1947. Major forestry tree species in the Tohoku region and their varietal problems. Kokudo Saiken Zourin Gijutsu Kouenshu, 1947: 131151.Google Scholar
Muroyama, Y. & Tamai, S. 1986. The population dynamics of sugi seedlings in the natural forest of Ashu. Bulletin Kyoto University Forestry 58: 95103 (in Japanese with English summary).Google Scholar
Nagakura, J., Kaneko, S., Takahashi, M. & Tange, T. 2008. Nitrogen promotes water consumption in seedlings of Cryptomeria japonica but not in Chamaecyparis obtusa. Forest Ecology and Management 255: 25332541.CrossRefGoogle Scholar
Nevolina, S.I. 1984. Late Cretaceous flora of the Amur Region (the Partizansk flora after AN Kryshtofovich). Ezhegodnik VPO 27: 219235.Google Scholar
Ngee, P.S., Yoshimura, T. & Lee, C.Y. 2004. Foraging populations and control strategies of subterranean termites in the urban environment, with special reference to baiting. Japanese Journal of Environmental Entomology and Zoology 15(3): 197215.Google Scholar
Noguchi, K., Nagakura, J. & Kaneko, S. 2013. Biomass and morphology of fine roots of sugi (Cryptomeria japonica) after three years of nitrogen fertilisation. Frontiers in Plant Science 4: 347.CrossRefGoogle Scholar
Ohba, K. 1993. Clonal forestry with sugi (Cryptomeria japonica). Pp 6689 in Ahuja, M.R. & Libby, W.J. (eds.), Clonal Forestry 2: Conservation and Application. Berlin: Springer.CrossRefGoogle Scholar
Ohte, N., Mitchell, M.J., Shibata, H., et al. 2001. Comparative evaluation on nitrogen saturation of forest catchments in Japan and northeastern United States. Water Air and Soil Pollution 130: 649654.CrossRefGoogle Scholar
Ooi, N., Minaki, M. & Noshiro, S. 1990. Vegetation changes around the Last Glacial Maximum and effects of the Aira-Tn ash, at the Itai-Teragatani site, central Japan. Ecological Research 5: 8191.Google Scholar
Page, C.N. 1999. The Cryptomeria forests of Yakushima Island. International Dendrology Society Bulletin 1999: 4750.Google Scholar
Parker, L.R. & Balsley, J.K. 1989. Coal Mines as Localities for Studying Dinosaur Trace Fossils: Dinosaur Tracks and Traces. Cambridge: Cambridge University Press.Google Scholar
Pilger, E. 1926. Coniferae. Pp 121407 in Engler, A. and Prantl, K. (eds.), Die Naturlichen Pflanzenfamilien, 2nd edn. Leipzig: Wilhelm Engelmann.Google Scholar
Pilger, E. & Melchior, H. 1954. Gymnospermae. Pp 312344 in Engler, A. (ed.), Syllabus der Pflanzenfamilien. Berlin: Gebrunder Borntraeger.Google Scholar
Price, R.A. & Lowenstein, J.M. 1989. An immunological comparison of the Sciadopityaceae, Taxodiaceae, and Cupressaceae. Systematic Botany 14: 141149.CrossRefGoogle Scholar
Reubens, B., Poesen, J., Danjon, F., Geudens, G. & Muys, B. 2007. The role of fine and coarse roots in shallow slope stability and soil erosion control with a focus on root system architecture: a review. Trees: Structure and Function 21: 385402.CrossRefGoogle Scholar
Rose, R. & Ketchum, J.S. 2002. Interaction of vegetation control and fertilization on conifer species across the Pacific Northwest. Canadian Journal of Forest Research 32: 136152.CrossRefGoogle Scholar
Sahashi, N., Ikuse, M., Ohmoto, T., et al. 1990. Relationship between seasonal and annual total pollen counts of Cryptomeria japonica and Cupressaceae and number of outpatients with Sugi pollinosis in central Japan. Review of Palaeobotany and Palynology 64: 7986.CrossRefGoogle Scholar
Sax, K. & Sax, H.J. 1933. Chromosome number and morphology in the conifers. Journal of the Arnold Arboretum 14: 356375.CrossRefGoogle Scholar
Schneider, W. 1986. Phytogenetic silifications in the Miocene brown coal and their importance for stratigraphy, facies and seam genesis. Z Geol Wiss (German Democratic Republic) 14(2).Google Scholar
Seiwa, K., Ando, M., Imaji, A., Tomita, M. & Kanou, K. 2009. Spatio-temporal variation of environmental signals inducing seed germination in temperate conifer plantations and natural hardwood forests in northern Japan. Forest Ecology and Management 257(1): 361369.CrossRefGoogle Scholar
Shibata, E., Waguchi, Y. & Yoneda, Y. 1994. Role of tree diameter in the damage caused by the sugi bark borer (Coleoptera: Carambycidae) to the Japanese cedar, Cryptomeria japonica. Environmental Entomology 23: 7679.CrossRefGoogle Scholar
Shimada, M. 1967. The pollen flora from the Tertiary and Cretaceous of Japan in correlation with the palaeobotanical records. Review of Palaeobotany and Palynology 5: 235241.CrossRefGoogle Scholar
Srinivasen, V. & Friis, E.M. 1989. Taxodiaceous conifers from the Upper Cretaceous of Sweden. Biologiske Skrifter 35: 157.Google Scholar
Stewart, W.N. & Rothwell, G.A. 1993. Palaeobotany and the Evolution of Plants, 2nd edn. Cambridge: Cambridge University Press.Google Scholar
Stokes, A., Spanos, I., Norris, J., & Cammeraat, E.L.H. 2007. Eco and Ground Bio-Engineering: The Use of Vegetation to Improve Slope Stability. New York: Springer.CrossRefGoogle Scholar
Suzuki, E. 1997. The dynamics of old Cryptomeria japonica forest on Yakushima Island. Tropics 6: 421428.CrossRefGoogle Scholar
Suzuki, E. & Tsukahara, J. 1987. Age structure and regeneration of old growth Cryptomeria japonica forests on Yakushima Island. Tokyo Botanical Magazine 100: 233241.CrossRefGoogle Scholar
Sveshnikova, I.N. 1967. Late Cretaceous Coniferae from the U.S.S.R., I. Fossil Coniferae of the Viliuyian depression. Trud Bot Inst An SSSR Ser 8 Paleobotanika 6: 177203.Google Scholar
Taira, H., Tsumura, Y., Tomaru, N. & Ohba, K. 1997. Regeneration system and genetic diversity of Cryptomeria japonica growing at different altitudes. Canadian Journal of Forest Research 27: 447452.CrossRefGoogle Scholar
Takahara, H. & Kitagawa, H. 2000. Vegetation and climate history since the last interglacial in Kurota Lowland, western Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 155: 123134.CrossRefGoogle Scholar
Takahara, H. & Takeoka, M. 1992. Postglacial vegetation history around Torihama, Fukui prefecture, Japan. Ecological Research 7: 7985.CrossRefGoogle Scholar
Takahashi, T., Tani, N., Taira, H. & Tsumura, Y. 2005. Microsatellite markers reveal high allelic variation in natural populations of Cryptomeria japonica near refugial areas of the last glacial period. Journal of Plant Research 118: 8390.CrossRefGoogle ScholarPubMed
Takahashi, T., Tani, N., Niiyama, K., Yoshida, S. & Tsumura, Y. 2008. Genetic succession and spatial genetic structure in a natural old-growth Cryptomeria japonica forest revealed by nuclear and chloroplast microsatellite markers. Forest Ecology and Management 255: 28202828.CrossRefGoogle Scholar
Takaso, T. & Owens, J.N. 1996. Ovulate cone, pollination drop, and pollen capture in Sequoiadendron (Taxodiaceae). American Journal of Botany 83(9): 11751180.CrossRefGoogle Scholar
Takaso, T. & Tomlinson, P.B. 1990. Cone and ovule ontogeny in Taxodium and Glyptostrobus (Taxodiaceae–Coniferales). American Journal of Botany 77(9): 12091221.CrossRefGoogle Scholar
Takaso, T. & Tomlinson, P.B. 1992. Seed cone and ovule ontogeny in Metasequoia, Sequoia and Sequoiadendron (Taxodiaceae – Coniferales). Botanical Journal of the Linnean Society 109: 1537.CrossRefGoogle Scholar
Tamai, S., Sakai, T., Matsushita, Y. 1985. Studies on tree dynamics in a mixed forest of Cryptomeria japonica and broadleaved trees, with special reference to the current seedlings of Cryptomeria japonica D.Don. Japanese Journal of Ecology 35: 433441.Google Scholar
Tani, N., Tsumura, Y. & Sato, H. 2003. Nuclear gene sequences and DNA variation of Cryptomeria japonica samples from the postglacial period. Molecular Ecology 12: 859868.CrossRefGoogle Scholar
Teranishi, H., Kenda, Y., Katoh, T., Oura, E. & Taira, H. 2000. Possible role of climate change in the pollen scatter of Japanese cedar Cryptomeria japonica in Japan. Climate Research 14: 6570.CrossRefGoogle Scholar
Toda, Y. 1979. The karyotype of Cryptomeria japonica D.Don. IV. La Kromosomo 14: 404407 (in Japanese).Google Scholar
Tomaru, N., Tsumura, Y. & Ohba, K. 1994. Genetic variation and population differentiation in natural populations of Cryptomeria japonica. Plant Species Biology 9: 191199.CrossRefGoogle Scholar
Tomizawa, H. & Maruyama, K. 1993. Distribution and survivorship of seedlings of Cryptomeria japonica natural forests on Sado Island. Journal of the Japanese Forestry Society 75: 460462 (in Japanese).Google Scholar
Tsukada, M. 1981. Cryptomeria japonica D.Don I. Pollen dispersal and logistic forest expansion. Journal of Japanese Ecology 31: 310320.Google Scholar
Tsukada, M. 1982. Cryptomeria japonica: glacial refugia and the late-glacial and postglacial migration. Ecology 63: 10911105.CrossRefGoogle Scholar
Tsukada, M. 1985. Map of vegetation during the Last Glacial Maximum in Japan. Quaternary Research 23(3): 369381.CrossRefGoogle Scholar
Tsukada, M. 1986. Altitudinal and latitudinal migration of Cryptomeria japonica for the past 20,000 years in Japan. Quaternary Research 26: 135152.CrossRefGoogle Scholar
Tsukamoto, J. 1991. Downhill movement of litter and its implication for ecological studies in three types of forest in Japan. Ecological Research 6(3): 333345.CrossRefGoogle Scholar
Tsumura, Y. & Ohba, K. 1992. Allozyme variation of five natural populations of Cryptomeria japonica in western Japan. Japanese Journal of Genetics 67: 299308.Google Scholar
Tsumura, Y. & Ohba, K. 1993. Genetic structure of geographical marginal populations of Cryptomeria japonica. Canadian Journal of Forest Research 23: 859863.CrossRefGoogle Scholar
Tsumura, Y. & Tomaru, N. 1999. Genetic diversity of Cryptomeria japonica using co-dominant markers based on sequence-tagged sites. Theoretical and Applied Genetics 98: 396404.CrossRefGoogle Scholar
Vakhrameev, V.A. 1991. Jurassic and Cretaceous Floras and Climates of the Earth. Cambridge: Cambridge University Press.Google Scholar
Vidal, J. 1960. Les Forets du Laos. Revue Bois et Forets des Tropiques 70: 521.CrossRefGoogle Scholar
Vitousek, P.M. & Farrington, H. 1997. Nutrient limitation and soil development: experimental test of a biogeochemical theory. Biogeochemistry 100: 6375.CrossRefGoogle Scholar
Walker, T.W. & Syers, J.K. 1976. The fate of phosphorous during pedogenesis. Geoderma 15: 119.CrossRefGoogle Scholar
Wang, C.-W. 1961. The forests of China, with a survey of grassland and desert vegetation. Maria Moors Cabot Foundation Publication 5: 1313.Google Scholar
Wilson, E.H. 1916. The Conifers and Taxads of Japan. Cambridge, MA: Arnold Arboretum.Google Scholar
Yamashita, T., Kasuya, N., Nishimura, S. & Takeda, H. 2004. Comparison of two coniferous plantations in central Japan with respect to forest productivity, growth phenology and soil nitrogen dynamics. Forest Ecology and Management 200(1–3): 215226.CrossRefGoogle Scholar
Yao, X., Taylor, T.N. & Taylor, E.L. 1997. A taxodiaceous seed cone from the Triassic of Antarctica. American Journal of Botany 84(3): 343354.CrossRefGoogle ScholarPubMed
Yasue, M., Ogiyama, K., Suto, S., et al. 1987. Geographical differentiation of natural Cryptomeria stands analysed by diterpene hydrocarbon constituents of individual trees. Journal of the Japanese Forestry Society 69: 152156.Google Scholar
Yi, T.-M, Li, C.-S. & Xu, J.-X. 2003. Late Miocene woods of Taxodiaceae from Yunnan, China. Acta Botanica Sinica 45: 384389.Google Scholar
Zhu, J., Tadooka, N., Takata, K. & Koizumi, A. 2005. Growth and wood quality of sugi (Cryptomeria japonica) planted in Akita prefecture (II). Juvenile/mature wood determination of aged trees. Journal of Wood Science 51: 95101.CrossRefGoogle Scholar
Zinnani, I. & Chiba, S. 1951. Naturally occurring tetraploids of Cryptomeria japonica. Ikushugaku Zasshi (Japanese Journal of Breeding) 1: 4346 (in Japanese).Google Scholar

References

Aulenback, K.R. & LePage, B.A. 1998. Taxodium wallissii sp. nov.: first occurrence of Taxodium from the Upper Cretaceous. International Journal of Plant Sciences 159(2): 367390.CrossRefGoogle Scholar
Averyanov, L.V., Loc, P.K., Hiep, N.T. & Harder, D.K. 2003. Phytogeographic review of Vietnam and adjacent areas of Eastern Indochina. Komarovia 3: 183.Google Scholar
Averyanov, L.V., Loc, P.K., Hiep, N.T., et al. 2009. Preliminary observation of native Glyptostrobus pensilis (Taxodiaceae) stands in Vietnam. Taiwania 54: 191212.Google Scholar
Axelrod, D.I. 1986. Cenozoic history of some western American pines. Annals of the Missouri Botanical Garden 73: 565641.CrossRefGoogle Scholar
Axelrod, D.I. 1987 The Late Oligocene Creede Flora, Colorado. Berkeley, CA: University of California Press.Google Scholar
Axelrod, D.I. 1988. An interpretation of high montane conifers in western Tertiary floras. Paleobiology 14(3): 301306.CrossRefGoogle Scholar
Baikovskaya, T.N. 1956. Upper Cretaceous floras of northern Asia. Palaeobotanica 2: 49181.Google Scholar
Baikovskaya, T.N. 1974. Upper Miocene Flora of Southern Primorye. Leningrad: Izdatel’stvo" Nauka", Leningradskoe otdelenie.Google Scholar
Bell, W.A. 1949. Uppermost Cretaceous and Paleocene floras of western Alberta. Canada Department of Mines Research Geology Survey Bulletin 13.Google Scholar
Bo, S., Siegert, M.J., Mud, S. et al. 2009. The Gamburtsev Mountains and the origins and early evolution of the Antarctic Ice Sheet. Nature 459: 690693.CrossRefGoogle ScholarPubMed
Botany Research and Development Group of Vietnam 2010. Preliminary observations on native Glyptostrobus pensilis (Taxodiaceae) stands in Vietnam. www.botanyvn.com.Google Scholar
Boyd, A. 2009. Relict conifers from the mid-Pleistocene of Rhodes, Greece. Historical Biology 21(1–2): 115.CrossRefGoogle Scholar
Brown, R.W. 1936. Paleobotany of the genus Glyptostrobus in North America. Journal of the Washington Academy of Sciences 26: 353357.Google Scholar
Brown, R.W. 1962. Paleocene flora of the Rocky Mountains and Great Plains. US Geological Survey Professional Paper 375.CrossRefGoogle Scholar
Brunsfeld, S.J., Soltis, P.S., Soltis, D.E., Gadek, P.A. & Quinn, C.J. 1994. Phylogenetic relationships amongst the genera of the Taxodiaceae and Cupressaceae: evidence from rbcL sequences. Systematic Botany 19: 253262.CrossRefGoogle Scholar
Budantsev, L.Y. 1997. Late Eocene flora of Western Kamchatka. Proceedings of the Botanical Institute Russian Academy of Sciences 19: 3115.Google Scholar
Buzek, C. 1971. Tertiary Flora from the Northern Part of the Petipsy Area (Northern Bohemian Basin). Prague: Nakladatelstvi Ceskoslovenske Akademie.Google Scholar
Chelebayeva, A.I. 1978. Miotsenovyye flory Vostochnoy Kamchatki (flory stratotipa korfskoy serii) [Miocene Floras in East Kamchatka: the Floras of the Korf Series Stratotype]. Moscow: Nauka Press.Google Scholar
Chochieva, K.I. 1980. The family of Taxodiaceae in the fossil flora of Georgia. Izvestiya Akademii Nauk Gruzinsloi SSR Seriya Biologicheskaya (Bulletin of the Academy of Sciences of the Georgian Soviet Socialist Republic, ser. Biological) 6(1): 6166 (in Russian, with English summary).Google Scholar
Creber, G.T. & Chaloner, W.G. 1985. Tree growth in the Mesozoic and early Tertiary and the reconstruction of palaeoclimates. Palaeogeography, Palaeoclimatology and Palaeoecology 52: 3560.CrossRefGoogle Scholar
Dorofeev, P.I. 1962. Megaspory, semena I plody iz tretichnykh otlozheny [Megaspores, seeds and fruits from the Tertiary sediments]. Trudy Sibirsk Nauchno-Issled Inst Geol Geofiz Miner Syr 22: 369415.Google Scholar
Dorofeev, P.I. 1974. On the history of the genus Glyptostrobus Endl. Botanical Zhurnal 59: 313 (in Russian).Google Scholar
Endlicher, I.L. 1847. Synopsis Coniferarum. Sangalli: Scheitlin & Zollikofer.Google Scholar
Endo, S. 1964. Some older Tertiary plants from northern Thailand: contributions to the geology and palaeontology of southwestern Asia, VI. Pp 113117 in Kobayashi, T. (ed.), Geology and Palaeontology of Southeast Asia.Tokyo: University of Tokyo Press.Google Scholar
Endo, S. 1968. The flora from Eocene Woodwardia Formation, Ishikari coal field, Hokkaido, Japan. Bulletin of the National Science Museum Tokyo 11: 411449.Google Scholar
Erdei, B., Dolezych, M. & Hably, L. 2009. The buried Miocene forest at Bükkábrány, Hungary. Review of Palaeobotany and Palynology 155(1–2): 6979.CrossRefGoogle Scholar
FIVI (Forest Inventory and Planning Institute, Vietnam). 1996. Vietnam Forest Trees. Hanoi: Agricultural Publishing House.Google Scholar
Florin, R. 1952. On Metasequoia, living and fossil. Bot Notiser 105: 129.Google Scholar
Florin, R. 1955. The systematics of the Gymnosperms. Pp. 323403 in A Century of Progress in the Natural Sciences. San Francisco, CA: California Academy of Sciences.Google Scholar
Fu, L.K., Yu, Y.F. & Farjon, A. 1999. Cupressaceae. Pp 6277 in Wu, Z.Y. & Raven, P.H. (eds.), Flora of China 4. Beijing: Science Press.Google Scholar
Fyles, J.G., Hills, L.V., Matthews, J.V. Jr, et al. 1994. Ballast Brook and Beaufort Formations (Late Tertiary) on northern Banks Island, Arctic Canada. Quaternary International 22: 141171.CrossRefGoogle Scholar
Greenwood, D.R. & Basinger, J.F. 1994. The paleoecology of high-latitude Eocene swamp forests from Axel Heiberg Island. Canadian High Arctic Review of Palaeobotany and Palynology 81(1): 8397.CrossRefGoogle Scholar
Greguss, P. 1955. Identification of Living Gymnosperms on the Basis of Xylotomy. Budapest: Akademia Kiado.Google Scholar
Grime, J.P. 2001. Plant Strategies, Vegetation Processes, and Ecosystem Processes, 2nd edn. Chichester: Wiley.Google Scholar
Grímsson, F. & Zetter, R. 2011. Combined LM and SEM study of the Middle Miocene (Sarmatian) palynoflora from the Lavanttal Basin, Austria: Part II. Pinophyta (Cupressaceae, Pinaceae and Sciadopityaceae). Grana 50: 262310.CrossRefGoogle Scholar
Grímsson, F., Denk, T. & Símonarson, L.A. 2007. Middle Miocene floras of Iceland: the early colonization of an island?. Review of Palaeobotany and Palynology 144(3–4): 181219.CrossRefGoogle Scholar
Guo, S.X. 1985. Preliminary interpretation of Tertiary climate by using megafossils in China. Palaeontologia Cathayana 2: 169175.Google Scholar
Guo, S.X. & Li, H.M. 1979. Late Cretaceous flora from Hunchun of Jilin. Acta Palaeontol Sin 18: 547−560.Google Scholar
Han, L.-J., Hu, Y.-X., Lin, J.-X. & Wang, X.P. 1997. The biology and conservation of Glyptostrobus pensilis (a review). Subtropical Plant Research Communication 26: 4347 (in Chinese with English abstract).Google Scholar
Harland, M., Francis, J.E., Brentnall, S.J. & Beerling, D.J. 2007. Cretaceous (Albian–Aptian) conifer wood from Northern Hemisphere high latitudes: forest composition and palaeoclimate. Review of Palaeobotany and Palynology 143(3–4): 167196.CrossRefGoogle Scholar
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Heer, O. 1871. Flora fossilis arctica: Die fossile Flora der Polarländer. J Wurster & Co.Google Scholar
Heer, O. 1874. Nachträge zur Miocene Flora Grönlands. Flora Fossilis Arctica. Band III: Heft 2 & 3. Kgl. Svenska Vetenskapsakad. Handlingar 12: 111.Google Scholar
Henry, A. & McIntyre, M. 1926. The swamp cypresses, Glyptostrobus of China and Taxodium of America, with notes on allied genera. Proceedings of the Royal Irish Academy 37: 90116.Google Scholar
Hofmann, C.C. & Zetter, R. 2005. Reconstruction of different wetland plant habitats of the Pannonian Basin System (Neogene, Eastern Austria). Palaios 20(3): 266279.CrossRefGoogle Scholar
Hurník, S. & Kvaček, Z. 1999. Satellite basin of Skyrice near Most and its fossil flora (Miocene). Acta Universitatis Carolinae Geologica 4: 643656.Google Scholar
Jahren, A.H. 2007. The Arctic forest of the Middle Eocene. Annual Reviews of Earth Planetary Science 35: 509540.CrossRefGoogle Scholar
Kalaitzidis, S., Bouzinos, A., Papazisimou, S. & Christanis, K. 2004. A short-term establishment of forest fen habitat during Pliocene lignite formation in the Ptolemais Basin, NW Macedonia, Greece. International Journal of Coal Geology 57(3–4): 243263.CrossRefGoogle Scholar
Kong, W.S. 1995. The distribution of conifers and taxads in time and space in the Korean Peninsula. Journal of the Korean Geographical Society 30(1): 113.Google Scholar
Kong, W.S. 2000. Vegetational history of the Korean Peninsula. Global Ecology and Biogeography 9(5): 391402.CrossRefGoogle Scholar
Kovar-Eder, J. & Meller, B. 2003. The plant assemblages from the main seam parting of the western sub-basin of Oberdorf, N Voitsberg, Styria, Austria (Early Miocene). Courier-Forschungsinstitut Senckenberg 241: 281312.Google Scholar
Kovar-Eder, J., Kvaček, Z. & Meller, B. 2001. Comparing Early to Middle Miocene floras and probable vegetation types of Oberdorf N Voitsberg (Austria), Bohemia (Czech Republic) and Wackersdorf (Germany). Review of Palaeobotany and Palynology 114: 83125.CrossRefGoogle Scholar
Kovar-Eder, J., Kvaček, Z. & Ströbitzer-Hermann, M. 2004. The Miocene flora of Parschlug (Styria, Austria): revision and synthesis. Annalen des Naturhistorischen Museums in Wien 105A: 45159.Google Scholar
Krystofovich, A. N. 1935. A final link between the Tertiary floras of Asia and Europe. New Phytologist 34: 339344.CrossRefGoogle Scholar
Krystofovich, A. N. 1946. Miocene plants from the Suifunskoi Formation, Ussuriskogo Krai. Botanical Journal 31: 734.Google Scholar
Kuan, C.-T. (1981). Fundamental features of the distribution of Coniferae in Sichuan. Acta Phytotaxica Sinica 14: 407420 (in Chinese).Google Scholar
Kusumi, J., Tsumura, Y., Yoshimaru, H. & Tacida, H. 2000. Phylogenetic relationships in Taxodiaceae and Cupressaceae sensu stricto based on matK gene, chiL gene, trnL–trnF IGS region, and trnL intron sequence. American Journal of Botany 87: 14801488.CrossRefGoogle Scholar
Kvaček, Z. & Rember, W.C. 2000. Shared Miocene conifers of the Clarkia flora and Europe. Acta Universitatis Carolinae, Geologica 44: 7585.Google Scholar
Lebedev, E.L. 1982. Recurrent development of floras of the Okhotsk-Chukotka volcanogenic belt at the boundary between the Early and Late Cretaceous. Paleontological Journal 2: 111.Google Scholar
LePage, B.A. 2007. The taxonomy and biogeographic history of Glyptostrobus. Bulletin of the Peabody Museum of Natural History 48: 359426.CrossRefGoogle Scholar
Li, C.X. & Yang, Q. 2003. Phylogenetic relationships among the genera of Taxodiaceae and Cupressaceae from 28S rDNA sequences. Yi Chuan= Hereditas 25(2): 177180.Google ScholarPubMed
Li, F.-G. & Xia, N.-H. 2005. Population structure and genetic diversity of an endangered species, Glyptostrobus pensilis (Cupressaceae). Botanical Bulletin Academica Sinica 46: 155162.Google Scholar
Li, H.-M. & Yang, G.-Y. 1984. Miocene Qiuligou flora in Dunhua county, Jilin Province. Acta Palaeontologica Sinica 23: 204214.Google Scholar
Li, L.-C. 1987. Cytological studies on Glyptostrobus pensilis Koch (Taxodiaceae). Guihaia 7: 101106.Google Scholar
Li, L. 1989. Studies on the cytotaxonomy and systematic evolution of Taxodiaceae Warming. Acta Botanica Yunnanica 11: 113131.Google Scholar
Liu, T.S. & Su, H.J. 1983. Biosystematic Studies on Taiwania and Numerical Evaluations on the Systematics of Taxodiaceae. Taipei: Taiwan Museum.Google Scholar
López-Pujol, J., Zhang, F.M., Sun, H.Q., Ying, T.S. & Ge, S. 2011. Mountains of southern China as ‘plant museums’ and ‘plant cradles’: evolutionary and conservation insights. Mountain Research and Development 31(3): 261269.CrossRefGoogle Scholar
Ma, Q.-W., Li, C.-S., Li, F.-L. & Vickulin, S.V. 2004. Epidermal structures and stomatal parameters of Chinese endemic Glyptostrobus pensilis (Taxodiaceae). Botanical Journal of the Linnean Society 146: 153162.CrossRefGoogle Scholar
Maekawa, F. 1974. Origin and characteristics of Japan’s flora. Pp 3386 in Numa-Ta, N. (ed.), The Flora and Vegetation of Japan. Tokyo: Kodansha.Google Scholar
Magri, D., Di Rita, F., Aranbarri, J., et al. 2017. Quaternary disappearance of tree taxa from Southern Europe: timing and trends. Quaternary Science Reviews 163: 2355.CrossRefGoogle Scholar
Mai, D.H. 1989. Development and regional differentiation of the European vegetation during the Tertiary. Plant Systematics and Evolution 162: 7991.CrossRefGoogle Scholar
Mai, D.H. & Walther, H. 1988. Die pliozänen Floren von Thüringen Deutsche Demokratische Republik. Quartärpaläont 7: 55297.Google Scholar
Martinetto, E., Uhl, D. & Tarabra, E. 2007. Leaf physiognomic indications for a moist warm-temperate climate in NW Italy during the Messinian (Late Miocene). Palaeogeography, Palaeoclimatology, Palaeoecology 253(1–2): 4155.CrossRefGoogle Scholar
Matsumoto, M., Ohsawa, T.A., Nishida, M. & Nishida, H. 1997. Glyptostrobus rubenosawensis sp. nov., a new permineralised conifer species from the Middle Miocene, Central Hokkaido. Japanese Paleontological Research 1: 8199.Google Scholar
McIntyre, D.J. 1991. Pollen and spore flora of an Eocene forest, eastern Axel Heiberg Island, N.W.T. Bulletin of the Geological Survey of Canada 403: 8398.Google Scholar
McIver, E.E. & Basinger, J.F. 1993. Flora of the Ravenscrag Formation (Paleocene), southwestern Saskatchewan, Canada. Palaeontographica Canadiana 10: 1167.Google Scholar
Momohara, A. 1994. Floral and paleoenvironmental history from the late Pliocene to middle Pleistocene in and around central Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 108(3–4): 281293.CrossRefGoogle Scholar
Mustoe, G., Dillhoff, R., & Dillhoff, T. 2007. Geology and paleontology of the early Tertiary Chuckanut Formation. Pp 121135 in Stelling, P. & Tucker, D.S. (eds.), Floods, Faults, and Fire: Geological Field Trips in Washington State and British Columbia. Boulder, CO: Geological Society of America.CrossRefGoogle Scholar
Otto, A. & Simoneit, B.R. 2001. Chemosystematics and diagenesis of terpenoids in fossil conifer species and sediment from the Eocene Zeitz formation, Saxony, Germany. Geochemica Cosmoschimica Acta 65: 35053527.CrossRefGoogle Scholar
Otto, A., Simoneit, B.R. & Rember, W.C. 2003. Resin compounds from the seed cones of three fossil conifer species from the Miocene Clarkia flora, Emerald Creek, Idaho, USA, and from related extant species. Review of Palaeobotany and Palynology 126(3–4): 225241.CrossRefGoogle Scholar
Page, C.N. 1973. Ferns, polyploids, and their bearing on the evolution of the Canarian flora. Monographia Biologicae Canariensis 4: 8388.Google Scholar
Page, C.N. 1977. An ecological survey of the ferns of the Canary Islands. Fern Gazette 11: 297312.Google Scholar
Parrish, J.T., Daniel, I.L., Kennedy, E.M. & Spicer, R.A. 1998. Palaeoclimatic significance of mid-Cretaceous floras from the Middle Clarence Valley, New Zealand. Palaios 13: 149159.CrossRefGoogle Scholar
Phuong, V.T. 2007. Forest environment of Vietnam: features of forest vegetation and soils. Pp 189200 in Forest Environments in the Mekong River Basin. Tokyo: Springer.CrossRefGoogle Scholar
Price, R.A. & Lowenstein, J.M. 1989. An immunological comparison of the Sciadopityaceae, Taxodiaceae, and Cupressaceae. Systematic Botany 14: 141149.CrossRefGoogle Scholar
Ramanujam, C.G.K. & Stewart, W.N. 1969. Fossil woods of Taxodiaceae from the Edmonton Formation (upper Cretaceous) of Alberta. Canadian Journal of Botany 47(1): 115124.CrossRefGoogle Scholar
Sato, S. 1960. Palynological study on the Haboro coal seam of the Haboro coal-bearing formation. Journal of the Faculty of Science, Hokkaido University 4.Google Scholar
Schweitzer, H.J. 1974 Die ‘Tertifiren’ koniferen spitzberg. Paleontographica 149B: 189.Google Scholar
Shimada, M. 1953 . The pollen analyses of sonie lignite beds in the north-eastern provinces of Japan. BZCLL Society of Plant Ecology 3.Google Scholar
Smith, H.V. 1938. Notes on fossil plants from Hog Creek in southwestern Idaho. Michigan Academy of Sciences 23: 223231.Google Scholar
Srinivasan, V. 1995. Conifers from the Puddledock locality (Potomac Group, Early Cretaceous) in eastern North America. Review of Palaeobotany and Palynology 89(3–4): 257286.CrossRefGoogle Scholar
Stebbins, G.L. 1948. The chromosomes and relationships of Metasequoia and Sequoia. Science 108: 9598.CrossRefGoogle ScholarPubMed
Stockey, R.A., Rothwell, G.W. & Falder, A.B. 2001. Diversity among taxodioid conifers: Metasequoia foxii sp. Nov from the Paleocene of Central Alberta, Canada. International Journal of Plant Science 162: 221234.CrossRefGoogle Scholar
Sveshnikova, I.N. 1963. Atlas and a key for the identification of the living and fossil Sciadopityaceae and Taxodiaceae based on the structure of the leaf epidermis. Paleobotany 4: 207.Google Scholar
Sveshnikova, I.N. 1967. Late Cretaceous conifers in the USSR; 1. Fossil conifers of the Vilyui Syneclise. Tr. Bot Inst Akad Nauk SSSR Ser 8 Paleobot 4: 177204.Google Scholar
Takaso, T. & Tomlinson, P.B. 1989. Cone and ovule development in Callitris (Cupressaceae–Callitroideae). Botanical Gazette 150: 387390.CrossRefGoogle Scholar
Takaso, T. & Tomlinson, P.B. 1990. Cone and ovule ontogeny in Taxodium and Glyptostrobus (Taxodiaceae – Coniferales). American Journal of Botany 77: 12091221.CrossRefGoogle Scholar
Tanai, T. 1961. Neogene floral change in Japan. Journal of the Faculty of Science, Hokkaido University ser. 4(9): 1112.Google Scholar
Tanai, T. & Suzuki, N. 1972. Additions to the Miocene floras of southwestern Hokkaido, Japan. Journal of the Faculty of Science, Hokkaido University. Series 4. Geology and Mineralogy 15(1–2): 281359.Google Scholar
Tanai, T. & Uemura, K. 1991. The Oligocene Noda Flora from the Yuyawan area of the western end of Honshu, Japan. Part 2. Bulletin of the National Science Museum Ser C 17: 8190.Google Scholar
Teodoridis, V. & Sakala, J. 2008. Early Miocene conifer macrofossils from the Most Basin (Czech Republic). Neues Jahrbuch fur Geologie und Palaontologie-Abhandlungen 250(3): 287.CrossRefGoogle Scholar
Thomas, P., Yang, Y., Farjon, A., Nguyễn, D. & Liao, W. 2011. Glyptostrobus pensilis. In IUCN 2011: IUCN Red List of Threatened Species. Version 2011.2. www.iucnredlist.org.Google Scholar
Ticleanu, N. & Diaconita, D., 1997. The main coal facies and lithotypes of the Pliocene coal basin, Oltenia, Romania. European Coal Geology and Technology 125: 131139.Google Scholar
Tsukada, M. 1963. Umbrella pine, Sciadopitys verticillata: past and present distribution in Japan. Science 142: 16801681.CrossRefGoogle ScholarPubMed
Uemura, K. 1988. Late Miocene floras in Northeast Honshu, Japan. National Science Museum Tokyo 197.Google Scholar
Vakhrameev, V.A. 1991. Jurassic and Cretaceous Floras and Climates of the Earth. Cambridge: Cambridge University Press.Google Scholar
Vassio, E., Martinetto, E. & Dolezyeh, M. 2008. Wood anatomy of Glyptostrobus europaeus ‘whole plant’ from a Pliocene fossil forest in Italy. Review of Palaeobotany and Palynology 151: 8189.CrossRefGoogle Scholar
Vickulin, S.V., Ma, Q.-W., Zhilim, S.G. & Li, C.-S. 2003. On cuticular compressions of Glyptostrobus europaeus (Taxodiaceae) from Kaydaguui formation (Lower Miocene) of the central Kazakhstan. Acta Botanica Sinica 45: 673680.Google Scholar
Visscher, G.E. & Jagels, R. 2003. Separation of Metasequoia and Glyptostrobus (Cupressaceae) based on wood anatomy. IAWA Journal 24(4): 439450.CrossRefGoogle Scholar
Wang, C.-W. 1961. The forests of China, with a survey of grassland and desert vegetation. Maria Moors Cabot Foundation Publication 5: 1313.Google Scholar
Williams, C.J., Mendell, E., Murphy, J., et al. 2008. Paleoenvironmental reconstruction of a Middle Miocene forest from the western Canadian Arctic. Palaeogeography, Palaeoclimatology, Palaeoecology 261: 160176.CrossRefGoogle Scholar
Wittlake, E.B. 1975. The androstrobilus of Glyptostrobus nordenskioldi (Heer) Brown. American Midland Naturalist 94: 215223.CrossRefGoogle Scholar
Wolfe, J.A. 1979. Temperature parameters of humid to mesic forests of eastern Asia and relation of forests to other regions of the Northern Hemisphere and Australasia. US Geological Survey Professional Paper 1106.CrossRefGoogle Scholar
Wolfe, J.A. & Upchurch, G.R. Jr 1987. Leaf assemblages across the Cretaceous–Tertiary boundary in the Raton Basin, New Mexico and Colorado. Proceedings of the National Academy of Sciences 84(15): 50965100.CrossRefGoogle ScholarPubMed
Wolfe, J.A., Hopkins, D.M. & Leopold, E.B. 1966. Tertiary stratigraphy and paleobotany of the Cook Inlet region, Alaska. US Geological Survey Professional Paper 398A.CrossRefGoogle Scholar
Worobiec, E. 2011. Middle Miocene aquatic and wetland vegetation of the paleosinkhole at Tarnów Opolski, SW Poland. Journal of Paleolimnology 45: 311322.CrossRefGoogle Scholar
Worobiec, E. & Szulc, J. 2010. A Middle Miocene palynoflora from sinkhole deposits from Upper Silesia, Poland and its palaeoenvironmental context. Review of Palaeobotany and Palynology 163(1–2): 110.CrossRefGoogle Scholar
Yamakawa, C., Momohara, A., Nunotani, T., Matsumoto, M. & Watano, Y. 2008. Paleovegetation reconstruction of fossil forests dominated by Metasequoia and Glyptostrobus from the late Pliocene Kobiwako Group, central Japan. Paleontological Research 12: 167180.CrossRefGoogle Scholar
Ying, T.-S., Zhang, Y.-L. & Boufford, D.E. 1993. The Endemic Genera of Seed Plants of China. Beijing: Science Press.Google Scholar
Zhilin, S.G. 1989. History of the development of the temperate forest flora in Kazakhstan (USSR) from the Oligocene to the Early Miocene. Botanical Review 55: 205.CrossRefGoogle Scholar

References

Allen, J.A. 1992. Cypress-tupelo swamp restoration in southern Louisiana. Restoration Management 10: 188189.Google Scholar
Arnold, M.A. & Denny, G.C. 2007. Taxonomy and nomenclature of bald cypress, pond cypress and Montezuma Cypress: one, two, three species ? Horticultural Technology 17: 125127.Google Scholar
Aulenback, K. & LePage, B.A. 1998. Taxodium wallsii sp. nov.: first occurrence of Taxodium from the Upper Cretaceous. International Journal of Plant Sciences 159: 367390.CrossRefGoogle Scholar
Axelrod, A.I. 1976. History of the conifer forests, California and Nevada. University of California Publications in Botany 70: 160.Google Scholar
Axelrod, A.I. 1979. Age and origin of Sonoran Desert vegetation. Californian Academy of Sciences Occasional Papers 132.Google Scholar
Axelrod, D.I. 1986. Cenozoic history of some western American pines. Annals of the Missouri Botanical Garden 73: 565641.CrossRefGoogle Scholar
Axelrod, D.I. 1987 The Late Oligocene Creede Flora, Colorado. Berkeley, CA: University of California Press.Google Scholar
Axelrod, D.I. 1988. An interpretation of high montane conifers in western Tertiary floras. Paleobiology 14(3): 301306.CrossRefGoogle Scholar
Beaven, G.F., Oosting, H.J. & Henry, J. 1939. Pocomoke Swamp: a study of a cypress swamp on the eastern shore of Maryland. Bulletin of the Torrey Botanical Club 66: 376389.CrossRefGoogle Scholar
Bertoldi, R. 1977. Studio palinologico della serie di Le Castella (Calabria). Atti della Accademia Nazionale dei Lincei Classe di Scienze Fisiche Matematiche e Naturali Rendiconti 62: 547555.Google Scholar
Boulter, M.C., Hubbard, R.N. & Kvaček, Z. 1993. A comparison of intuitive and objective interpretations of Miocene plant assemblages from north Bohemia. Palaeogeography, Palaeoclimatology, Palaeoecology 101(1–2): 8196.CrossRefGoogle Scholar
Brown, C.A. 1984. Morphology and biology of cypress trees. Pp 1624 in Ewel, K.C. & Odum, H.T. (eds.), Cypress Swamps. Gainesville, FL: University of Florida Press.Google Scholar
Brown, S. 1981. A comparison of the structure, primary productivity and transpiration of a bald cypress ecosystem in Florida. Ecological Monographs 51: 403427.CrossRefGoogle Scholar
Brunsfeld, S.J., Soltis, P.S., Soltis, D.E., Gadek, P.A. & Quinn, C.J. 1994. Phylogenetic relationships amongst the genera of the Taxodiaceae and Cupressaceae: Evidence from rbcL sequences. Systematic Botany 19: 253262.CrossRefGoogle Scholar
Budantsev, L.Y. 1997. Late Eocene flora of Western Kamchatka. Proceedings of the Botanical Institute Russian Academy of Sciences 19: 3115.Google Scholar
Buzek, C. 1971. Tertiary Flora from the Northern Part of the Petipsy Area (Northern Bohemian Basin). Prague: Nakladatelstvi Ceskoslovenske Akademie.Google Scholar
Cao, F., Fang, S., Tang, L., et al. 1995. A study on provenance tests of Taxodium distichum seeds. Journal of Nanjing Forestry University 19: 6670.Google Scholar
Chochieva, K.I. 1980. The family Taxodiaceae in the fossil floras of the Georgian-SSR USSR. Izvestiya Akademii Nauk Gruzinsloi SSR Seriya Biologicheskaya 6(1): 6166.Google Scholar
Conner, W.H. & Toliver, J.R. 1990. Long-term trends in the bald cypress (Taxodium distichum) resource in Louisiana (USA). Forest Ecology and Management 33: 543557.CrossRefGoogle Scholar
Conner, W.H., Toliver, J.R. & Sklar, F.H. 1986. Natural regeneration of bald cypress [Taxodium distichum (L.) Rich] in a Louisiana swamp. Forest Ecology and Management 14: 305317.CrossRefGoogle Scholar
Coultas, C.L. & Duever, M.J. 1984. Soils of cypress swamps. Pp 5159 in Ewel, K.C. & Odum, H.T. (eds.), Cypress Swamps. Gainesville, FL: University of Florida Press.Google Scholar
Cousens, M.I., Lacey, D.G. & Scheller, J.M. 1988. Safe sites and the ecological life-history of Lorinseria areolata. American Journal of Botany 75: 797807.CrossRefGoogle Scholar
Cypert, E. 1961. The effects of fires in the Okefenokee Swamp in 1954 and 1955. American Midland Naturalist 66: 485503.CrossRefGoogle Scholar
Davis, M.B. 1976. Pleistocene biogeography of temperate deciduous forests. Geoscience and Man 13: 1326.Google Scholar
Dean, G.W. 1969. Forests and forestry in the Dismal Swamp. Virginia Journal of Science 20: 166173.Google Scholar
Denny, G., Arnold, M.A. & Bryan, D. 2006. Effect of provenance on alkalinity tolerance in bald cypress. HortScience 41: 10041005.CrossRefGoogle Scholar
Denslow, J.S. & Battagalia, L.L. 2002. Stand composition and structure across a changing hydrologic gradient: Jean Lafitte National Park, Louisiana, USA. Wetlands 22: 738752.CrossRefGoogle Scholar
Díaz, S.C., Therrell, M.D., Stahle, D.W. & Cleaveland, M.K. 2002. Chihuahua (Mexico) winter–spring precipitation reconstructed from tree-rings, 1647–1992. Climate Research 22: 237244.CrossRefGoogle Scholar
Dicke, S.G. & Toliver, J.R. 1990. Growth and development of bald-cypress/water-tupelo stands under continuous versus seasonal flooding. Forest Ecology and Management 33: 523530.CrossRefGoogle Scholar
Dorado, O. 1996. The arbol del Tule (Taxodium muronatum Ten.) is a single genetic individual. Madrõno 43: 445452.Google Scholar
Dorofeev, P.I. 1976. K sistematike tretičnych Taxodium. Bot Žurn 61: 13641373.Google Scholar
Duever, M.J. & Riopelle, L.A. 1983. Successional sequences and rates on tree islands in the Okefenokee Swamp. American Midland Naturalist 110: 186191.CrossRefGoogle Scholar
Duever, M.J., Carlson, J.E., & Riopeue, L.A. 1984. Corkscrew Swamp: a virgin cypress stand. Pp 334348 in Ewel, K.C. & Odum, H.T. (eds.), Cypress Swamps. Gainesville, FL: University of Florida Press.Google Scholar
Dunn, C.P. & Sharitz, R.R. 1987. Revegetation of a TaxodiumNyssa forested wetland following complete vegetation destruction. Vegetatio 72: 151157.CrossRefGoogle Scholar
Earle, C.J. 2005. The Gymnosperm Database: Taxodium. www.conifers.org/cu/Taxodium_mucronatum.php.Google Scholar
Eckenwalder, J.F. 2009. Conifers of the World: The Complete Reference. Portland, OR: Timber Press.Google Scholar
Effler, R.S. & Goyer, R.A. 2006. Baldcypress and water tupelo sapling response to multiple stress agents and reforestation implications for Louisiana swamps. Forest Ecology and Management 226: 330340.CrossRefGoogle Scholar
Endlicher, I.L. 1847. Synopsis Coniferarum. Sangalli: Scheitlin & Zollikofer.Google Scholar
Enriquez-Peña, E.G., Suzán-Azpiri, H. & Malda-Barrera, G. 2004. Seed viability and germination of Taxodium mucronatum (Ten.) in the states of Querétaro, Mexico. Agrocencia 38: 375381.Google Scholar
Erdei, B., Dolezych, M. & Hably, L. 2009. The buried Miocene forest at Bükkábrány, Hungary. Review of Palaeobotany and Palynology 155(1–2): 6979.CrossRefGoogle Scholar
Ewel, K.C. 1990. Multiple demands on wetlands. Bioscience 40: 660666.CrossRefGoogle Scholar
Ewel, K.C. & Odum, H.T. (eds.) 1984. Cypress Swamps. Gainesville, FL: University of Florida Press.Google Scholar
Ewel, K.C. & Wickenheiser, L.P. 1988. Effect of swamp size on growth rates in cypress (Taxodium distichum) trees. American Midland Naturalist 120: 362370.CrossRefGoogle Scholar
Faulkner, S. & Toliver, J. 1983. Genetic variation of cones, seeds, and nursery-grown seedlings of baldcypress (Taxodium distichum (L.) Rich.) provenances. Pp 281288 in Southern Forest Improvement Committee (eds.), Proceedings of the 17th Southern Forest Tree Improvement Conference. Georgia: University of Georgia.Google Scholar
Ferguson, D.K. 1967. On the phytogeography of Coniferales in the European Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology, 33: 73110.CrossRefGoogle Scholar
Florin, R. 1963. The distribution of conifer and taxad genera in time and space. Acta Horti Bergiani 20: 121319.Google Scholar
Frank, M.C. & Bend, S.L. 2004. Peat-forming history of the ancestral Souris mire (Palaeocene), Ravenscrag Formation, southern Saskatchewan, Canada. Canadian Journal of Earth Sciences 41: 307322.CrossRefGoogle Scholar
Grime, J.P. 2001. Plant Strategies, Vegetation Processes, and Ecosystem Processes, 2nd edn. Chichester: Wiley.Google Scholar
Hall, G.W., Diggs, G.M., Soltis, D.E. & Soltis, P.M. 1990. Genetic uniformity of El Arbol del Tule (the Tule Tree). Madrõno 37: 15.Google Scholar
Hare, R.C. 1965. Contribution of bark to fire resistance of southern trees. Journal of Forestry 63: 248251.Google Scholar
Harland, M., Francis, J.E., Brentnall, S.J. & Beerling, D.J. 2007. Cretaceous (Albian–Aptian) conifer wood from Northern Hemisphere high latitudes: forest composition and palaeoclimate. Review of Palaeobotany and Palynology 143(3–4): 167196.CrossRefGoogle Scholar
Harris, L.D. & Vickers, C.R. 1984. Some faunal community characteristics of cypress ponds and the changes induced by perturbations. Pp 171185 in Ewel, K.C. & Odum, H.T. (eds.), Cypress Swamps. Gainesville, FL: University of Florida Press.Google Scholar
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Heer, O. 1869. Miozäne baltische Flora. – Beitr. Naturk Preuss 2: 1104.Google Scholar
Hesse, I.D., Day, J.W. & Doyle, T.V. 1998. Long-term growth enhancement of baldcypress (Taxodium distichum) from municipal wastewater application. Environmental Management 22: 119127.CrossRefGoogle Scholar
Hu, Z.-A., Wang, H.-X. & Liu, C.-J. 1986. Biochemical systematics of gymnosperms (4): seed protein peptides and needle peroxidases of Taxodiaceae. Acta Phytotaxica Sinica 24: 471473.Google Scholar
Huenneke, L.F. & Sharitz, R.R. 1986. Microsite abundance and the distribution of woody seedlings in a South Carolina cypress-tupelo swamp. American Midland Naturalist 115: 328335.CrossRefGoogle Scholar
Hurník, S. & Kvaček, Z. 1999. Satellite basin of Skyrice near Most and its fossil flora (Miocene). Acta-Universitatis Carolinae Geologica 4: 643656.Google Scholar
Iwauchi, A. & Hase, Y. 1992. Late Cenozoic vegetation and paleoenvironment of northern and central Kyushu, Japan – part 5. Yoshino area (Middle Pleistocene). Journal of the Geological Society of Japan 98: 205221.Google Scholar
Jagels, R. & Equiza, M.A. 2007. Why did Metasequoia disappear from North America but not from China. Bulletin of the Peabody Museum of Natural History 48(2): 281290.CrossRefGoogle Scholar
Jiang, M. & Middleton, B.A. 2011. Soil characteristics of sediment-amended baldcypress (Taxodium distichum) swamps of coastal Louisiana. Wetlands 31: 735744.CrossRefGoogle Scholar
Karlioğlu, N., Akkemik, U. & Caner, H. 2009. Detection of some woody plants in Late Oligocene forests of Istanbul. Turkish Journal of Agriculture and Forestry 33(6): 577584.Google Scholar
Keim, R.F., Chambers, J.L. Hughes, M.S., et al. 2006. Long-term success of stump sprouts in high-graded baldcypress-water tupleo swamps in the Mississippi delta. Forest Ecology and Management 234: 2433.CrossRefGoogle Scholar
Keim, R.F., Izdepski, R.F., Caleb, W. & Day, J.W. Jr. 2012. Growth response of baldcypress to wastewater nutrient addition and changing hydrology regime. Wetlands 32: 95103.CrossRefGoogle Scholar
Knobloch, E. 1961. Die oberoligozäne Flora des Pirskenberges bei Šluknov in Nord-Böhmen. – Sbor. Ústř Úst Geol Odd Paleont 26: 241315.Google Scholar
Knobloch, E., Konzalová, M. & Kvaček, Z. 1996. Die obereozäne Flora der Staré Sedlo-Schichtenfolge in Böhmen (Mitteleuropa). Rozpr Čes geol Úst 49: 1260.Google Scholar
Kong, W.S. 1995. The distribution of conifers and taxads in time and space in the Korean Peninsula. Journal of the Korean Geographical Society 30(1): 113.Google Scholar
Kong, W.S. 2000. Vegetational history of the Korean Peninsula. Global Ecology and Biogeography 9(5): 391402.CrossRefGoogle Scholar
Kovar-Eder, J., Kvaček, Z., Martinetto, E. & Roiron, P. 2006. Late Miocene to Early Pliocene vegetation of southern Europe (7–4 Ma) as reflected in the megafossil plant record. Palaeogeography, Palaeoclimatology, Palaeoecology 238(1–4): 321339.CrossRefGoogle Scholar
Krauss, K.W., Chambers, J.L., Allen, J.A., Soileau, D.M. & DeBosier, A.S. 2000. Growth and nutrition of baldcypress families planted under varying salinity regimes in Louisiana, USA. Journal of Coastal Research 16: 153163.Google Scholar
Kunzmann, L., Kvaček, Z., Mai, D.H. & Walther, H. 2009. The genus Taxodium (Cupressaceae) in the Palaeogene and Neogene of Central Europe. Review of Palaeobotany and Palynology 153: 153183.CrossRefGoogle Scholar
Kusumi, J., Tsumura, Y., Yoshimaru, H. & Tacida, H. 2000. Phylogenetic relationships in Taxodiaceae and Cupressaceae sensu stricto based on matK gene, chiL gene, trnLtrnF IGS region, and trnL intron sequence. American Journal of Botany 87: 14801488.CrossRefGoogle Scholar
Kvaček, Z. 1988. The Lauraceae of the European Palaeogene, based on leaf cuticles. Cour Forsch-Inst Senckenberg 107: 345354.Google Scholar
Kvaček, Z. & Bubik, M. 1990. Vestnik Ustr. Ust Geol 65: 8194.Google Scholar
Kvaček, Z. & Hably, L. 1998. New plant elements in the tard clay formation from Eger-Kiseged. Acta Palaeobotanica 38: 523.Google Scholar
Kvaček, Z. & Rember, W.C. 2000. Shared Miocene conifers of the Clarkia flora and Europe. Acta Universitatis Carolinae, Geologica 44: 7585.Google Scholar
Kvaček, Z. & Walther, H. 1998. The Oligocene volcanic flora of Kundratice near Litoměřice, České Středohoří volcanic complex (Czech Republic): a review. Acta Musei Nationalis Pragae, Series B – Historia Naturalis 54: 142.Google Scholar
Kvaček, Z. & Walther, H. 2001. The Oligocene of central Europe and the development of forest vegetation in space and time on the basis of megafossils. Palaeontographica B, 259: 125148.CrossRefGoogle Scholar
Kvaček, Z., Teodoridis, V. & Gregor, H.J. 2008. The Pliocene Leaf Flora of Auenheim, Northern Alsace (France). Verlag Documenta Naturae.Google Scholar
Larsson, L.M., Vaida, V. & Ramussen, E.S. 2006. Early Miocene pollen and spores from western Jylland, Denmark: environmental and climatic implications. GFF 128: 261272.CrossRefGoogle Scholar
Larsson, L.M., Dybkjær, K., Rasmussen, E.S., et al. 2011. Miocene climate evolution of northern Europe: a palynological investigation from Denmark. Palaeogeography, Palaeoclimatology, Palaeoecology 309(3–4): 161175.CrossRefGoogle Scholar
Li, C.X. & Yang, Q. 2003. Phylogenetic relationships among the genera of Taxodiaceae and Cupressaceae from 28S rDNA sequences. Yi Chuan= Hereditas 25(2): 177180.Google ScholarPubMed
Li, C.-X. & Zhong, Z.-C. 2008. Effects of different water treatment on the nutrient content in soil of Taxodium ascendens seedlings. Acta Hydrobiologica Sinica 32: 154160.CrossRefGoogle Scholar
Li, L. 1989. Studies on the cytotaxonomy and systematic evolution of Taxodiaceae Warming. Acta Botanica Yunnanica 11: 113131.Google Scholar
Li, L.-C., Jiang, J.-H., Wang, Y.-Q. & Wang, G. 1997. Karyotype analysis of three species in the Cupressaceae. Acta Botanica Yunnanica 19: 391394 (in Chinese, with English summary).Google Scholar
Lickey, E.B. & Walker, G.L. 2002. Population genetic structure of baldcypress (Taxodium distichum [L.] Rich. var distichum) and pondcypress (T. distichum var imbricatum [Nutall] Croom): biogeographic and taxonomic implications. Southeastern Naturalist 1: 131148.CrossRefGoogle Scholar
Ma, Q.W., Li, F.L. & Li, C.S. 2005. The coast redwoods (Sequoia, Taxodiaceae) from the Eocene of Heilongjiang and the Miocene of Ongjiang and the Miocene of Yinnan, China. Review of Palaeobotany and Palynology 135: 117129.CrossRefGoogle Scholar
Ma, Q.-W., Ferguson, D.K., Li, F. & Li, C.-S. 2009. Leaf epidermal structure of extant plants of Cunninghamia and Taiwania (Cupressaceae sensu lato) and their taxonomic application. Review of Palaeobotany and Palynology 155: 1524.CrossRefGoogle Scholar
Maekawa, F. 1974. Origin and characteristics of Japan’s flora. Pp 3386 in Numa-Ta, N. (ed.), The Flora and Vegetation of Japan. Tokyo: Kodansha.Google Scholar
Mai, D.H. 1989. Development and regional differentiation of the European vegetation during the Tertiary. Plant Systematics and Evolution 162: 7991.CrossRefGoogle Scholar
Mai, D.H. 1995. Tertiäre Vegetationsgeschichte Europas. Jena: G. Fischer.Google Scholar
Mai, D.H. 1997. Die oberoligozänen Floren am Nordrand der Sächsischen Lausitz. Paläontographica Abt B 244: 1224.Google Scholar
Mai, D.H. & Walther, H. 1978. Die Floren der Haselbacher Serie im Weißelster-Becken (Bezirk Leipzig) DDR. – Abh. Staatl. Mus. Min. Geol. Dresden 28: 1200.Google Scholar
Mai, D.H. & Walther, H. 1985. Die obereozänen Floren des Weißelster-Beckens und seiner Randgebiete. – Abh. Staatl. Mus. Min. Geol. Dresden 33: 1260Google Scholar
Mai, D.H. & Walther, H. 1991. Die oligozänen und untermiozänen Floren NW – Sachsen und des Bitterfelder Raumes. Abhandlungen des Staatlichen Museums für Mineralogie und Geologie Dresden 38: 1230.Google Scholar
Markevich, V.S., Golovneva, L.B. & Bugdaeva, E.V. 2005. Floristic characterization of the Santonian–Campanian deposits of the Zeya–Bureya Basin (Amur Region). In Proceedings of the International Conference on the Current Problems in Paleofloristics, Paleophytogeography, and Phytostratigraphy.Google Scholar
Marois, C. & Ewel, K.C. 1983. Natural and management-related variation in cypress domes. Forest Science 29: 627640.Google Scholar
Martinetto, E., Uhl, D. & Tarabra, E. 2007. Leaf physiognomic indicators for a moist warm-temperate climate in NW Italy during the Messinian (Late Miocene). Palaeogeography, Palaeoclimatology, Palaeoeology 253: 4155.CrossRefGoogle Scholar
McLeod, K.W. & Ciravolo, T.G. 2003. Sensitivity of water tupelo (Nyssa aquatica) and bald cypress (Taxodium distichum) seedlings to manganese enrichment under water-saturated conditions. Environmental Toxicology and Chemistry 22: 29482951.CrossRefGoogle Scholar
McMillan, C. 1974. Differentiation in habitat response in Taxodium distichum, Taxodium mucronatum, Platanus occidentalis and Liquidambar styraciflua from the United States and Mexico. Vegetatio 29: 110.CrossRefGoogle Scholar
Megonigal, J.P. & Day, F.P. 1992. Effects of flooding on root and shoot production of baldcypress in large experimental enclosures. Ecology 73: 11821193.CrossRefGoogle Scholar
Meller, B. 2011. Wetland vegetation types in the Late Miocene Alpine Molasse Basin in Upper Austria. Palaeontographica Abteilung B 287: 57155.CrossRefGoogle Scholar
Middleton, B.A. 1999. Wetland Restoration, Flood Pulsing and Disturbance Dynamics. New York: Wiley.Google Scholar
Middleton, B.A. 2000. Hydrochory, seed banks and regeneration dynamics across landscape boundaries in a forested wetland. Plant Ecology 146: 169184.CrossRefGoogle Scholar
Middleton, B.A. (ed). 2002. Flood Pulsing in Wetlands: Restoring the Natural Hydrological Balance. New York: Wiley.Google Scholar
Middleton, B.A. 2009. Regeneration potential of Taxodium distichum swamps and climate change. Plant Ecology 202: 257274.CrossRefGoogle Scholar
Middleton, B.A. & McKee, K.L. 2004. Use of latitudinal gradient in bald cypress (Taxodium distichum) production to examine physiological controls of biotic boundaries and potential responses to environmental change. Global Ecology and Biogeography 13: 247258.CrossRefGoogle Scholar
Miller, C.N. 1982. Current status of Paleozoic and Mesozoic conifers. Review of Palaeobotany and Palynology 37: 99114.CrossRefGoogle Scholar
Mitsch, W.J. 1984. Seasonal patterns of a cypress dome in Florida. Pp 2533 in Ewel, K.C. & Odum, H.T. (eds.), Cypress Swamps. Gainesville, FL: University of Florida Press.Google Scholar
Morzadec-Kerfourn, M.-T. 2008. La limite Pliocene-Pleistocene en Bretagne. Boreas 6: 275283.CrossRefGoogle Scholar
Myers, R.I., Shaffer, G.P. & Llewellyn, D.W. 1995. Baldcypress (Taxodium distichum (L.) Rich) restoration in southeastern Louisiana: the relative effects of herbivory, flooding, competition and macronutrients. Wetlands 15: 141148.CrossRefGoogle Scholar
Nakamura, J. & Yamanaka, M. 1992. Vegetation history during the Quaternary in southern Shikoku, Japan. The Quaternary Research (Daiyonki-kenkyu) 31(5): 389397.CrossRefGoogle Scholar
Ohsawa, T., Nishida, H. & Nishida, M. 1993. Structure and affinities of the petrified plants from the Cretaceous of Northern Japan and Saghalien XIII Yubaristrobus gen. nov.: a new taxodiaceous cone from the upper Cretaceous of Hokkaido. Journal of Plant Research 106: 19.CrossRefGoogle Scholar
Otto, A. & Simoneit, B.R. 2001. Chemosystematics and diagenesis of terpenoids in fossil conifer species and sediment from the Eocene Zeitz formation, Saxony, Germany. Geochemica Cosmoschimica Acta. 65: 35053527.CrossRefGoogle Scholar
Otto, A., Walther, H. & Püttmann, W. 1994. Molecular composition of a leaf- and root-bearing Oligocene oxbow lake clay in the Weisselster Basin, Germany. Organic Geochemistry 22(2): 275286.CrossRefGoogle Scholar
Otto, A., Simoneit, B.R. Lesiak, M. Wilde, V. & Worobiec, G. 2001. Resin and wax biomarkers preserved in Miocene Cupressaceae s.l. from Belchatow and Lipnica Wielka, Poland. Acta Palaeobotanica 41: 195206.Google Scholar
Otto, A., Simoneit, B.R. & Rember, W.C. 2003. Resin compounds from the seed cones of three fossil conifer species from the Miocene Clarkia flora, Emerald Creek, Idaho, USA, and from related extant species. Review of Palaeobotany and Palynology 126(3–4): 225241.CrossRefGoogle Scholar
Page, C.N. 1973. Ferns, polyploids, and their bearing on the evolution of the Canarian flora. Monographia Biologicae Canariensis 4: 8388.Google Scholar
Page, C.N. 1977. An ecological survey of the ferns of the Canary Islands. Fern Gazette 11: 297312.Google Scholar
Page, C.N. 1979. The diversity of ferns: an ecological perspective. Pp 1056 in Dyer, A.F. (ed.). The Experimental Biology of Ferns. London: Academic Press.Google Scholar
Page, C.N. & Barker, M.A. 1988. Ecology and geography of hybridisation in British and Irish horsetails. Proceedings of the Royal Society of Edinburgh 86B: 265272.Google Scholar
Pezeshki, S.R., DeLaune, R.D. & Patrick, W.H. Jr. 1987. Response of bald cypress to increase in salinity in Louisiana’s Mississippi river deltaic plain. Wetlands 7: 110.CrossRefGoogle Scholar
Price, R.A. & Lowenstein, J.M. 1989. An immunological comparison of the Sciadopityaceae, Taxodiaceae, and Cupressaceae. Systematic Botany 14: 141149.CrossRefGoogle Scholar
Pulliam, W.M. 1992. Methane emissions from cypress knees in a southeastern floodplain swamp. Oecologia 91: 126128.CrossRefGoogle Scholar
Randall, C., Duryea, M., Vince, S. & Jeffery, E.R. 2005. Factors influencing stump sprouting by pondcypress (Taxodium distichum var. nutans (Ait.) Sweet). New Forests 29: 245260.CrossRefGoogle Scholar
Rybczyk, B.M., Day, S.W. & Connor, W.H. 2002. The impact of wastewater effluent on decomposition in a subsiding forested wetland. Wetlands 22: 1832.CrossRefGoogle Scholar
Sato, S. 1960. Palynological study on the Haboro coal seam of the Haboro coal-bearing formation. Journal of the Faculty of Science, Hokkaido University 4.Google Scholar
Sax, K. & Sax, H.J. 1933. Chromosome number and morphology in the conifers. Journal of the Arnold Arboretum 14: 356375.CrossRefGoogle Scholar
Schneider, R.L. & Sharitz, R.R. 1988. Hydrochory and regeneration in a bald cypress: water tupelo swamp forest. Ecology 69: 10551063.CrossRefGoogle Scholar
Schönfeld, G. 1925. Das Taxodium unserer Braunkohlenwälder. Senckenbergiana lethaea 7: 18.Google Scholar
Schopmeyer, C.S. 1974. Seeds of Woody Plants in the United States. Washington, DC: USDA.Google Scholar
Seo, B.-S., Park, C.M. & Song, K. 2010. Nitrate and phosphate removal potentials of three willow species and a bald cypress from eutrophic aquatic environments. Landscape and Ecological Engineering 6: 211217.CrossRefGoogle Scholar
Shankman, D. 1991. Forest regeneration on abandoned meanders of a coastal plain river in western Tennessee. Castanea 56: 157167.Google Scholar
Sharma, G.K. & Masden, L. 1978. Variation in baldcypress from different habitats. Journal of the Tennessee Academy of Sciences 53: 115116.Google Scholar
Shimada, M. 1953 . The pollen analyses of sonie lignite beds in the north-eastern provinces of Japan. BZCLL Society of Plant Ecology 3.Google Scholar
Smiley, C.J. & Rember, W.C. 1985. Composition of the Miocene Clarkia flora. Pp. 95112 in Smiley, C.J. (ed.), Late Cenozoic History of the Pacific Northwest. San Franscisco, CA: Pacific Division, American Association for the Advancement of Science.Google Scholar
Soltis, P.S., Soltis, D.E. & Smiley, C.J. 1992. An rbcL sequence from a Miocene Taxodium (bald cypress). Proceedings of the National Academy of Sciences of the United States of America 89: 449451.CrossRefGoogle Scholar
Spicer, R.A. 1990. Reconstructing high-latitude Cretaceous vegetation and climate. Pp 2736 in Taylor, T.N. & Taylor, E.L. (eds.), Arctic and Antarctic Compared. Antarctic Paleobiology: Its Role in the Reconstruction of Gondwana. New York: Springer.CrossRefGoogle Scholar
Spicer, R.A. & Herman, A.B. 2001. The Albian–Cenomanian flora of the Kukpowruk River, western North Slope, Alaska: stratigraphy, palaeofloristics, and plant communities. Cretaceous Research 22(1): 140.CrossRefGoogle Scholar
Srinivasan, V. 1995. Conifers from the Puddledock locality (Potomac Group, Early Cretaceous) in eastern North America. Review of Palaeobotany and Palynology 89(3–4): 257286.CrossRefGoogle Scholar
Stahle, D.W. & Cleaveland, M.K. 1992. Reconstruction and analysis of spring rainfall over the Southeastern US for the past 1000 years. Bulletin of the American Meteorological Society 73: 19471961.2.0.CO;2>CrossRefGoogle Scholar
Streng, D.R., Glitzenstein, J.S. & Harcombe, P.A. 1989. Woody seedling dynamics in an east Texas floodplain forest. Ecological Monographs 59: 177204.CrossRefGoogle Scholar
Sutter, R.D. & Kral, R. 1994. The ecology, status, and conservation of two non-alluvial wetland communities in the south Atlantic and eastern Gulf coastal plain, USA. Biological Conservation 68(3): 235243.CrossRefGoogle Scholar
Suzán-Azpiri, H., Enriquez-Peña, G. & Malda-Barrera, G. 2007. Population structure of the Mexican baldcypress (Taxodium mucronatum Ten.) in Queretaro, Mexico. Forest Ecology and Management 242: 243249.CrossRefGoogle Scholar
Sveshnikova, I.N. 1963. Atlas and a key for the identification of the living and fossil Sciadopityaceae and Taxodiaceae based on the structure of the leaf epidermis. Paleobotany 4: 207.Google Scholar
Sveshnikova, I.N. and Budantsev, L. Yu. 1960. Tertiary flora of the Kaliningrad Peninsula. III Botan Zhurn 45: 871875 (in Russian).Google Scholar
Takaso, T. & Owens, J.N. 1996. Ovulate cone, pollination drop, and pollen capture in Sequoiadendron (Taxodiaceae). American Journal of Botany 83(9): 11751180.CrossRefGoogle Scholar
Takaso, T. & Tomlinson, P.B. 1989. Cone and ovule development in Callitris (Cupressaceae–Callitroideae). Botanical Gazette 150: 387390.CrossRefGoogle Scholar
Takaso, T. & Tomlinson, P.B. 1990. Cone and ovule ontogeny in Taxodium and Glyptostrobus (Taxodiaceae – Coniferales). American Journal of Botany 77: 12091221.CrossRefGoogle Scholar
Takaso, T. & Tomlinson, P.B. 1992. Seed cone and ovule ontogeny in Metasequoia, Sequoia and Sequoiadendron (Taxodiaceae – Coniferales). Botanical Journal of the Linnean Society 109: 1537.CrossRefGoogle Scholar
Tanai, T. 1961. Neogene floral change in Japan. Journal of the Faculty of Science, Hokkaido University 4(9): 1112.Google Scholar
Tang, L.Z., Huang, B.L., Haibara, K. & Toda, H. 2008. Ecological adaptation mechanisms of roots to flooded soil and respiration characteristics of knee roots of Taxodium ascendens. Chinese Journal of Plant Ecology 32(6): 1258.Google Scholar
Teodoridis, V. & Sakala, J. 2008. Early Miocene conifer macrofossils from the Most Basin (Czech Republic). Neues Jahrbucher fur Geologie und Palaontologie Abhandlungen 250: 287312.CrossRefGoogle Scholar
Tiwari, S.P., Yadav, D., Kumar, P. & Chauhan, D.K. 2012. Comparative palynology and wood anatomy of Taxodium distichum (L.) Rich. and Taxodium mucronatum Ten. Plant Systematics and Evolution 298: 723730.CrossRefGoogle Scholar
Tremmel, B. & Martin, C.E. 2000. Survival of deep trunk-burial in baldcypress (Taxodium distichum). Transactions of the Kansas Academy of Science 103: 4850.CrossRefGoogle Scholar
Tsumara, Y., Tomaru, N., Suyama, Y. & Bacchus, S. 1999. Genetic diversity and differentiation of Taxodium in south-eastern United States using cleaved amplified polymorphic sequences. Heredity 83: 229238.CrossRefGoogle Scholar
Villanueva, D., Stahle, D.W., Luckman, B.H., et al. 2007. Potential for dendrochronology of Taxodium mucronatum Ten. and its conservation in Mexico. Ciencia Forestal en México 32(101): 937.Google Scholar
Visser, J.M. & Sasser, C.E. 1995. Changes in tree species composition, structure and growth in a bald cypress–water tupelo swamp forest, 1980–1990. Forest Ecology and Management 72: 119129.CrossRefGoogle Scholar
Wade, D., Ewel, J., Hofstetter, R. 1980. Fire in South Florida Ecosystems. Ashville, NC: US Department of Agriculture.CrossRefGoogle Scholar
Walther, H. & Kvaček, Z. 2007. Early Oligocene flora of Seifhennersdorf (Saxony). Acta Musei Nationalis Pragae Series B–Historia Naturalis 63(2–4): 85174.Google Scholar
Wang, G. & Gao, F. 2004. Effects of soil salt and water contents on growth and biomass allocation of Taxodium distichum. Chinese Journal of Applied Ecology 15: 23962400.Google Scholar
Watts, A.C., Kobziar, L.N., & Snyder, J.R. 2012. Fire reinforces structure of pondcypress (var.) domes in a wetland landscape. Wetlands 32: 439448.CrossRefGoogle Scholar
Wetzel, P.R., van der Valk, A.G. & Toth, L.A. 2001. Restoration of wetland vegetation on the Kissimmee River floodplain: potential role of seed banks. Wetlands: 21: 189198.CrossRefGoogle Scholar
Wonkka, C.L., Lafon, C.W., Hutton, C.M. & Joslin, A.J. 2013. A CSR classification of tree life history strategies and implications for ice storm damage. Oikos 122(2): 209222.CrossRefGoogle Scholar
Worobiec, G. 2003. New Fossil Floras from Neogene Deposits in the Bełchatów Lignite Mine. Warsaw: Polish Academy of Sciences.Google Scholar
Yao, X., Taylor, T.N. & Taylor, E.L. 1997. A taxodiaceous seed cone from the Triassic of Antarctica. American Journal of Botany 84(3): 343354.CrossRefGoogle Scholar

References

Axelrod, D.I. 1975. Evolution and biogeography of Madrean-Tethyan sclerophyll vegetation. Annals of the Missouri Botanical Garden 62: 280334.CrossRefGoogle Scholar
Azavedo, J. & Morgan, D.J. 1974. Fog precipitation in coastal California forests. Ecology 55: 11351141.CrossRefGoogle Scholar
Bradbury, D.C. & Firestone, M.K. 2007. Environmental control of microbial N transformation in redwood forests. Pp 203204 in Standiford, R.B., Giusti, Y., Valachovic, Y., et al. (eds.), Proceedings of the Redwood Region Forest Science Symposium: What does the Future Hold? Albany, CA: US Department of Agriculture.Google Scholar
Brunsfeld, S.J., Soltis, P.S., Soltis, D.E., Gadek, P.A. & Quinn, C.J. 1994. Phylogenetic relationships amongst the genera of the Taxodicaeae and Cupressaceae: evidence from rbcL sequences. Systematic Botany 19: 253262.CrossRefGoogle Scholar
Buchholz, J.T. & Kaeiser, M. 1940. A statistical study of two variables in the Sequoia: pollen grain size and cotyledon number. American Naturalist 74: 279283.CrossRefGoogle Scholar
Budantsev, L.Y. 1997. Late Eocene flora of Western Kamchatka. Proceedings of the Botanical Institute Russian Academy of Sciences 19: 3115.Google Scholar
Burgess, S.S.O. & Dawson, T.E. 2004. The contribution of fog to the water relations of Sequoia sempervirens (D.Don): foliar uptake and prevention of dehydration. Plant Cell and Environment 27: 10231034.CrossRefGoogle Scholar
Busing, R.T. & Fujimori, T. 2005. Biomass, production and woody detritus in an old coast redwood (Sequoia sempervirens) forest. Plant Ecology 77: 177188.CrossRefGoogle Scholar
Busing, R.T. & Takao, F. 2002. Dynamics of composition and structure in an old Sequoia sempervirens forest. Journal of Vegetation Science 13: 785792.CrossRefGoogle Scholar
Byers, H.R. 1953. Coastal redwoods and fog-drip. Ecology 34: 192193.CrossRefGoogle Scholar
Cannon, W.A. 1901. On the relation of redwoods and fog to the general precipitation in the redwood belt of California. Torreya 1: 137139.Google Scholar
Chaney, R.W. 1951. A revision of fossil Sequoia and Taxodium in western North America based on the recent discovery of Metasequoia. Transactions of the American Philosophical Society New Series 40: 171263.CrossRefGoogle Scholar
Chochiyeva, K.I. 1980. The family Taxodiaceae in the fossil floras of the Georgian-SSR USSR. Izvestya Akademii Nauk Gruzinskoi SSR Seriya Biologicheskaya 6: 6166.Google Scholar
Chu, L.-L. 1987. Looking at the origin of Sequoia sempervirens from the point of view of karyotype. Acta Botanica Yunnanica 9: 187190 (in Chinese).Google Scholar
Cooper, W.S. 1911. Redwoods, rainfall and fog. Plant World 20: 179189.Google Scholar
Dark, S.O.S. 1932. Chromosomes of Taxus, Sequoia, Cryptomeria, and Thuya. Annals of Botany 46: 965977.CrossRefGoogle Scholar
Dawson, T.E. 1998. Fog in the California redwood forest: ecosystem inputs and use by plants. Oecologia 117: 476485.CrossRefGoogle ScholarPubMed
Douhovnikoff, V., Cheng, A.M. & Dodd, R.S. 2004. Incidence, size and spatial structure of clones in second-growth stands of coast redwood, Sequoia sempervirens (Cupressaceae). American Journal of Botany 91: 11401146.CrossRefGoogle ScholarPubMed
Doyle, J. 1945. Naming of the redwoods. Nature 155: 254257.CrossRefGoogle Scholar
Eckenwalder, J.E. 1976. Re-evaluation of Cupressaceae and Taxodiaceae: a proposed merger. Madrõno 23: 237256.Google Scholar
Endlicher, I.L. 1847. Synopsis Coniferarum. Sangalli: Scheitlin & Zollikofer.Google Scholar
Endo, S. 1951. A record of Sequoia from the Jurassic of Manchuria. Botanical Gazette 113: 228230.Google Scholar
Erwin, D.M. & Schorn, H.E. 2005. Revision of the conifers from the Eocene Thunder Mountain flora, Idaho, USA. Review of Palaeobotany and Palynology 137(3–4): 125145.CrossRefGoogle Scholar
Ewing, H.A., Weathers, K.C., Templer, P.H., et al. 2009. Fog water and ecosystem function: heterogeneity in a California redwood forest. Ecosystems 12: 417443.CrossRefGoogle Scholar
Fenn, M.E., Poth, M.A. Schilling, S.L. & Grainger, D.B. 2000. Throughfall and fog deposition and nitrogen and sulphur at an N-limited and N-saturated site in the San Bernardino Mountains, southern California. Canadian Journal of Forest Research 30: 14761488.CrossRefGoogle Scholar
Florin, R. 1952. On Metasequoia, living and fossil. Bot. Notiser 105: 129.Google Scholar
Florin, R. 1955. The systematics of the Gymnosperms. Pp 323403 in A Century of Progress in the Natural Sciences. San Francisco, CA: California Academy of Sciences.Google Scholar
Garfin, G.M. 1998. Relationships between winter atmospheric circulation patterns and extreme tree growth anomalies in the Sierra Nevada. International Journal of Climatology 18: 725740.3.0.CO;2-R>CrossRefGoogle Scholar
Gonzáles, A.L., Fariña, J.M., Pinto, R., et al. 2011. Bromeliad growth and stoichiometry: responses to atmospheric nutrient supply in fog-dependent ecosystems of the hyper-arid Atacama Desert, Chile. Oecologia 167: 835845.CrossRefGoogle Scholar
Goodspeed, T.H. & Crane, M.P. 1920. Chromosome number in the Sequoias. Botanical Gazette 69: 348349.CrossRefGoogle Scholar
Grime, J.P. 2001. Plant Strategies, Vegetation Processes, and Ecosystem Processes, 2nd edn. Chichester: Wiley.Google Scholar
Grímsson, F. & Zetter, R. 2011. Combined LM and SEM study of the Middle Miocene (Sarmatian) palynoflora from the Lavanttal Basin, Austria. Part II. Pinophyta (Cupressaceae, Pinaceae and Sciadopityaceae). Grana 50: 262310.CrossRefGoogle Scholar
Grímsson, F., Denk, T. & Simonarson, L.A. 2007. Middle Miocene floras of Iceland: the early colonisation of an island? Review of Palaeobotany and Palynology 144: 181219.CrossRefGoogle Scholar
Harland, M., Francis, J.E., Brentnall, S.J. & Beerling, D.J. 2007. Cretaceous (Albian–Aptian) conifer wood from Northern Hemisphere high latitudes: forest composition and palaeoclimate. Review of Palaeobotany and Palynology 143(3–4): 167196.CrossRefGoogle Scholar
Harris, T.M. 1943. The fossil conifer Elatides williamsoni. Annals of Botany 7: 325339.CrossRefGoogle Scholar
Harris, T.M. 1979. The Yorkshire Jurassic Flora. 5. Coniferales. London: British Museum.Google Scholar
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Herman, A.B. & Spicer, R.A. 1996. Palaeobotanical evidence for a warm Cretaceous Arctic Ocean. Nature 380: 330333.CrossRefGoogle Scholar
Hiatt, C., Fernández, D. & Potter, C. 2012. Measurements of fog water deposition on the California Central Coast. Atmospheric and Climate Sciences 2: 525531.CrossRefGoogle Scholar
Hirayoshi, I. & Nakamura, Y. 1943. Chromosome numbers of Sequoia sempervirens. Bot. Zool. 11: 7375 (in Japanese).Google Scholar
Hu, Z.-A., Wang, H.-X. & Liu, C.-J. 1986. Biochemical systematics of gymnosperms (4): seed protein peptides and needle peroxidases of Taxodiaceae. Acta Phytotaxica Sinica 24: 471473.Google Scholar
Khoshoo, T.N. 1959. Polyploidy in gymnosperms. Evolution 13: 2439.CrossRefGoogle Scholar
Khoshoo, T.N. 1961. Chromosome numbers in gymnosperms. Silvae Genet 10: 19.Google Scholar
Kunzmann, L. & Mai, D.H. 2005. Conifers of the Mastixioideae-flora from Wiesa near Kamenz (Saxony, Miocene) with special consideration of leaves. Palaeontographica Abteilung B Palaophytologie 272: 67.CrossRefGoogle Scholar
Kusumi, J., Tsumura, Y., Yoshimaru, H. & Tacida, H. 2000. Phylogenetic relationships in Taxodiaceae and Cupressaceae sensu stricto based on matK gene, chiL gene, trnLtrnF IGS region, and trnL intron sequence. American Journal of Botany 87: 14801488.CrossRefGoogle Scholar
Iwauchi, A. & Hase, Y. 1992. Late Cenozoic vegetation and paleoenvironment of northern and central Kyushu, Japan – part 5. Yoshino area (Middle Pleistocene). Journal Geological Society of Japan 98: 205221.Google Scholar
Karlioğlu, N., Akkemik, U. & Caner, H. 2009. Detection of some woody plants in Late Oligocene forests of Istanbul. Turkish Journal of Agriculture and Forestry 33(6): 577584.Google Scholar
Kovar-Eder, J., Kvaček, Z., Martinetto, E. & Roiron, P. 2006. Late Miocene to Early Pliocene vegetation of southern Europe (7–4 Ma) as reflected in the megafossil plant record. Palaeogeography, Palaeoclimatology, Palaeoecology 238(1–4): 321339.CrossRefGoogle Scholar
LaPasha, C.A. & Miller, C.N. 1981. New taxodiaceous seed cones from the Upper Cretaceous of New Jersey. American Journal of Botany 68: 13741382.CrossRefGoogle Scholar
Lawson, A.A. 1904. The gametophytes, archegonia, fertilisation and embryo of Sequoia sempervirens. Annals of Botany 18: 128.CrossRefGoogle Scholar
Li, C.X. & Yang, Q. 2003. Phylogenetic relationships among the genera of Taxodiaceae and Cupressaceae from 28S rDNA sequences. Yi Chuan = Hereditas 25(2): 177180.Google ScholarPubMed
Li, L.-C. 1987. The origin of Sequoia sempervirens (Taxodiaceae) based on karyotype. Acta Botanica Yunnanica 9: 111, 187–192 (in Chinese with English abstract).Google Scholar
Li, L.-C. 1988. The parents of Sequoia sempervirens (Taxodiaceae) based on morphology. Acta Botanica Yunnanica 10: 3337 (in Chinese with English abstract).Google Scholar
Li, L.-C. 1989. Studies on the cytotaxonomy and systematic evolution of Taxodiaceae Warming. Acta Botanica Yunnanica 11: 113131 (in Chinese with English abstract).Google Scholar
Limm, E.B., Simonin, K.A., Bothman, A.G. & Dawson, T.E. 2009. Foliar water uptake: a common water acquisition strategy for plants of the redwood forest. Oecologia 161: 449459.CrossRefGoogle ScholarPubMed
Ma, Q.-W., Li, F.-L. & Li, C.-S. 2005. The coast redwoods (Sequoia, Taxodiaceae) from the Eocene of Heilongjiang and the Miocene of Yunnan, China. Review of Palaeobotany and Palynology 135: 117129.CrossRefGoogle Scholar
Maekawa, F. 1974. Origin and characteristics of Japan’s flora. Pp 3386 in Numa-Ta, N. (ed.), The Flora and Vegetation of Japan. Tokyo: Kodansha.Google Scholar
Maki, T., Ishikawa, T., Mastunaga, T., et al. 2016. Atmospheric aerosol deposition influences marine microbial communities in oligotrophic surface waters of the western Pacific Ocean. Deep Sea Research 1(118): 3745.CrossRefGoogle Scholar
Martinetto, E., Uhl, D. & Tarabra, E. 2007. Leaf physiognomic indications for a moist warm-temperate climate in NW Italy during the Messinian (Late Miocene). Palaeogeography, Palaeoclimatology, Palaeoecology 253(1–2): 4155.CrossRefGoogle Scholar
Mehra, P.N. & Khoshoo, T.N. 1956. Cytology of conifers I. Journal of Genetics 54: 165180.CrossRefGoogle Scholar
Miki, S. & Hikita, S. 1951. Probable chromosome number of fossil Sequoia and Metasequoia found in Japan. Science 113: 34.CrossRefGoogle ScholarPubMed
Miller, C.N. 1977. Mesozoic conifers. Biological Review 43: 218280.Google Scholar
Miller, C.N. 1982. Current status of Paleozoic and Mesozoic conifers. Review of Palaeobotany and Palynology 37: 99114.CrossRefGoogle Scholar
Mitchell, A.F. 1972. Conifers in the British Isles. A Descriptive Handbook. London: Her Majesty’s Stationery Office.Google Scholar
Mooney, H.A. & Dawson, T.E. 2015. Coast redwood forests. Pp 535552 in Zavaleta, E. & Mooney, H.A. (eds.), Ecosystems of California. Berkley, CA: University of California Press.Google Scholar
Morzadec-Kerfourn, M.-T. 2008. La limite Pliocene-Pleistocene en Bretagne. Boreas 6: 275283.CrossRefGoogle Scholar
Muntzing, A. 1933. Hybrid incompatibility and the origin of polyploidy. Hereditas 18: 3355.CrossRefGoogle Scholar
Nascimbene, J., Marini, L. & Ódor, P. 2012. Drivers of lichen species richness at multiple spatial scales in temperate forests. Plant Ecology & Diversity 5(3): 355363.CrossRefGoogle Scholar
Noss, R. (ed.). 2000. The Redwood Forest: History, Ecology, and Conservation of the Coast Redwoods. Washington, DC: Island Press.Google Scholar
Otto, A., Simoneit, B.R. Lesiak, M., Wilde, V. & Worobiec, G. 2001. Resin and wax biomarkers preserved in Miocene Cupressaceae s.l. from Belchatow and Lipnica Wielka, Poland. Acta Palaeobotanica 41: 195206.Google Scholar
Page, C.N. 1973. Ferns, polyploids, and their bearing on the evolution of the Canarian flora. Monographia Biologicae Canariensis 4: 8388.Google Scholar
Page, C.N. 1977. An ecological survey of the ferns of the Canary Islands. Fern Gazette 11: 297312.Google Scholar
Parker, L.R. & Balsley, J.K. 1977. Paleoecology of the coastal margin coal-forming swamps in the Upper Cretaceous Blackhawk Formation of central Utah. Abstracts with Programs: Geological Society of America 9: 11251126.Google Scholar
Parsons, J.J. 1960. Fog drip from coastal stratus, with special reference to California. Weather (London) 15: 5862.CrossRefGoogle Scholar
Petterssen, S. 1936. On the causes and the forecasting of the California fog. Journal of Aeronautical Sciences 3: 305309.CrossRefGoogle Scholar
Popescu, S.-M. 2006. Late Miocene and Early Pliocene environments in the southwestern Black Sea region from high-resolution palynology of DSDP Site 380A (Leg 42B). Palaeogeography, Palaeoclimatology, Palaeoecology 238: 6477.CrossRefGoogle Scholar
Price, R.A. & Lowenstein, J.M. 1989. An immunological comparison of the Sciadopityaceae, Taxodiaceae, and Cupressaceae. Systematic Botany 14: 141149.CrossRefGoogle Scholar
Price, R.A., Thomas, J., Straus, H., et al. 1993. Familial relationships of the conifers from rbcL sequence data. American Journal of Botany 80: 172.Google Scholar
Quinn, C.J., Price, R.A. & Gadek, P.A. 2002. Familial concepts and relationships in the conifers based on rbcL and matK sequence comparisons. Kew Bulletin 57: 513531.CrossRefGoogle Scholar
Renneberg, H., Schneider, S. & Weber, P. 1996. Analysis of uptake and allocation of nitrogen and sulphur compounds by trees in the field. Journal of Experimental Botany 47: 14911498.CrossRefGoogle Scholar
Rogers, D.L. 2000. Genotypic diversity and clone size in old-growth populations of coast redwood (Sequoia sempervirens). Canadian Journal of Botany 78: 14081419.CrossRefGoogle Scholar
Saylor, L.C. & Simons, H.A. 1970. Karyology of Sequoia sempervirens: karyotype and accessory chromosomes. Cytologia 35: 294303.CrossRefGoogle Scholar
Schlarbaum, S.E. & Tsuchiya, T. 1984. Cytotaxonomy and phylogeny in certain species of Taxodiaceae. Plant Systematics and Evolution 147: 2954.CrossRefGoogle Scholar
Seward, A.C. 1933. Plant Life Through the Ages. Cambridge: Cambridge University Press.Google Scholar
Shimada, M. 1953 . The pollen analyses of sonie lignite beds in the north-eastern provinces of Japan. BZCLL Society of Plant Ecology 3.Google Scholar
Sillett, S. C. 2008. Sequoia sempervirens. Redwoods Photos Tour. www.humboldt.edu/~sillett/redwoods.html.Google Scholar
Sillett, S.C. & Bailey, M.G. 2003. Effect of tree crown structure on biomass of the epiphytic fern Polypodium scouleri (Polypodicaceae) in redwood forests. American Journal of Botany 90: 255261.CrossRefGoogle ScholarPubMed
Sillett, S.C., McCune, B., Peck, J.E., Rambo, T.R. & Ruchty, A. 2000. Dispersal limitations of epiphytic lichens result in species dependent on old‐growth forests. Ecological Applications 10(3): 789799.CrossRefGoogle Scholar
Spicer, R.A. & Parrish, J.T. 1986. Paleobotanical evidence for cool north polar climates in middle Cretaceous (Albian–Cenomanian) time. Geology 14: 703706.2.0.CO;2>CrossRefGoogle Scholar
Stebbins, G.L. 1948. The chromosomes and relationships of Metasequoia and Sequoia. Science 108: 9598.CrossRefGoogle Scholar
Stebbins, G.L. 1963. Variation and Evolution in Plants. New York: Columbia University Press.Google Scholar
Stone, E.C. & Vasey, R.B. 1968. Preservation of coast redwoods on alluvial flats. Science 15: 157161.CrossRefGoogle Scholar
Sveshnikova, I.N. & Budantsev, L.J. 1969. Iskopaemye flory Arktiki, I (Fossil Floras of the Arctic, I). Leningrad: Nauka (in Russian).Google Scholar
Takaso, T. & Tomlinson, P.B. 1992. Seed cone and ovule ontogeny in Metasequoia, Sequoia and Sequoiadendron (Taxodiaceae – Coniferales). Botanical Journal of the Linnean Society. 109: 1537.CrossRefGoogle Scholar
Tanai, T. 1961. Neogene floral change in Japan. Journal of the Faculty of Science, Hokkaido University 4(9): 1112.Google Scholar
Templer, P.H., Ewing, H., Weathers, K., Dawson, T. & Forestone, M. 2006. Fog as a potential source of nitrogen for coastal redwood forest ecosystems. American Geophysical Union Annual Meeting. Moscone Center, San Francisco, CA.Google Scholar
Templer, P.H., Weather, K.C., Lindsey, A., Lenoir, K. & Scott, L. 2015. Atmospheric inputs and nitrogen saturation status in and adjacent to Class I wilderness areas of the northeastern United States. Oecologia 177: 515.CrossRefGoogle Scholar
Teodoridis, V. & Sakala, J. 2008. Early Miocene conifer macrofossils from the Most Basin (Czech Republic). Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen 250: 287312.CrossRefGoogle Scholar
Thornburgh, D.A., Noss, R.F. Angelides, D.P., et al. 2000. Managing redwoods. Pp 229261 in Noss, R.F. (ed), The Redwood Forest: History, Ecology and Conservation of the Coast Redwoods. Washington, DC: Island Press.Google Scholar
Urban, D.L., Miler, C., Halpin, P.N. & Stephenson, N.L. 2000. Forest gradient response in Sierran landscapes: the physical template. Landscape Ecology 15: 603620.CrossRefGoogle Scholar
Vakhrameev, V.A. 1991. Jurassic and Cretaceous Floras and Climates of the Earth. Cambridge: Cambridge University Press.Google Scholar
Waller, D.M. 2000. The redwood forest: history, ecology, and conservation of the coast redwoods – review. Ecology 81: 35523553.CrossRefGoogle Scholar
Waring, R.H. & Franklin, J.F. 1979. Evergreen coniferous forests of the Pacific Northwest. Science 204: 13801386.CrossRefGoogle ScholarPubMed
Whitmore, T.C. 1975. Tropical Rainforest of the Far East. Oxford: Clarendon Press.Google Scholar
Whitmore, T.C. & Page, C.N. 1980. A monograph of Agathis. Plant Systematics and Evolution 135: 4169.CrossRefGoogle Scholar
Willett, T.R. 2001. Spiders and other arthropods as indicators of old-growth versus logged redwood stands. Restoration Ecology 9: 410420.CrossRefGoogle Scholar
Williams, C.B. & Sillett, S.C. 2007. Epiphyte communities of redwood (Sequoia sempervirens) in northwestern California. The Bryologist 110: 420452.CrossRefGoogle Scholar
Yasui, K. 1946. On polyploidy in the genus Sequoia. Japanese Journal of Genetics 21: 910 (in Japanese).Google Scholar

References

Agee, J.K. 1998. The landscape ecology of Western forest fire regimes. Northwest Science 72: 2434.Google Scholar
Anderson, M.A., Graham, R.C., Alyanakian, G.J. & Martynn, D.Z. 1995. Late summer water status of soils and weathered bedrock in a giant sequoia grove. Soil Science 160: 415422.CrossRefGoogle Scholar
Anderson, R.S. 1990. Modern pollen rain within and adjacent to two giant sequoia (Sequoiadendron giganteum) groves, Yosemite and Sequoia national parks, California. Canadian Journal of Forest Research 20(9): 12891305.CrossRefGoogle Scholar
Arno, S.F. 1973. Discovering Sierra Trees. Three Rivers, CA: Sequoia Natural History Association.Google Scholar
Arnold, C.A. & Lowther, J.S. 1955. A new Cretaceous conifer from Alaska. American Journal of Botany 42: 522528.CrossRefGoogle Scholar
Axelrod, D.I. 1998. The Eocene Thunder Mountain flora of central Idaho. University of California Publications in Geological Sciences 142: 161.Google Scholar
Barker, P.C.J. 1992. Autecology of Phylocladus and Andopetalum in Tasmania. Hobart: Forestry Commission, Tasmania.Google Scholar
Beaty, R.M. & Taylor, A.H. 2001. Spatial and temporal variation of fire regimes in a mixed conifer forest landscape, Southern Cascades, California, USA. Journal of Biogeography 28: 955966.CrossRefGoogle Scholar
Brown, P.B., Hughes, M.K., Swetnam, T.W. & Caprio, A.R. 1992. Giant sequoia ring-width chronologies from the central Sierra Nevada. Tree-Ring Bulletin 52: 114.Google Scholar
Brunsfeld, S.J., Soltis, P.S., Soltis, D.E., Gadek, P.A. & Quinn, C.J. 1994. Phylogenetic relationships amongst the genera of the Taxodicaeae and Cupressaceae: evidence from rbcL sequences. Systematic Botany 19: 253262.CrossRefGoogle Scholar
Buchholz, J.T. 1939. The generic segregation of the Sequoias. American Journal of Botany 26: 535538.CrossRefGoogle Scholar
Buchholz, J.T. & Kaeiser, M. 1940. A statistical study of two variables in the Sequoias: pollen grain size and cotyledon number. American Naturalist 74: 279283.CrossRefGoogle Scholar
Budantsev, L.Y. 1997. Late Eocene flora of western Kamchatka. Proceedings of the Botanical Institute Russian Academy of Sciences 19: 3115.Google Scholar
Cayan, D.R., Kammerdiener, S.A., Dettinger, M.D., Caprio, J.M. & Peterson, D.H. 2001. Changes in the onset of spring in the western United States. Bulletin of the American Meteorological Society 82(3): 399416.2.3.CO;2>CrossRefGoogle Scholar
Chandler, M.E.J. 1978. Supplement to the Lower Tertiary Floras of Southern England. Leiden: Brill.CrossRefGoogle Scholar
Chaney, R.W. 1951. A revision of fossil Sequoia and Taxodium in western North America based on the recent discovery of Metasequoia. Transactions of the American Philosophical Society New Series 40: 171263.CrossRefGoogle Scholar
Chelidze, L.T. & Kvavadze, E.V. 1987. The family Taxodiaceae in Meotian flora of Western Georgia. Bulletin of the Georgia Academy of Sciences 125(2): 426427 (in Russian).Google Scholar
Chin, A.R.O. & Sillett, S.C. 2016. Phenotypic plasticity of leaves enhances water-stress tolerance and prompts hydraulic conductivity in a tall conifer. American Journal of Botany 103: 796807.CrossRefGoogle Scholar
Chochieva, K.I. 1980. The family Taxodiaceae in the fossil floras of the Georgian-SSR USSR. Izvestya Akademii Nauk Gruzinskoi SSR Sseriya Biologicheskaya 6: 6166.Google Scholar
Collins, B.M., Kelly, M., Van Wagtendonk, J.W., & Stephens, S.L. 2007. Spatial patterns of large natural fires in Sierra Nevada wilderness area. Landscape Ecology 2: 545557.CrossRefGoogle Scholar
Collins, L. & Burns, B. 2001. The dynamics of Agathis australisNothofagus truncata forest in the Hapuakohe Ecological District, Waikato region, New Zealand. New Zealand Journal of Botany 39: 423433.CrossRefGoogle Scholar
Dilsaver, L.M. & Tweed, W.C. 1990. Challenge of the Big Trees. Three Rivers, CA: Sequoia Natural History Association.Google Scholar
Eckenwalder, J.E. 1976. Re-evaluation of Cupressaceae and Taxodiaceae: a proposed merger. Madrõno 23: 237256.Google Scholar
Engbeck, J.H. 1976. The Enduring Giants. Berkley, CA: University of California Press.Google Scholar
Farjon, A. & Page, C.N. (eds.) 1999. Conifers: Status Survey and Conifer Action Plan. IUCN/SSC Conifer Specialist Group Report. Gland: IUCN.Google Scholar
Finney, M.A. & Martin, R.E. 1989. Fire history in a Sequoia sempervirens forest at Salt point State Park, California. Canadian Journal of Forest Research 19(11): 14511457.CrossRefGoogle Scholar
Florin, R. 1952. On Metasequoia, living and fossil. Bot. Notiser 105: 129.Google Scholar
Florin, R. 1955. The systematics of the Gymnosperms. Pp 323403 in A Century of Progress in the Natural Sciences. San Francisco, CA: California Academy of Sciences.Google Scholar
Garfin, G.M. 1998. Relationships between winter atmospheric circulation patterns and extreme tree growth anomalies in the Sierra Nevada. International Journal of Climatology 18: 725740.3.0.CO;2-R>CrossRefGoogle Scholar
Graber, D.M. 1997. Management of Sequoiadendron giganteum and Sequoia sempervirens forests in the reserves of California: considerations of ecology and conservation. Tropics 6(4): 429434.CrossRefGoogle Scholar
Grime, J.P. 1979. Plant Strategies and Vegetation Processes. New York: Wiley.Google Scholar
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Hartesveldt, R.J. 1964. Fire ecology of the giant sequoias: controlled fires may be one solution to survival of the species. Natural History Magazine 73: 1219.Google Scholar
Hartesveld, R.J. & Harvey, H.T. 1967. The fire ecology of sequoia regeneration. Pp 65–77 in Proceedings of the Tall Timbers Fire Ecology Conference.Google Scholar
Harvey, H.T., Shellhammer, H.S. & Stecker, R.E. 1980. Giant Sequoia Ecology: Fire and Reproduction. Washington, DC: US Department of the Interior, National Park Service.Google Scholar
Hernández-Castillo, G.R., Stockey, R.A. & Beard, G. 2005. Taxodiaceaous pollen cones from the Early Tertiary of British Columbia, Canada. International Journal of Plant Sciences 166: 339346.CrossRefGoogle Scholar
Hu, Z.-A., Wang, H.-X. & Liu, C.-J. 1986. Biochemical systematics of Gymnosperms (4): seed protein peptides and needle peroxidases of Taxodiaceae. Acta Phytotaxica Sinica 24: 471473.Google Scholar
Hughes, M.K. & Brown, P.M. 1992. Drought frequency in central California since 101 B.C. recorded in giant sequoia tree rings. Climatic Dynamics 6: 161167.CrossRefGoogle Scholar
Hughes, M.K. & Díaz, H.F. 2008. Climate variability and change in the drylands of Western North America. Global and Planetary Change 64(3–4): 111118.CrossRefGoogle Scholar
Kilgore, B.M. 1973. The ecological role of fire in Sierran conifer forests: its application to National Park management. Quaternary Research 3: 469513.CrossRefGoogle Scholar
Kilgore, B.M. & Biswell, H.H. 1971. Seedling germination following fire in a giant sequoia forest. California Agriculture 25: 810.Google Scholar
Kilgore, B.M. & Sando, R.W. 1975. Crown-fire potential in a sequoia forest after prescribed burning. Forest Science 21: 8387.Google Scholar
Kilgore, B.M. & Taylor, D. 1979. Fire history of a Sequoia–mixed conifer forest. Ecology 60: 129142.CrossRefGoogle Scholar
Kitanov, G. 1984. Pliocene flora composition in the Gotce Delchev region. Fitologiya 25: 4170.Google Scholar
Kusumi, J., Tsumura, Y., Yoshimaru, H. & Tacida, H. 2000. Phylogenetic relationships in Taxodiaceae and Cupressaceae sensu stricto based on matK gene, chiL gene, trnLtrnF IGS region, and trnL intron sequence. American Journal of Botany 87: 14801488.CrossRefGoogle Scholar
Li, C.X. & Yang, Q. 2003. Phylogenetic relationships among the genera of Taxodiaceae and Cupressaceae from 28S rDNA sequences. Yi Chuan= Hereditas 25(2): 177180.Google ScholarPubMed
Li, L. 1989. Studies on the cytotaxonomy and systematic evolution of Taxodiaceae Warming. Acta Botanica Yunnanica 11: 113131.Google Scholar
Li, L.C. 1993. Studies on the karyotype and systematic position of Larix Mill. (Pinaceae). Acta Phytotaxonomic Sinica 31: 405412.Google Scholar
Li, Z.X. & Powell, C.McA. 2001. An outline of the palaeogeographic evolution of the Australasian region since the beginning of the Neoproterozoic. Earth-Science Reviews 53: 237277.CrossRefGoogle Scholar
Lindenmayer, D.B. & Franklin, J.F. 2002. Conserving Forest Biodiversity: A Comprehensive Multiscaled Approach. Washington, DC: Island Press.Google Scholar
Matthes, F. & Fryxell, F. 1965. Glacial Reconnaissance of Sequoia National Park California: Characteristics and Distribution of the Ancient Glaciers in the Most Southerly National Park of the Sierra Nevada. Washington, DC: US Government Printing Office.CrossRefGoogle Scholar
Miller, C. 1977. Mesozoic conifers. Biological Review 43: 218280.Google Scholar
Miller, C. & Urban, D. 2000. Interactions between forest heterogeneity and surface fire regimes in the southern Sierra Nevada. Canadian Journal of Forest Research 29: 202212.CrossRefGoogle Scholar
Minnich, R., Barbour, M., Burk, J. & Sosa-Ramírez, J. 2000. Californian mixed-conifer forests under unmanaged fire regimes in the Sierra San Pedro Martir, Baja California, Mexico. Journal of Biogeography 27: 105129.CrossRefGoogle Scholar
Mitchell, A.F. 1972. Conifers in the British Isles. A Descriptive Handbook. London: Her Majesty’s Stationery Office.Google Scholar
Odion, D.C. & Hanson, C.T. 2006. Fire severity in conifer forests of the Sierra Nevada, California. Ecosystems 9: 11771189.CrossRefGoogle Scholar
Page, C.N. 1979. The diversity of ferns: an ecological perspective. Pp 1056 in Dyer, A.F. (ed.), The Experimental Biology of Ferns. London: Academic Press.Google Scholar
Page, C.N. 2002. The role of natural disturbance regimes in pteridophyte conservation management. Fern Gazette 16: 284289.Google Scholar
Pole, M. 1995. Late Cretaceous macrofloras of eastern Otago, New Zealand: gymnosperms. Australian Systematic Botany 8: 10671106.CrossRefGoogle Scholar
Price, R.A. & Lowenstein, J.M. 1989. An immunological comparison of the Sciadopityaceae, Taxodiaceae, and Cupressaceae. Systematic Botany 14: 141149.CrossRefGoogle Scholar
Ross, D.C. 1958. Igneous and metamorphic rocks of parts of Sequoia and Kings Canyon National Parks, California: California Division of Mines and Geology Special Report 53.Google Scholar
Rundel, P.W. 1971. Community structure and stability in the giant sequoia groves of the Sierra Nevada, California. American Midland Naturalist 85: 478492.CrossRefGoogle Scholar
Rundel, P.W. 1972. An annotated check list of the groves of Sequoiadendron giganteum in the Sierra Nevada, California. Madrõno 21(5): 319328.Google Scholar
Schlarbaum, S.E. & Tsuchiya, T. 1984. Cytotaxonomy and phylogeny in certain species of Taxodiaceae. Plant Systematics and Evolution 147: 2954.CrossRefGoogle Scholar
Serbet, R. & Stockey, R.A. 1991. Taxodiaceous pollen cones from the Upper Cretaceous (Horseshoe Canyon Formation) of Drumheller, Alberta, Canada. Review of Paleobotany and Palynology 70: 6776.CrossRefGoogle Scholar
Seward, A.C. 1926. The Cretaceous plant-bearing rocks of Western Greenland. Philosophical Transactions of the Royal Society of London B 215: 57175.Google Scholar
Seward, A.C. 1933. Plant Life Through the Ages. Cambridge: Cambridge University Press.Google Scholar
Shellhammer, H.S. & Shellhammer, T.H. 2006. Giant sequoia (Sequoiadendron giganteum [Taxodiaceae]) seedling survival and growth in the first four decades following managed fires. Madrõno 53: 342350.CrossRefGoogle Scholar
Sillett, S.C., Spickler, J.C. & Van Pelt, R. 2000. Crown structure of the world’s second largest tree. Madrõno 47: 127133.Google Scholar
Srinivasan, V. & Friis, E.M. 1989. Taxodiaceous conifers from the Upper Cretaceous of Sweden. Biologiske Skrifter 35: 157.Google Scholar
Stark, N. 1968. The environmental tolerance of the seedling stage of Sequoiadendron giganteum. American Midland Naturalist 80: 8495.CrossRefGoogle Scholar
Stebbins, G.L. 1948. The chromosomes and relationships of Metasequoia and Sequoia. Science 108: 9598.CrossRefGoogle ScholarPubMed
Stephens, S.L. & Collins, B.M. 2004. Fire regimes of mixed conifer forests in the north-central Sierra Nevada at multiple spatial scales. Northwest Science 78: 1223.Google Scholar
Stephens, S.L. & Finney, M.A. 2002. Prescribed fire mortality of Sierra Nevada mixed conifer tree species: effects of crown damage and forest floor combustion. Forest Ecology and Management 162: 261271.CrossRefGoogle Scholar
Stephens, S.L. & Moghaddas, J. 2005. Silvicultural and reserve impacts on potential fire behaviour and forest conservation: twenty five years of experience from Sierra Nevada mixed conifer forests. Biological Conservation 126: 369379.CrossRefGoogle Scholar
Stephens, S.L., Dulitz, D.J. & Martin, R.E. 1999. Giant sequoia regeneration in group selection openings in the southern Sierra Nevada. Forest Ecology and Management 120: 8995.CrossRefGoogle Scholar
Stephenson, N.L., Parsons, D.J. & Swetnam, T.W. 1991. Restoring natural fire to the sequoia–mixed conifer forest: should intense fire play a role? Pp 321–337 in Proceedings of the Tall Timbers Fire Ecology Conference.Google Scholar
Swetnam, T.W. 1993. Fire history and climate change in giant sequoia groves. Science 262: 885888.CrossRefGoogle ScholarPubMed
Takaso, T. & Owens, J.N. 1996. Cone, pollination drop, and pollen capture in Sequoiadendron (Taxodiaceae). American Journal of Botany 83: 11751180.CrossRefGoogle Scholar
Takaso, T. & Tomlinson, P.B. 1992. Seed cone and ovule ontogeny in Metasequoia, Sequoia and Sequoiadendron (Taxodiaceae – Coniferales). Botanical Journal of the Linnean Society 109: 1537.CrossRefGoogle Scholar
Teodoridis, V. & Sakala, J. 2008. Early Miocene conifer macrofossils from the Most Basin (Czech Republic). Neues Jahrbuch fur Geologie und Palaontologie-Abhandlungen 250(3): 287.CrossRefGoogle Scholar
Turner, J.M. 1994. Sclerophylly: primarily protective ? Functional Ecology 8: 669675.CrossRefGoogle Scholar
Turner, M.G. & Dale, V.H. 1998. Comparing large, infrequent disturbances: what have we learned ? Ecosystems 1: 493496.CrossRefGoogle Scholar
Vakhrameev, V.A. 1991. Jurassic and Cretaceous Floras and Climates of the Earth. Cambridge: Cambridge University Press.Google Scholar
Van de Water, K. & North, M. 2011. Stand structure, fuel loads, and behaviour in riparian and upland forests, Sierra Nevada Mountains, USA: a comparison of current and reconstructed conditions. Forest Ecology and Management 262: 215228.CrossRefGoogle Scholar
Van Wagtendonk, J. 1998. Fuel bed characteristics of Sierra Nevada conifers. Western Journal of Applied Forestry 13: 7384.CrossRefGoogle Scholar
Wagener, W.W. 1961. Past fire incidence in Sierra Nevada forests. Journal of Forestry 59: 739748.Google Scholar
Wang, F.H. & Chien, N.F. 1964. Embryogeny of Metasequoia. Journal of Integrative Plant Biology 12(3).Google Scholar
Watt, A.S. 1947. Pattern and process in the plant community. Journal of Ecology 35: 122.CrossRefGoogle Scholar
Whitmore, T.C. 1975. Tropical Rainforest of the Far East. Oxford: Clarendon Press.Google Scholar
Whitmore, T.C. & Page, C.N. 1980. A monograph of Agathis. Plant Systematics and Evolution 135: 4169.CrossRefGoogle Scholar
Willard, D. 2000. A Guide to the Sequoia Groves of California. Yosemite, CA: Yosemite Natural History Association.Google Scholar
York, R.A., Battles, J.J., Eschtruth, A.K., & Schurr, F.G. 2011. Giant sequoia (Sequoiadendron giganteum) regeneration in experimental canopy gaps Restoration Ecology 19: 1423.CrossRefGoogle Scholar
York, R.A., Fuchs, D., Batttles, J.J. & Stephens, S.L. 2010. Radial growth responses to gap creation in large, old Sequoiadendron giganteum. Applied Vegetation Science 13: 498509.CrossRefGoogle Scholar
York, R.A., Thomas, Z. & Restanio, J. 2009. Influence of ash substrate proximity on growth and survival of planted mixed-conifer seedlings. Western Journal of Applied Forestry 24: 117123.CrossRefGoogle Scholar
Zinke, P.J. & Crocker, R.L. 1962. The influence of giant sequoia on soil properties. Forest Science 8(1): 211.Google Scholar

References

Archibald, J.D. 2011. Extinction and Radiation: How the Fall of Dinosaurs Led to the Rise of Mammals. Baltimore, MD: Johns Hopkins University Press.CrossRefGoogle Scholar
Arnold, C.A. & Lowther, J.S. 1955. A new Cretaceous conifer from Northern Alaska. American Journal of Botany 42: 522528.CrossRefGoogle Scholar
Axelrod, D.I. 1986. Cenozoic history of some western American pines. Annals of the Missouri Botanical Garden 73: 565641.CrossRefGoogle Scholar
Axelrod, D.I. 1987 The Late Oligocene Creede Flora, Colorado. Berkeley, CA: University of California Press.Google Scholar
Axelrod, D.I. 1988. An interpretation of high montane conifers in western Tertiary floras. Paleobiology 14(3): 301306.CrossRefGoogle Scholar
Baikovskaya, T.N. 1956. Upper Cretaceous floras of northern Asia. Palaeobotanica 2: 49181.Google Scholar
Basinger, J.F. 1981. The vegetative body of Metasequoia milleri from the Middle Eocene of southern British Columbia. Canadian Journal of Botany 59: 23792410.CrossRefGoogle Scholar
Basinger, J.F. 1984. Seed cones of Metasequoia milleri from the Middle Eocene of southern British Columbia. Canadian Journal of Botany 62: 281289.CrossRefGoogle Scholar
Basinger, J.F. 1991. The fossil forests of the Buchanan Lake Formation (early Tertiary), Axel Heiberg Island, Canadian High Arctic: preliminary floristics and paleoclimate. Geological Survey of Canada Bulletin 403: 3966.Google Scholar
Battles, J.J., Armento, J.J., Vann, D.R., et al. 2002. Vegetation composition, structure and biomass of two unpolluted watersheds in the Cordillera de Piuchue, Chiloé Island, Chile. Plant Ecology 158: 519.CrossRefGoogle Scholar
Bechtel, A., Sachsenhofer, R.F., Markic, M., et al. 2003. Paleoenvironmental implications from biomarker and stable isotope investigations on the Pliocene Velenje lignite seam (Slovenia). Organic Geochemistry 34(9): 12771298.CrossRefGoogle Scholar
Beering, D.J. & Woodward, F.I. 2001. Vegetation and the Terrestrial Carbon Cycle: Modelling the First 4000 Million Years. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Beerling, D.J. & Osborne, C.P. 2002. Physiological ecology of Metasequoia polar forests in a high CO2 environment. Annals of Botany 89: 111.CrossRefGoogle Scholar
Berner, R.A. & Kothavala, Z. 2001. GEOCARB III: a revised model of atmospheric CO2 over Phanerozoic time. American Journal of Science 301(2): 182204.CrossRefGoogle Scholar
Blokhina, N.I. 1982. Dopointel’nyye dannyye o paleogena ide Metasequoia klerkiana (Taxodiaceae) [Additional data on the Paleogene species Metasequoia klerkiana (Taxodiaceae)]. Botanicheskii Zhurnal 67: 988996.Google Scholar
Blokhina, N.I. 1995. Petrified wood of Metasequoia from the Miocene of Kamchatka (Korfa Bay). Paleontological Journal 29: 103112.Google Scholar
Boulter, M.C. & Kvaček, Z. 1989. The Palaeocene flora of the Isle of Mull. Palaeontological Association of London Special Papers on Palaeontology 42: 1149.Google Scholar
Brentnall, S.J., Beerling, D.J. & Osborne, C.P. 2005. Climatic and ecological determinants of leaf lifespan in polar forests of the high CO2 Cretaceous ‘greenhouse’ world. Global Change Biology 11: 21772195.CrossRefGoogle ScholarPubMed
Brinkhuis, H. S., Schouten, M.E., Collinson, A., et al. 2006. Episodic fresh surface waters in the Eocene Arctic Ocean. Nature 441: 606609.CrossRefGoogle ScholarPubMed
Brunsfeld, S.J., Soltis, P.S., Soltis, D.E., Gadek, P.A. & Quinn, C.J. 1994. Phylogenetic relationships amongst the genera of the Taxodiaceae and Cupressaceae: evidence from rbcL sequences. Systematic Botany 19: 253262.CrossRefGoogle Scholar
Budantsev, L.Y. 1997. Late Eocene flora of Western Kamchatka. Proceedings of the Botanical Institute of the Russian Academy of Sciences 19: 3115.Google Scholar
Canright, J.E. 1972. A first report on the occurrence of Metasequoia in the middle Miocene of Taiwan. American Journal of Botany 59: 660.Google Scholar
Cantrill, D.J. & Poole, I. 2002. Cretaceous patterns of floristic change in the Antarctic Peninsula. Pp 141152 in Crame, J.A. & Owen, A.W. (eds.), Palaeobiogeography and Biodiversity Change: The Ordovician and Mesozoic-Cenozoic Radiations. London: Geological Society of London.Google Scholar
Chaney, R.W. 1947. Tertiary centers and migration routes, in origin and development of natural floristic areas with special reference to North America. Ecological Monographs 17(2): 139148.CrossRefGoogle Scholar
Chaney, R.W. 1951. A revision of fossil Sequoia and Taxodium in western North America based on the recent discovery of Metasequoia. Transactions of the American Philosophical Society New Series 40: 171263.CrossRefGoogle Scholar
Chochiyeva, K.I. 1968. Novye dannye o przdnepliotsenovoi – postpliosenovi rastitel’nosti Zapadnoi Gruzii. Bulletin Academy of Science Georgia SSR 52: 219222 (in Russian).Google Scholar
Chochiyeva, K.I. 1975. Khvarbetskiy Iskopayemyy Khvoynyy Les. [The Khvarbetian Fossil Coniferous Forest]. Tiflis: Metsniyereba.Google Scholar
Chochiyeva, K.I. 1980. The family of Taxodiaceae in the fossil flora of Georgia. Izvestiya Akademii Nauk Gruzinsloi SSR Seriya Biologicheskaya (Bulletin of the Academy of Sciences of the Georgian Soviet Socialist Republic, ser. Biological) 6(1): 6166 (in Russian, with English summary).Google Scholar
Chu, K. & Cooper, W.S. 1950. An ecological reconnaissance in the native home of Metasequoia glyptostroboides. Ecology 31: 260278.CrossRefGoogle Scholar
Chu, L.-L. 1987. Looking at the origin of Sequoia sempervirens from the point of view of karyotype. Acta Botanica Yunnanica 9: 187190 (in Chinese).Google Scholar
Collinson, M.E. 1983. Palaeofloristic assemblages and palaeoecology of the lower Oligocene Bembridge marls, Hamstead Ledge, Isle of Wight. Botanical Journal of the Linnean Society 86: 177225.CrossRefGoogle Scholar
Craggs, H.J. 2005. Late Cretaceous climate signal of the Northern Pekulney range flora of northeastern Russia. Palaeogeography, Palaeoclimatology, Palaeoecology 217: 2546.CrossRefGoogle Scholar
Crane, P.R. & Lidgard, S. 1989. Angiosperm diversification and paleolatitudinal gradients in Cretaceous floristic diversity. Science 246: 675678.CrossRefGoogle ScholarPubMed
Creber, G.T. & Chaloner, W.G. 1985. Tree growth in the Mesozoic and Early Tertiary and the reconstruction of palaeoclimates. Palaeogeography, Palaeoclimatology and Palaeoecology 52: 3560.CrossRefGoogle Scholar
Daly, R.J., Jolley, D.W. & Spicer, R.A. 2011. The role of angiosperms in Palaeocene Arctic ecosystems: a palynological study from the Alaskan North Slope. Palaeogeography, Palaeoclimatology, Palaeoecology 309(3–4): 374382.CrossRefGoogle Scholar
Dawson, M. R., West, R.M., Langston, W., Jr. & Hutchison, J. H. 1976. Paleogene terrestrial vertebrates: northernmost occurrence, Ellesmere Island, Canada. Science 192(4241): 781782.CrossRefGoogle Scholar
Dickens, G.R., O’Neil, J.R., Rea, D.K. & Owen, R.M. 1995. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Palaeocene. Paleoceanography 10: 965971.CrossRefGoogle Scholar
Eberle, J.J. 2005. A new ‘tapir’ from Ellesmere Island, Arctic Canada: implications for northern high latitude palaeobiogeography and tapir palaeobiology. Palaeogeography, Palaeoclimatology, Palaeoecology 227: 311322.CrossRefGoogle Scholar
Eberle, J.J. 2006. Early Eocene Brontotheriidae (Perissodactyla) from the Eureka Sound Group, Ellesmere Island, Canadian High Arctic: implications for brontothere origins and high-latitude dispersal. Journal of Vertebrate Paleontology 26: 381386.CrossRefGoogle Scholar
Eberle, J.J. & McKenna, M.C. 2002. Early Eocene Leptictida, Pantolesta, Creodonta, Carnivora, and Mesonychidae (Mammalia) from the Eureka Sound Group, Ellesmere Island, Nunavut. Canadian Journal of Earth Sciences 39(6): 899910.CrossRefGoogle Scholar
Eberle, J., Fricke, H. & Humphrey, J. 2009. Lower-latitude mammals as year-round residents in Eocene Arctic forests. Geology 37(6): 499502.CrossRefGoogle Scholar
Eberle, J.J., Fricke, H.C., Humphrey, J.D., et al. 2010. Seasonal variability in Arctic temperatures during early Eocene time. Earth and Planetary Science Letters 296(3–4): 481486.CrossRefGoogle Scholar
Eckenwalder, J.E. 1976. Re-evaluation of Cupressaceae and Taxodiaceae: a proposed merger. Madrõno 23: 237256.Google Scholar
Endo, S. 1951. A record of Sequoia from the Jurassic of Manchuria. Botanical Gazette 113: 228230.Google Scholar
Equiza, M.A., Day, M.E. & Jagels, R. 2006a. Physiological responses of three deciduous conifers (Metasequoia glyptostroboides, Taxodium distichum and Larix laricina) to continuous light: adaptive implications for the early Tertiary polar summer. Tree Physiology 26: 353364.CrossRefGoogle ScholarPubMed
Equiza, M.A., Day, M.E., Jagels, R, & Li, X. 2006b. Photosynthetic downregulation in the conifer Metasequoia glyptostroboides growing under continuous light: the significance of carbohydrate sinks and paleoecophysiological implications. Canadian Journal of Botany 84: 14531461.CrossRefGoogle Scholar
Equiza, M.A., Jagels, R. & Cirelli, D. 2007. Differential carbon allocation in Metasequoia glyptostroboides, Taxodium distichum and Sequoia sempervirens growing under continuous light. Bulletin of the Peabody Museum of Natural History 48(2): 269280.CrossRefGoogle Scholar
Estes, R. & Hutchison, J.H. 1980. Eocene lower vertebrates from Ellesmere Island, Canadian Arctic archipelago. Palaeogeography, Palaeoclimatology, Palaeoecology 30: 325347.CrossRefGoogle Scholar
Falcon-Lang, H.J., MacRae, R.A. & Csank, A.Z. 2004. Palaeoecology of Late Cretaceous polar vegetation preserved in the Hansen Point Volcanics, NW Ellesmere Island, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology 212: 4564.CrossRefGoogle Scholar
Falder, A.B., Stockey, R.A. & Rothwell, G.W. 1999. In situ fossil seedlings of a Metasequoia-like taxodiaceous conifer from Paleocene river floodplain deposits of central Alberta, Canada. American Journal of Botany 86: 900902.CrossRefGoogle ScholarPubMed
Farjon, A. & Page, C.N. (eds.) 1999. Conifers: Status Survey and Conifer Action Plan. IUCN/SSC Conifer Specialist Group Report. Gland: IUCN.Google Scholar
Ferguson, D.K. 1967. On the phytogeography of Coniferales in the European Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology 33: 73110.CrossRefGoogle Scholar
Florin, R. 1952. On Metasequoia, living and fossil. Bot. Notiser 105: 129.Google Scholar
Flower, B.P. & Kennett, J.P. 1994. The middle Miocene climatic transition: East Antarctic ice sheet development, deep ocean circulation and global carbon cycling. Palaeogeography, Palaeoclimatology, Palaeoecology 108: 537555.CrossRefGoogle Scholar
Fowells, H.A. 1965. Silvics of Forest Trees of the United States. Washington, DC: USDA.Google Scholar
Frakes, L.A., Francis, J.E. & Sykus, J.L. 1992. Climate Models of the Phanerozoic. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Francis, J.E. 1991. The dynamics of polar fossil forests: Tertiary fossil forests of Axel Heiberg Island, Canadian Arctic Archipelago. Geological Survey of Canada Bulletin 403: 2938.Google Scholar
Frederiksen, N.O. 1994. Paleocene floral diversities and turnover events in eastern North America and their relation to diversity models. Review of Palaeobotany and Palynology 82(3–4): 225238.CrossRefGoogle Scholar
Fricke, H.C., Clyde, W.C., O’Neil, J.R. & Gingerich, P.D. 1998. Evidence for rapid climate change in North America during the latest Paleocene thermal maximum: oxygen isotope compositions of biogenic phosphate from the Bighorn Basin (Wyoming). Earth and Planetary Science Letters 160(1–2): 193208.CrossRefGoogle Scholar
Fulling, E.H. 1976. Metasequoia – Fossil and Living: an initial thirty-year (1941–1970) annotated and indexed bibliography with an historical introduction. The Botanical Review 42(3): 215315.CrossRefGoogle Scholar
Gemmill, C.E. & Johnson, K.R. 1997. Paleoecology of a late Paleocene (Tiffanian) megaflora from the northern Great Divide Basin, Wyoming. Palaios 12(5): 439448.CrossRefGoogle Scholar
Graham, A. 1999. The Tertiary history of the northern temperate element in the northern Latin American biota. American Journal of Botany 86(1): 3238.CrossRefGoogle ScholarPubMed
Greenwood, D.R. & Basinger, J.F. 1994. The paleoecology of high-latitude Eocene swamp forests from Axel Heiberg Island, Canadian High Arctic. Review of Palaeobotany and Palynology 81: 8397.CrossRefGoogle Scholar
Greenwood, D.R. & Wing, S.L. 1995. Eocene continental climates and latitudinal temperature gradients. Geology 23: 10441048.2.3.CO;2>CrossRefGoogle Scholar
Greenwood, D.R., Archibald, S.B., Mathewes, R.W. & Moss, P.T. 2005. Fossil biotas from the Okanagan Highlands, southern British Columbia and northeastern Washington State: climates and ecosystems across an Eocene landscape. Canadian Journal of Earth Sciences 42(2): 167185.CrossRefGoogle Scholar
Greguss, P. 1955. Identification of Living Gymnosperms on the Basis of Xylotomy. Budapest: Akademia Kiado.Google Scholar
Grier, C.C. & Logan, R.S. 1977. Old-growth Pseudotsuga menziesii communities of a western Oregon watershed: biomass distribution and production budgets. Ecological Monographs 47: 373400.CrossRefGoogle Scholar
Grime, J.P. 2001. Plant Strategies, Vegetation Processes, and Ecosystem Processes, 2nd edn. Chichester: Wiley.Google Scholar
Harland, M., Francis, J.E., Brentnall, S.J. & Beerling, D.J. 2007. Cretaceous (Albian–Aptian) conifer wood from Northern Hemisphere high latitudes: forest composition and palaeoclimate. Review of Palaeobotany and Palynology 143(3–4): 167196.CrossRefGoogle Scholar
Harris, A.S. 1973. Dawn redwood in Alaska. Journal of Forestry 71: 228.Google Scholar
Harris, T.M. 1943. The fossil conifer Elatides williamsoni. Annals of Botany 7: 325339.CrossRefGoogle Scholar
Harris, T.M. 1953. Conifers of the Taxodiaceae from the Wealden Formation of Belgium. Memoirs of the Royal Belgian Institute of Natural Sciences 126: 143.Google Scholar
Harris, T.M. 1979. The Yorkshire Jurassic Flora. 5. Coniferales. London: British Museum.Google Scholar
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Hase, Y. & Hatanaka, K.I. 1984. Pollen stratigraphical study of the Late Cenozoic sediments in southern Kyushu, Japan. Quaternary Research, Tokyo 23: 120.CrossRefGoogle Scholar
He, Z., Li, J., Cai, Q., Li, X. & Huang, H. 2004. Cytogenetic studies on Metasequoia glyptostroboides, a living fossil species. Genetica 122: 269276.CrossRefGoogle ScholarPubMed
Hejinowicz, A. 1973. Anatomical studies on the development of Metasequoia glyptostroboides Hu et Cheng wood. Acta Soc Acta Poloniae 42: 473491.CrossRefGoogle Scholar
Herman, A.B. 1994. A review of Late Cretaceous floras and climates of Arctic Russia. Pp 127149 in Boulter, M.C. & Fisher, H.C. (eds.), Cenozoic Plants and Climates of the Arctic. Berlin: Springer.CrossRefGoogle Scholar
Herman, A.B. & Spicer, R.A. 1995. Latest Cretaceous flora of northeastern Russia and the ‘terminal Cretaceous event’ in the Arctic. Paleontological Journal 29: 2235.Google Scholar
Herman, A.B. & Spicer, R.A. 1996. Palaeobotanical evidence for a warm Cretaceous Arctic ocean. Nature 380: 330333.CrossRefGoogle Scholar
Herman, A.B. & Spicer, R.A. 1997. New quantitative palaeoclimate data for the Late Cretaceous Arctic: evidence for a warm polar ocean. Palaeogeography, Palaeoclimatology, Palaeoecology 128: 227251.CrossRefGoogle Scholar
Herman, A.B. & Spicer, R.A. 2010. Mid-Cretaceous floras and climate of the Russian high Arctic (Novosibirsk Islands, northern Yakutia). Palaeogeography, Palaeoclimatology, Palaeoecology 295(3–4): 409422.CrossRefGoogle Scholar
Hernández-Castillo, G.R., Stockey, R.A. & Beard, G. 2005. Taxodiaceous pollen cones from the Early Tertiary of British Columbia, Canada. International Journal of Plant Sciences 166(2): 339346.CrossRefGoogle Scholar
Hopkins, D.M. (ed.). 1967. The Bering Land Bridge. Stanford, CA: Stanford University Press.Google Scholar
Hu, H.H. 1946. Notes on a Palaeogene species of Metasequoia in China. Bulletin of the Geological Society of China 26: 105107.CrossRefGoogle Scholar
Hu, H.H. 1948. How Metasequoia, the ‘living fossil’, was discovered in China. Journal of the New York Botanic Garden 49: 201207.Google Scholar
Hu, H.-H. & Cheng, W.C. 1948. On the new family Metasequoiaceae and on Metasequoia glyptostroboides, a living species of the genus Metasequoia found in Szechuan and Hupeh. Bulletin of the Fan Memorial Institute Biology, NS 1: 153161.Google Scholar
Hu, S.-Y. 1980. The Metasequoia flora and its phytogeographic significance. Journal of the Arnold Arboretum 61: 4194.CrossRefGoogle Scholar
Hu, Z.-A., Wang, H.-X. & Liu, C.-J. 1986. Biochemical systematics of Gymnosperms (4): seed protein peptides and needle peroxidases of Taxodiaceae. Acta Phytotaxica Sinica 24: 471473.Google Scholar
Ishida, S., Makinouchi, T., Nishimura, A., et al. 1980. Middle Pleistocene of Kakegawa district, central Japan. The Quaternary Research (Daiyonki-Kenkyu) 19(3): 133147.CrossRefGoogle Scholar
Iwauchi, A. & Hase, Y. 1992. Late Cenozoic vegetation and paleoenvironment of northern and central Kyushu, Japan – part 5. Yoshino area (Middle Pleistocene). Journal of the Geological Society of Japan 98: 205221.Google Scholar
Jagels, R. & Day, M.E. 2003. The adaptive physiology of Metasequoia to Eocene high-latitude environments. Pp 398429 in Hemsley, A.R. & Poole, I. (eds.), The Evolution of Plant Physiology: From Whole Plants to Ecosystems. London: Elsevier.Google Scholar
Jagels, R. & Equiza, M.A. 2005. Competitive advantages of Metasequoia in warm, high latitudes. Pp 335349 in LePage, B.A., Williams, C.J. & Yang, H. (eds.), The Geobiology and Ecology of Metasequoia; With Contributions from the 1st International Metasequoia Symposium 2002 Aug 5–7, Wuhan, Hubei, People’s Republic of China. Dordrecht: Springer.Google Scholar
Jagels, R. & Equiza, M.A. 2007. Why did Metasequoia disappear from North America but not from China? Bulletin of the Peabody Museum of Natural History 48: 281290.CrossRefGoogle Scholar
Jagels, R., Visscher, G.E., Lucas, J. & Goodell, B. 2003. Palaeo-adaptive properties of the xylem of Metasequoia: mechanical/hydraulic compromises. Annals of Botany 92: 79-88.CrossRefGoogle ScholarPubMed
Jahren, A.H. 2007. The Arctic forest of the middle Eocene. Annual Reviews of Earth Planetary Science 35: 509540.CrossRefGoogle Scholar
Jahren, A.H., LePage, B.A. & Werts, S.P. 2004. Methanogenesis in Eocene Arctic soils inferred from 13C of tree fossil carbonates. Palaeogeography, Palaeoclimatology, Palaeoecology 214: 347358.CrossRefGoogle Scholar
Johnson, K.R. 1992. Leaf-fossil evidence for extensive floral extinction at the Cretaceous–Tertiary boundary, North Dakota, USA. Cretaceous Research 13(1): 91117.CrossRefGoogle Scholar
Kingdon-Ward, F. 1954. Berried Treasure. London: Ward Lock and Co. Ltd.Google Scholar
Kohn, M.J. 1996. Predicting animal δ18O: accounting for diet and physiological adaptation. Geochimica et Cosmochimica Acta 60(23): 48114829.CrossRefGoogle Scholar
Kovar-Eder, J. & Hably, L. 2006. The flora of Mataschen: a unique plant assemblage from the late Miocene of eastern Styria (Austria). Acta Palaeobotanica Krakow 46(2): 157.Google Scholar
Kowalski, E.A. & Dilcher, D.L. 2003. Warmer paleotemperatures for terrestrial ecosystems. Proceedings of the National Academy of Sciences, USA 100: 167170.CrossRefGoogle ScholarPubMed
Kuan, C.-T. 1981. Fundamental features of the distribution of Coniferae in Sichuan. Acta Phytotaxica Sinica 14: 407420 (in Chinese).Google Scholar
Kumagi, H., Sweda, T., Hayashi, K., et al. 1995. Growth-ring analysis of Early tertiary conifer woods from the Canadian High Arctic and its paleoclimatic interpretation. Palaeogeography, Palaeoclimatology, Palaeoecology 116: 247262.CrossRefGoogle Scholar
Kunzmann, L. & Mai, D.H. 2011. The first record of fossil Metasequoia (Cupressaceae) from continental Europe. Review of Palaeobotany and Palynology 164: 247250.CrossRefGoogle Scholar
Kusumi, J., Tsumura, Y., Yoshimaru, H. & Tacida, H. 2000. Phylogenetic relationships in Taxodiaceae and Cupressaceae sensu stricto based on matK gene, chiL gene, trnLtrnF IGS region, and trnL intron sequence. American Journal of Botany 87: 14801488.CrossRefGoogle Scholar
LaPasha, C.A. & Miller, C.N. 1981. New taxodiaceous seed cones from the Upper Cretaceous of New Jersey. American Journal of Botany 68: 13741382.CrossRefGoogle Scholar
Lemoigne, Y. 1967. Paleoflore a Cupressales dans le Trias-Rhetien du contentin. Comptes Rendus de l’Academie des Sciences (Paris) 264: 715718.Google Scholar
Leng, Q. 2005. Cuticle analysis of living and fossil Metasequoia. Pp 197217 in LePage, B.A., Williams, C.J. & Yang, H. (eds.), The Geobiology and Ecology of Metasequoia; With Contributions from the 1st International Metasequoia Symposium 2002 Aug 5–7, Wuhan, Hubei, People’s Republic of China. Dordrecht: Springer.Google Scholar
Leng, Q., Yang, H., Yang, Q. & Zhou, J. 2001. Variation of cuticle micromorphology in native population of Metasequoia glyptostroboides (Taxodiaceae). Botanical Journal of the Linnean Society 136: 207219.CrossRefGoogle Scholar
LePage, B. & Basinger, J. 1989. Early Tertiary Larix from the Canadian High Arctic. Musk-Ox 37: 103109.Google Scholar
LePage, B.A., Williams, C.J. & Yang, H. (eds.) 2005. The Geobiology and Ecology of Metasequoia; With Contributions from the 1st International Metasequoia Symposium 2002 Aug 5–7, Wuhan, Hubei, People’s Republic of China. Dordrecht: Springer.Google Scholar
Lesquereux, L. 1883. Contributions to the Fossil Flora of the Western Territories, vol. 3. Washington, DC: US Government Printing Office.Google Scholar
Li, C.X. & Yang, Q. 2002. Polymorphism of ITS sequences of nuclear ribosomal DNA in Metasequoia glyptostroboides. Journal of Genetics and Molecular Biology 13(4): 264271.Google Scholar
Li, C.X. & Yang, Q. 2003. Phylogenetic relationships among the genera of Taxodiaceae and Cupressaceae from 28S rDNA sequences. Yi Chuan= Hereditas 25(2): 177180.Google ScholarPubMed
Li, H.-L. 1953. Present distribution and habitats of the conifers and taxads. Evolution 7: 245261.CrossRefGoogle Scholar
Li, H.-L. 1957. The discovery and cultivation of Metasequoia. Morris Arboretum Bulletin 8: 4953.Google Scholar
Li, J. 1999. Metasequoia: an overview of its phylogeny, reproductive biology, and ecotypic variation. Arnoldia 58: 5459.CrossRefGoogle Scholar
Li, L.-C. 1989. Studies on the cytotaxonomy and systematic evolution of Taxodiaceae Warming. Acta Botanica Yunnanica 11: 113131 (in Chinese with English abstract).Google Scholar
Li, L.-C. 1990. Two evolutionary lines of Taxodiaceae. Acta Phytotaxonomica Sinica 28: 19 (in Chinese with English abstract).Google Scholar
Li, X.-D., Huang, H.-W. & Li, J.Q. 2003. Genetic diversity of the relict plant Metasequoia glyptostroboides. Biodiversity Science 11(2): 100108 (in Chinese with English abstract).Google Scholar
Li, Y.-H. 1948. Anatomical study of the wood of ‘Shuisha’ (Metasequoia glyptostroboides Hu et Cheng). Tropical Woods 94: 2829.Google Scholar
Li, Y.Y., Chen, X.-Y., Zhang, X., et al. 2005. Genetic differences between wild and artificial populations of Metasequoia glyptostroboides Hu et Cheng (Taxodiaceae): implications for species recovery. Conservation Biology 19: 224231.CrossRefGoogle Scholar
Li, Z.X. & Powell, C.McA. 2001. An outline of the palaeogeographic evolution of the Australasian region since the beginning of the Neoproterozoic. Earth-Science Reviews 53: 237277.CrossRefGoogle Scholar
Liang, H., Chow, K.Y. & Au, C.N. 1948. Properties of a ‘living fossil’ wood (Metasequoia glyptostroboides). Wood Technology 1: 16.Google Scholar
Liu, Y.-J. & Li, C.-S. 2000. On Metasequoia in Eocene age from Liaoning Province of Northeast China. Acta Botanica Sinica 42: 873878.Google Scholar
Liu, Y.-J., Arens, N.C. & Li, C.-S. 2007. Range change in Metasequoia: relationship to palaeoclimate. Botanical Journal of the Linnean Society 154: 115127.CrossRefGoogle Scholar
Liu, Y.-S. & Basinger, J.F. 2009. Metasequoia Hu et Cheng (Cupressaceae) from the Eocene of Axel Heiberg Island, Canadian High Arctic. Palaeontographica Abteilung B-Palaophytologie 282: 6997.CrossRefGoogle Scholar
Longman, A., Dick, J. & Page, C.N. 1982. Cone induction with gibberellin for taxonomic studies in Cupressaceae and Taxodiaceae. Biologia Plantarum 24: 195201.CrossRefGoogle Scholar
López-Pujol, J., Zhang, F.M., Sun, H.Q., Ying, T.S. & Ge, S. 2011. Mountains of southern China as ‘plant museums’ and ‘plant cradles’: evolutionary and conservation insights. Mountain Research and Development 31(3): 261269.CrossRefGoogle Scholar
Ma, J. & Shao, G. 2003. Rediscovery of the first collection of the ‘living fossil’ Metasequoia glyptostroboides. Taxon 52: 585588.CrossRefGoogle Scholar
Ma, Q.-W. & Gu, F.-Q. 2000. Comparative studies on morphological features of some genera in Taxodiaceae. China Bulletin of Botany 17: 161164.Google Scholar
Ma, Q.-W., Ferguson, D.K., Li, F. & Li, C.-S. 2009. Leaf epidermal structure of extant plants of Cunninghamia and Taiwania (Cupressaceae sensu lato) and their taxonomic application. Review of Palaeobotany and Palynology 155: 1524.CrossRefGoogle Scholar
Ma, Q.W., Li, F.L. & Li, C.S. 2005. The coast redwoods (Sequoia, Taxodiaceae) from the Eocene of Heilongjiang and the Miocene of Ongjiang and the Miocene of Yinnan, China. Review of Palaeobotany and Palynology 135: 117129.CrossRefGoogle Scholar
Maekawa, F. 1974. Origin and characteristics of Japan’s flora. Pp 3386 in Numa-Ta, N. (ed.), The Flora and Vegetation of Japan. Tokyo: Kodansha.Google Scholar
Manchester, S.R., Chen, Z., Geng, B.A., Tao, J.U. 2005. Middle Eocene flora of Huadian, Jilin Province, Northeastern China. Acta Palaeobotanica Krakow 45(1): 3.Google Scholar
Manum, S.B. 1963. Some new species of Deflandrea and their probable affinity with Peridinium. Rbok-Norsk Polarinstitutt 1962: 5467.Google Scholar
Markevich, V.S., Golovneva, L.B. & Bugdaeva, E.V. 2005. Floristicheskaya kharakteristika santon-kampanskikh otlozheny Zeisko-Bureinskovo basseina – Priamur’e (summary: The Santonian Campanian flora of the Zeya-Bureya Basin – Amur Region). Pp 198206 in Akhmet’ev, M.A. & German, A.B. (eds.), Sovremennye problemy paleofl oristiki, paleofi togeografi i i fi tostratigrafi i. Moscow: GEOS.Google Scholar
Markwick, P.J. 1998. Fossil crocodilians as indicators of Late Cretaceous and Cenozoic climates: implications for using paleontological data in reconstructing microclimates. Palaeogeography, Palaeoclimatology and Palaeoecology 137: 205271.CrossRefGoogle Scholar
Maslova, N.P. 2000. New species of Metasequoia Miki (Taxodiaceae, Coniferales) from the late Paleocene of western Kamchatka. Paleontological Journal 34(1): 98104.Google Scholar
Matsuo, H. 1954. On the Miocene plant fossils from the Hokuriku Region. II. On the genus Metasequoia. Hokiriku Journal of Botany 3: 4548, 58–61 (in Japanese with English summary).Google Scholar
McIntyre, D.J. 1991. Pollen and spore flora of an Eocene forest, Eastern Axel Heiberg Island, N.W.T. Geological Survey of Canada Bulletin 403: 8398.Google Scholar
McKenna, M.C. 1975. Fossil mammals and Early Eocene North Atlantic land continuity. Annals of the Missouri Botanical Garden 62: 335353.CrossRefGoogle Scholar
Meyer, H.W. 2005. Metasequoia in the Oligocene Bridge Creek Flora of Western North America: ecological implications and the history of research. Pp 159186 in LePage, B.A., Williams, C.J. & Yang, H. (eds.), The Geobiology and Ecology of Metasequoia; With Contributions from the 1st International Metasequoia Symposium 2002 Aug 5–7, Wuhan, Hubei, People’s Republic of China. Dordrecht: Springer.Google Scholar
Meyer, H.W. & Manchester, S.R. 1997. The Oligocene Bridge Creek flora of the John Day Formation, Oregon. University of California Publications in Geological Sciences 141: 1195.Google Scholar
Miki, S. 1941. On the change of flora in eastern Asia since Tertiary period. 1. The clay and lignite beds flora in Japan with special reference to the Pinus trifoliate beds in central Hondo. Japanese Journal of Botany 11: 237303.Google Scholar
Miki, S. 1948. Metasequoia, a “living fossil”. Botanica Magazine (Tokyo) 61: 108.CrossRefGoogle Scholar
Miller, C.N. 1975. Petrified cones and needle-bearing twigs of a new taxodiaceous conifer from the Early Cretaceous of California. American Journal of Botany 62: 706713.CrossRefGoogle Scholar
Miller, C.N. 1977. Mesozoic conifers. Biological Review 43: 218280.Google Scholar
Miller, C.N. 1982. Current status of Paleozoic and Mesozoic conifers. Review of Palaeobotany and Palynology 37: 99114.CrossRefGoogle Scholar
Mitchell, A.F. 1972. Conifers in the British Isles. A Descriptive Handbook. London: Her Majesty’s Stationery Office.Google Scholar
Momohara, A. 1993. Early Pleistocene plant extinction and evolution in and around central Japan. Abstract no. 1368 in International Botanical Congress, Tokyo.Google Scholar
Momohara, A. 1994a. Floral and paleoenvironmental history from the Late Pliocene to Middle Pleistocene in and around central Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 108(3–4): 281293.CrossRefGoogle Scholar
Momohara, A. 1994b. Paleoecology and paleobiogeography of Metasequoia. Fossils 57: 2430.Google Scholar
Momohara, A. 2005. Palaeoecology and history of Metasequoia in Japan, with reference to its extinction and survival in East Asia. Pp 115156 in LePage, B.A., Williams, C.J. & Yang, H. (eds.), The Geobiology and Ecology of Metasequoia: With Contributions from the 1st International Metasequoia Symposium 2002 Aug 5–7, Wuhan, Hubei, People’s Republic of China. Dordrecht: Springer.CrossRefGoogle Scholar
Mustoe, G.E. 1985. Eocene amber from the Pacific coast of North America. Geological Society of America Bulletin 96(12): 15301536.2.0.CO;2>CrossRefGoogle Scholar
Nakamura, J. 1952. Pollen analyses from two Pliocene beds in Shikoku. Report Kochi University Natural Sciences 2: 14.Google Scholar
Nordt, L.C., Boutton, T.W., Jacob, J.S. & Mandel, R.D. 2002. C4 plant productivity and climate-CO2 variations in south-central Texas during the late Quaternary. Quaternary Research 58(2): 182188.CrossRefGoogle Scholar
Osborne, C.P. & Beerling, D.J. 2003. The penalty of a long, hot summer: photosynthetic acclimation to high CO2 and continuous light in ‘living fossil’ conifers. Plant Physiology 133: 803812.CrossRefGoogle Scholar
Osborne, C.P., Royer, D.L. & Beeerling, D.J. 2004. Adaptive role of leaf-habit in extinct polar forests. International Forestry Review 6: 181186.CrossRefGoogle Scholar
Page, C.N. 1973. Ferns, polyploids, and their bearing on the evolution of the Canarian flora. Monographia Biologicae Canariensis 4: 8388.Google Scholar
Page, C.N. 1977. An ecological survey of the ferns of the Canary Islands. Fern Gazette 11: 297312.Google Scholar
Page, C.N. 1979. The experimental biology of ferns. Pp 551579 in Dyer, A.F. (ed.), The Experimental Biology of Ferns. London: Academic Press.Google Scholar
Parrish, J.T. 1998. Interpreting Pre-Quaternary Climate from the Geologic Record. New York: Columbia University Press.Google Scholar
Parrish, J.T. & Spicer, R.A. 1988. Cretaceous (Nanushuk Group, Albian–Cenomanian) wetland environments of the North Slope, Alaska. Abstracts, Geological Society of America 30: 366.Google Scholar
Pearson, P.N. & Palmer, M.R. 2000. Atmospheric carbon dioxide concentration over the past 60 million years. Nature 406: 695699.CrossRefGoogle ScholarPubMed
Price, R.A. & Lowenstein, J.M. 1989. An immunological comparison of the Sciadopityaceae, Taxodiaceae, and Cupressaceae. Systematic Botany 14: 141149.CrossRefGoogle Scholar
Price, R.A., Thomas, J., Strauss, S.H., et al. 1993. Familial relationships of the conifers from rbcL sequence data. American Journal of Botany 80(172): 2233.Google Scholar
Quinn, C.J., Price, R.A. & Gadek, P.A. 2002. Familial concepts and relationships in the conifers based on rbcL and matK sequence comparisons. Kew Bulletin 57: 513531.CrossRefGoogle Scholar
Rasmussen, J. & Koch, E. 1963. Fossil Metasequoia from Mikines, Faroe Islands. Frooskaparvit (Annales Soc. Science Faeroensis) 12: 8396 (in Danish with English summary).Google Scholar
Read, J. & Frances, J. 1992. Responses of some Southern Hemisphere tree species to a prolonged dark period and their implications for high-latitude Cretaceous and Tertiary floras. Palaeogeography, Palaeoclimatology, Palaeoecology 99: 271290.CrossRefGoogle Scholar
Richter, S. L. & LePage, B.A. 2005. A high-resolution palynological analysis, Axel Heiberg Island, Canadian High Arctic. Pp 137158 in LePage, B.A., Williams, C.J. & Yang, H. (eds.), The Geobiology and Ecology of Metasequoia: With Contributions from the 1st International Metasequoia Symposium 2002 Aug 5–7, Wuhan, Hubei, People’s Republic of China. Dordrecht: Springer.CrossRefGoogle Scholar
Ricketts, B.D. 1991. Lower Paleocene drowned valley and barred estuaries, Canadian Arctic Islands: aspects of their geomorphological and sedimentological evolution. Clastic Tidal Sedimentology 16: 91106.Google Scholar
Rothwell, G.W. & Basinger, J.F. 1979. Metasequoia milleri n. sp., anatomically preserved pollen cones from the Middle Eocene (Allenby Formation) of British Columbia. Canadian Journal of Botany 57: 958970.CrossRefGoogle Scholar
Royer, D.L., Osborne, C.P. & Beerling, D.J. 2005. Carbon loss by deciduous trees in a CO2-rich ancient polar environment. Nature 424: 6062.CrossRefGoogle Scholar
Sakai, A. 1971. Freezing resistance of relicts from the Arcto-Tertiary flora. New Phytologist 70: 11991205.CrossRefGoogle Scholar
Schlarbaum, S.E. & Tsuchiya, T. 1984. Cytotaxonomy and phylogeny in certain species of Taxodiaceae. Plant Systematics and Evolution 147: 2954.CrossRefGoogle Scholar
Schloemer-Jaeger, A. 1958. Alttertiaere Pflanzen aus Floezcn der Broegger-halbinsel Spitzbergens. Palaeontographica Abteilung B 104: 39103.Google Scholar
Schoenhut, K. 2005. Ultrastructural preservation in Middle Eocene Metasequoia leaf tissues from the Buchanan Lake Formation. Pp 219252 in LePage, B.A., Williams, C.J. & Yang, H. (eds.), The Geobiology and Ecology of Metasequoia: With Contributions from the 1st International Metasequoia Symposium 2002 Aug 5–7, Wuhan, Hubei, People’s Republic of China. Dordrecht: Springer.CrossRefGoogle Scholar
Serbet, R. & Stockey, R.A. 1991. Taxodiaceous pollen cones from the Upper Cretaceous (Horseshoe Canyon Formation) of Drumheller, Alberta, Canada. Review of Paleobotany and Palynology 70: 6776.CrossRefGoogle Scholar
Seward, A.C. 1933. Plant Life Through the Ages. Cambridge: Cambridge University Press.Google Scholar
Shao, Q.H. 1982. Silviculture of some important tree species in China. Allgemeine Forst Zeitschrift 11: 314315.Google Scholar
Shimada, M. 1953 . The pollen analyses of sonie lignite beds in the north-eastern provinces of Japan. BZCLL Society of Plant Ecology 3.Google Scholar
Spicer, R.A. & Chapman, J.L. 1990. Climate change and the evolution of high-latitude terrestrial vegetation and floras. Trends in Ecology and Evolution 5: 279284.CrossRefGoogle ScholarPubMed
Srinivasan, V. & Friis, E.M. 1989. Taxodiaceous conifers from the Upper Cretaceous of Sweden. Biologiske Skrifter 35: 157.Google Scholar
Stebbins, G.L. 1948. The chromosomes and relationships of Metasequoia and Sequoia. Science 108: 9598.CrossRefGoogle Scholar
Stockey, R.A., Rothwell, G.W. & Falder, A.B. 2001. Diversity among taxodioid conifers: Metasequoia foxii sp. nov. from the Paleocene of central Alberta, Canada. International Journal of Plant Sciences 162: 221234.CrossRefGoogle Scholar
Sun, G., Quan, C., Sun, C.L., et al. 2005. Some new knowledge on subdivisions and age of Wuyun Formation in Jiayin of Heilongjiang, China. Journal of Jilin University (Geoogical Edition) 35(2): 137142.Google Scholar
Sunderlin, D., Loope, G., Parker, N.E. & Williams, C.J. 2011. Paleoclimatic and paleoecological implications of a Paleocene–Eocene fossil leaf assemblage, Chickaloon Formation, Alaska. Palaios 26(6): 335345.CrossRefGoogle Scholar
Sveshnikova, I.N. 1967. Late Cretaceous Coniferae from the U.S.S.R., I. Fossil Coniferae of the Viliuyian depression. Trud Bot Inst An SSSR Ser 8 Paleobotanika 6: 177203.Google Scholar
Takaso, T. & Tomlinson, P.B. 1992. Seed cone and ovule ontogeny in Metasequoia, Sequoia and Sequoiadendron (Taxodiaceae – Coniferales). Botanical Journal of the Linnean Society 109: 1537.CrossRefGoogle Scholar
Tanai, T. 1961. Neogene floral change in Japan. Journal of the Faculty of Science, Hokkaido University 4(9): 1112.Google Scholar
Tarduno, J.A., Brinkman, D.B., Renne, P.R., et al. 1998. Evidence for extreme climatic warmth from Late Cretaceous Arctic vertebrates. Science 18(5397): 22412243.CrossRefGoogle Scholar
Vakhrameev, V.A. 1991. Jurassic and Cretaceous Floras and Climates of the Earth. Cambridge: Cambridge University Press.Google Scholar
Vann, D.R. 2005. Physiological ecology of Metasequoia glyptostroboides Hu et Cheng. Pp 305333 in LePage, B.A., Williams, C.J. & Yang, H. (eds.), The Geobiology and Ecology of Metasequoia: With Contributions from the 1st International Metasequoia Symposium 2002 Aug 5–7, Wuhan, Hubei, People’s Republic of China. Dordrecht: Springer.CrossRefGoogle Scholar
Vann, D.R., Williams, C.J., & LePage, B.A. 2003. Experimental evaluation of photosystem parameters and their role in the evolution of stand structure and deciduousness in response to paleoclimate seasonality in Metasequoia glyptostroboides (Huet Cheng). Pp 431449 in Hemsley, A.R. & Poole, I. (eds.), The Evolution of Plant Physiology: From Whole Plants to Ecosystems. London: Elsevier.Google Scholar
Visscher, G.E. & Jagels, R. 2003. Separation of Metasequoia and Glyptostrobus (Cupressaceae) based on wood anatomy. IAWA Journal 24(4): 439450.CrossRefGoogle Scholar
Wang, C.-W. 1961. The forests of China, with a survey of grassland and desert vegetation. Maria Moors Cabot Foundation Publication 5: 1313.Google Scholar
Wang, F.-H. & Chien, N.-F. 1964. Embryogeny of Metasequoia. Acta Botanica Sinica 1: 241262 (in Chinese with English summary).Google Scholar
Wang, X.-Q. & Guo, B.-X. 2002. Suggestions for the protection and study of Metasequoia glyptostroboides. Hubei Forest Science and Technology 1: 2729 (in Chinese).Google Scholar
West, R.M. & Dawson, M.R. 1978. Vertebrate paleontology and the Cenozoic history of the North Atlantic region. Polarforschung 48(1–2): 103119.Google Scholar
Wilf, P. 2000. Late Paleocene–early Eocene climate changes in southwestern Wyoming: paleobotanical analysis. Geological Society of America Bulletin 112(2): 292307.2.0.CO;2>CrossRefGoogle Scholar
Wilf, P. & Labandeira, C.C. 1999. Response of plant–insect associations to Paleocene–Eocene warming. Science 284(5423): 21532156.CrossRefGoogle ScholarPubMed
Wilf, P., Cuneo, N.R., Johnson, K.R., et al. 2003. High plant diversity in Eocene South America: evidence from Patagonia. Science 300: 122125.CrossRefGoogle ScholarPubMed
Williams, C.A., Hanan, N., Scholes, R.J. & Kutsch, W. 2009. Complexity in water and carbon dioxide fluxes following rain pulses in an African savanna. Oecologia 161: 469480.CrossRefGoogle Scholar
Williams, C.J. 2005. Ecological characteristics of Metasequoia glyptostroboides. Pp 285304 in LePage, B.A., Williams, C.J. & Yang, H. (eds.), The Geobiology and Ecology of Metasequoia: With Contributions from the 1st International Metasequoia Symposium 2002 Aug 5–7, Wuhan, Hubei, People’s Republic of China. Dordrecht: Springer.CrossRefGoogle Scholar
Williams, C.J., Johnson, A.H., LePage, B.A., Vann, D.R. & Sweda, T. 2003. Reconstruction of Metasequoia forests. II: Structure, biomass, and productivity of Eocene floodplain forests in the Canadian Arctic. Paleobiology 29: 271292.2.0.CO;2>CrossRefGoogle Scholar
Wing, S.L., Alroy, J. & Hickey, L.J. 1995. Plant and mammal diversity in the Paleocene to Early Eocene of the Bighorn Basin. Palaeogeography, Palaeoclimatology, Palaeoecology 115: 117155.CrossRefGoogle Scholar
Wolfe, J.A. 1972. An interpretation of Alaskan Tertiary floras. Pp 201233 in Graham, A. (ed.). Floristics and Paleofloristics of Asia and Eastern North America. Amsterdam: Elsevier.Google Scholar
Wolfe, J.A. 1977. Paleogene floras from the Gulf of Alaska region: U.S. Geological Survey Professional Paper 997.CrossRefGoogle Scholar
Wolfe, J.A. 1978. A paleobotanical interpretation of Tertiary climates in the Northern Hemisphere. American Science 66: 694703.Google Scholar
Wolfe, J.A. 1979. Temperature parameters of humid to mesic forests of eastern Asia and relation to forests of other regions of the northern hemisphere and Australia. US Geological Survey Professional paper 1106.CrossRefGoogle Scholar
Wolfe, J.A. 1985. Distribution of major vegetational types during the Tertiary. Geophysical Monographs 32: 357375.Google Scholar
Wolfe, J.A. 1987. Late Cretaceous–Cenozoic history of deciduousness and the terminal Cretaceous event. Paleobiology 13: 215226.CrossRefGoogle Scholar
Wolfe, J.A. 1994. Tertiary climatic changes at middle latitudes of western North America. Palaeogeography, Palaeoclimatology, Palaeoecology 108: 195205.CrossRefGoogle Scholar
Wolfe, J.A. 1995. Paleoclimatic estimates from Tertiary leaf assemblages. Annual Review of Earth and Planetary Sciences 23: 119142.CrossRefGoogle Scholar
Wolfe, J.A. & Upchurch, G.R. Jr. 1987. North American nonmarine climates and vegetation during the Late Cretaceous. Palaeogeography, Palaeoclimatology, Palaeoecology 61: 3377.CrossRefGoogle Scholar
Woodward, F.I. & Kelly, C.K. 2008. Responses of global plant diversity capacity to changes in carbon dioxide concentration and climate. Ecology Letters 11(11): 12291237.CrossRefGoogle Scholar
Xi, Y.-Z. 1986. Studies on pollen morphology of Taxodiaceae. Bulletin of Botanical Research 6(3): 127144.Google Scholar
Xiong, X.Z. 1986. Palaeocene flora from the Wuyun Formation in Jiayin of Heilongjiang. Acta Palaeontologica Sinica 25(5): 571576.Google Scholar
Yamakawa, C., Momohara, A., Nunotani, T., Matsumoto, M & Watano, Y. 2008. Paleovegetation reconstruction of fossil forests dominated by Metasequoia and Glyptostrobus from the late Pliocene Kobiwako Group, central Japan. Paleontological Research 12: 167180.CrossRefGoogle Scholar
Yang, H. 2005. Biomolecules from living and fossil Metasequoia: biological and geological applications. Pp 253281 in LePage, B.A., Williams, C.J. & Yang, H. (eds.), The Geobiology and Ecology of Metasequoia:; With Contributions from the 1st International Metasequoia Symposium 2002 Aug 5–7, Wuhan, Hubei, People’s Republic of China. Dordrecht: Springer.CrossRefGoogle Scholar
Yang, H. & Jin, J.-H. 2000. Phytogeographical history and evolutionary stasis of Metasequoia: geological and genetic information contrasted. Acta Palaeontologica Sinica 39 (suppl.): 288307.Google Scholar
Yao, X., Zhou, Z. & Zhang, B. 1998. Reconstruction of the Jurassic conifer Sewardiodendron laxum (Taxodiaceae). American Journal of Botany 85: 12891300.CrossRefGoogle ScholarPubMed
Yarmolenko, A.V. & Krystofovich, A.N. 1956. Taxodiaceae. Oligotsenovaia flory gory Ashutas v Kazakhstana. Paleobotanika 1: 5159.Google Scholar
Ying, T.-S. & Li, L.-Q. 1981. Ecological distribution of endemic genera of taxads and conifers in China and neighbouring area in relation to phytogeographical significance. Acta Phytotaxonomica Sinica 14: 415425.Google Scholar
Ying, T. S., Zhang, Y. L. & Boufford, D. E. 1993. The Endemic Genera of Seed Plants of China. Beijing: Science Press.Google Scholar
Zachos, J., Oaganini, M., Sloan, I., Thomas, E. & Billups, K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292: 686693.CrossRefGoogle ScholarPubMed
Zachos, J.C., Stott, L.D. & Lohmann, K.C. 1994. Evolution of early Cenozoic marine temperatures. Palaeoceanography 9: 353387.CrossRefGoogle Scholar
Zalewska, Z. 1959. The fossil flora of Turow near Bogatinia. Coniferae: Taxodiaceae. Prace Muzeum Ziemi 3: 6973 (in Polish and English).Google Scholar
Zhilin, S.G. 1989. History of the development of the temperate forest flora in Kazakhstan (USSR) from the Oligocene to the Early Miocene. Botanical Review 55: 205.CrossRefGoogle Scholar

References

Atkinson, B.A., Rothwell, G.W., & Stockey, R.A. 2014a. Hubbardiastrobus cunninghamioides gen. et sp. nov., evidence for a Lower Cretaceous diversification of cunninghamioid Cupressaceae. International Journal of Plant Sciences 175: 256269.CrossRefGoogle Scholar
Atkinson, B.A., Rothwell, G.W. & Stockey, R.A. 2014b. Hughmillerites vancouverensis sp. nov. and the Cretaceous diversification of Cupressaceae. American Journal of Botany 101: 21362147.CrossRefGoogle ScholarPubMed
Axelrod, D.I. 1988. An interpretation of high montane conifers in western Tertiary floras. Paleobiology 14(3): 301306.CrossRefGoogle Scholar
Berry, E.W. 1903 Flora of the Matawan formation (Crosswick Clays). Bulletin for the New York Botanical Gardens 3: 45103.Google Scholar
Bosama, H.F., van Konijnenburg-van Cittert, J.H.A., van der Ham, R.W.J.M., van Amerom, H.W.J. & Hartkopf-Fröder, C. 2009. Conifers from the Santonian of Limburg, the Netherlands. Cretaceous Research 30: 483495.CrossRefGoogle Scholar
Bosama, H.F., Kunzmann, L., Kvaček, J., & Van Konijnenburg-Van Cittert, J.H.A. 2012. Revision of the genus Cunninghamites (fossil conifers), with special reference to nomenclature, taxonomy and geological age. Review of Palaeobotany and Palynology 182: 2031.CrossRefGoogle Scholar
Brink, K.S., Stockey, R.A., Beard, G. & Wehr, W.C. 2009. Cunninghamia hornbyensis sp. nov.: permineralised twigs and leaves from the Upper Cretaceous of Hornby Island, British Columbia, Canada. Review of Palaeobotany and Palynology 155: 8998.CrossRefGoogle Scholar
Brunsfeld, S.J., Soltis, P.S., Soltis, D.E., Gadek, P.A. & Quinn, C.J. 1994. Phylogenetic relationships amongst the genera of the Taxodicaeae and Cupressaceae: evidence from rbcL sequences. Systematic Botany 19: 253262.CrossRefGoogle Scholar
Budantsev, L.Y. 1997. Late Eocene flora of Western Kamchatka. Proceedings of the Botanical Institute of the Russian Academy of Sciences 19: 3115.Google Scholar
Cabaleri, N.G., Armella, C. & Silva Nieto, D.G. 2005. Saline paleolake of the Cañadón Asfalto Formation (Middle-Upper Jurassic), Cerro Cóndor, Chubut province (Patagonia), Argentina. Facies 51: 350364.CrossRefGoogle Scholar
Cai, S.-K., Yang, Z.-B., Wei, H.-T. & Zong, S.-X. 1984. The growth and ecological characteristics of Chinese fire Cunninghamia lanceolata on the river bank in North Jiangsu Province, China. Acta Botanica Sinica 26: 440447 (in Chinese with English abstract).Google Scholar
Chaw, S.-M, Zharkikh, A., Sung, H.-M., Lau, T.-C. & Li, W.-H 1997. Molecular phylogeny of extant gymnosperms and seed plant evolution: analysis of nuclear 18S rDNA sequences. Molecular Biology and Evolution 14: 5668.CrossRefGoogle Scholar
Chen, F.-X., Feng, H.-F., Xue, L., et al. 2010. Impact of ice-snow damage on nutrient distribution of a Cunninghamia lanceolata woodland. Journal of Forestry Research (Harbin) 21: 207212 (seen as abstract only).CrossRefGoogle Scholar
Chen, J., Yu, Y.-C., Wang, G.-P., et al. 1996. Analysis on growth response to fertilization in young Cunninghamia lanceolata plantation. Forest Research 9: 426430.Google Scholar
Cheng, Y., Nicholson, G. Tripp, K. & Chaw, S.-M. 2000. Phylogeny of Taxaceae and Cephalotaxaceae genera inferred from chloroplast matK gene and nuclear rDNA ITS region. Molecular Phylogenetics and Evolution 14: 353365.CrossRefGoogle Scholar
Chung, H.-H., Yen, C.-H. & Chien, K.-W. 1991. Cultivation of China-fir Cunninghamia lanceolata mycorrhizal seedlings in sandy nursery: select and propagate the effective mycorrhizal fungi. Bulletin of the Taiwan Forestry Research Institute N.S. 6: 147154.Google Scholar
Deng, S. 1998. Plant fossils from Early Cretaceous of Pingzhuan–Yuanbaoshan Basin, Inner Mongolia. Geoscience 12: 168172.Google Scholar
Deng, S. 2007. Palaeoclimatic implications of main fossil plants of the Mesozoic. Journal of Palaeogeography 9: 559574 (in Chinese with English abstract).Google Scholar
Du, B.X., Yan, D.F., Sun, B.N., et al. 2012. Cunninghamia praelanceolata sp. nov. with associated epiphyllous fungi from the upper Miocene of eastern Zhejiang, SE China and their palaeoecological implications. Review of Palaeobotany and Palynology 182: 3243.CrossRefGoogle Scholar
Eberle, J.J. & Storer, J.E. 1999. Northernmost record of brontotheres, Axel Heiberg Island, Canada: implications for age of the Buchanan Lake Formation and brontothere paleobiology. Journal of Paleontology 73(5): 979983.CrossRefGoogle Scholar
Eckenwalder, J.E. 1976. Re-evaluation of Cupressaceae and Taxodiaceae: a proposed merger. Madrõno 23: 237256.Google Scholar
Escapa, I., Cúneo, R. & Axsmith, B. 2008. A new genus of the Cupressaceae (sensu lato) from the Jurassic of Patagonia: implications for conifer megasporangiate cone homologies. Review of Palaeobotany and Palynology 151(3–4): 110122.CrossRefGoogle Scholar
Escapa, I.H., Decombeix, A.L., Taylor, E.L. & Taylor, T.N. 2010. Evolution and relationships of the conifer seed cone Telemachus: evidence from the Triassic of Antarctica. International Journal of Plant Sciences 171: 560573.CrossRefGoogle Scholar
Farjon, A. & Ortiz García, S. 2003. Cone and ovule development in Cunninghamia and Taiwania (Cupressaceae sensu lato) and its significance for conifer evolution. American Journal of Botany 90: 816.CrossRefGoogle ScholarPubMed
Farjon, A. & Page, C.N. (eds) 1999. Conifers: Status Survey and Conifer Action Plan. IUCN/SSC Conifer Specialist Group Report. Gland: IUCN.Google Scholar
Feng, Z. & Chen, C. 1985. Accumulation, distribution and cycling of nutrient elements in a subtropical Chinese fir stand. Acta Phytoecologica et Geobotanica Sinica 9: 245255.Google Scholar
Fiorillo, A.R. 2004. The dinosaurs of arctic Alaska. Scientific American 291(6): 8491.CrossRefGoogle ScholarPubMed
FIVI (Forest Inventory and Planning Institute, Vietnam). 1996. Vietnam Forest Trees. Hanoi: Agricultural Publishing House.Google Scholar
Florin, R. 1958. On the Jurassic taxads and conifers from north-western Europe and eastern Greenland. Acta Horti Bergiani 16: 257402.Google Scholar
Gadek, P.A., Alpers, D.L., Heslewood, M.M. & Quinn, C.J. 2000. Relationships within Cupressaceae sensu lato: a combined morphological and molecular approach. American Journal of Botany 87: 10441057.CrossRefGoogle Scholar
Givulescu, R. 1968. Die gattung Cunninghamia R. Br. Im unteren Pannon Rumaeniens. Neues Jahrbuch fuer Geologie und Palaeontologie Abhandlungen 130: 129132.Google Scholar
Givulescu, R. 1973. Sur quelques restes de Cunninghamia from the Neogene of Romania. Revue Roumaine de Geologie, geophysique et Geographie, serie de Geologie 17: 131133.Google Scholar
Greguss, P. 1955. Identification of Living Gymnosperms on the Basis of Xylotomy. Budapest: Akademia Kiado.Google Scholar
Ham, R., van Konijnenburg-van Cittert, J. & Nieuwenhuis, E. 2004. Cunninghamites ubaghsii (Taxodiaceae?) from the Maastrichtian type area (Late Cretaceous, SE Netherlands) discovered. Bulletin de l’Institut Royal des Sciences Naturelles de Belqique, Sciences de la Terre 74.Google Scholar
Harris, T.M. 1943. The fossil conifer Elatides williamsoni. Annals of Botany 7: 325339.CrossRefGoogle Scholar
Harris, T.M. 1953. Conifers of the Taxodiaceae from the Wealden Formation of Belgium. Memoirs of the Royal Belgian Institute of Natural Sciences 126: 143.Google Scholar
Harris, T.M. 1979. The Yorkshire Jurassic Flora. 5. Coniferales. London: British Museum.Google Scholar
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Hayata, B. 1906. On Taiwania, a new genus of Coniferae from the island of Formosa. Journal of the Linnean Society 37: 330.Google Scholar
Hayata, B. 1907. On Taiwania and its affinity to other genera. Botanical Magazine of Tokyo 21: 2127.CrossRefGoogle Scholar
He, Q., Li, J.-Y., Chen, X.-Y., et al. 2010. Types and extent of damage to Cunninghamia lanceolata plantations due to unusually heavy snow and ice in southern China. Chinese Journal of Plant Ecology 34: 195203.Google Scholar
Heer, O. 1871. Beiträge zur Kreide‐Flora, II. Zur Kreide‐Flora von Quedlinburg. Neue Denkschriften der Allgemeine Schweizerischen Gesellschaft für die gesamten Naturwissenschaften 24: 115.Google Scholar
Heer, O. 1876. Beiträge zur Jura-Flora Ostsibiriens und des Amurlandes. Bulletin de l’Académie impériale des sciences de St.-Pétersbourg, Ser. VII 22(12).Google Scholar
Hernández-Castillo, G.R., Stockey, R.A. & Beard, G. 2005. Taxodiaceous pollen cones from the Early Tertiary of British Columbia, Canada. International Journal of Plant Sciences 166(2): 339346.CrossRefGoogle Scholar
Herrera, F., Leslie, A.B., Shi, G., et al. 2016. New fossil Pinaceae from the Early Cretaceous of Mongolia. Botany 94: 885915.CrossRefGoogle Scholar
Hizumae, M. 1989. Karyomorphological studies in twelve species in the Taxodiaceae with species reference to cytotaxonomical positions of Sciadopitys verticillata. Memoirs of the Faculty of Educaton of Ehime University Ser. III Natural Science 9: 734.Google Scholar
Hizumae, M., Kondo, T., Shibata, F. & Ishoizuka, R. 2001. Flow cytometric determination of genome size in the Taxodiaceae, Cupressaceae sensu stricto and Sciadopityaceae. Cytologia (Tokyo) 66: 307311.CrossRefGoogle Scholar
Hu, Y.‐S. & Ma, R.J. 1989. Anatomy of gymnosperms endemic to China, II. Taiwania flousiana Gaussen (Taxodiaceae). Journal of Systematics and Evolution 27(2): 96104.Google Scholar
Hu, Z.-A., Wang, H.-X. & Liu, C.-J. 1986. Biochemical systematics of gymnosperms (4): seed protein peptides and needle peroxidases of Taxodiaceae. Acta Phytotaxica Sinica 24: 471473.Google Scholar
Hwang, S.Y., Lin, T.P., Ma, C.S., et al. 2003. Postglacial population growth of Cunninghamia konishii (Cupressaceae) inferred from phylogeographical and mismatch analysis of chloroplast DNA variation. Molecular Ecology 12: 26892695.CrossRefGoogle ScholarPubMed
Kimura, T. & Horiuchi, J. 1978. Cunninghamia nodensis sp. nov. from the Palaeogene Noda Group, Northeastern Japan. Proceedings of the Japanese Academy B 54: 589594.CrossRefGoogle Scholar
Kovar, J. 1982. Eine Blätter-Flora des Egerien (Ober-Oligozän) aus marinen Sedimenten der Zentralen Paratethys im Linzer Raum (Österreich). Beitr. Paläont. Österr 9: 12.Google Scholar
Kovar-Eder, J., Kvaček, Z., Martinetto, E. & Roiron, P. 2006. Late Miocene to Early Pliocene vegetation of southern Europe (7–4 Ma) as reflected in the megafossil plant record. Palaeogeography, Palaeoclimatology, Palaeoecology 238(1–4): 321339.CrossRefGoogle Scholar
Kuan, C.-T. 1981. Fundamental features of the distribution of Coniferae in Sichuan. Acta Phytotaxica Sinica 14: 407420 (in Chinese).Google Scholar
Kunzmann, L. 2001. Neue Untersuchungen an Cunninghamites oxycedrus Presl in Sternberg 1838. Feddes Repertorium 112: 421445.CrossRefGoogle Scholar
Kurmann, M.H. 1992. Exine stratification in extant gymnosperms: a review of published transmission electron micrographs. Kew Bulletin 47: 2539.CrossRefGoogle Scholar
Kusumi, J., Tsumura, Y., Yoshimaru, H. & Tacida, H. 2000. Phylogenetic relationships in Taxodiaceae and Cupressaceae sensu stricto based on matK gene, chiL gene, trnLtrnF IGS region, and trnL intron sequence. American Journal of Botany 87: 14801488.CrossRefGoogle Scholar
Kvaček, Z. 1999. An ancient Calocedrus (Cupressaceae) from the European Tertiary. Flora, Morphology, Geobotanik, Oekophysiologie 194: 237248.Google Scholar
Kvaček, Z. 2002. Late Eocene landscape, ecosystems and climate in northern Bohemia with particular reference to the locality of Kučlín near Bílina. Bulletin of the Czech Geological Survey 77(3): 217236.Google Scholar
Kvaček, Z. & Rember, W.C. 2000. Shared Miocene conifers of the Clarkia flora and Europe. Acta Universitatis Carolinae, Geologica 44: 7585.Google Scholar
Lakhanpal, R.N. 1958. The Rujada flora of west central Oregon. University of California, Publications in Geological Sciences 35, 166.Google Scholar
LaPasha, C.A. & Miller, C.N. 1981. New taxodiacaeous seed cones from the Upper Cretaceous of New Jersey. American Journal of Botany 68: 13741382.CrossRefGoogle Scholar
LePage, R.A. & Basinger, J.F. 1989. Cunninghamia (Taxodiaceae) from the early Tertiary of the Canadian High Arctic. American Journal of Botany 76 (6 suppl.): 168.Google Scholar
Li, H.-J., Liu, P., Zhang, Z.-X., et al. 2010. Ice and snow damage and subsequent sprouting of Cunninghamia lanceolata (Taxodiaceae) plantation and their related-factors analysis. Acta Botanica Yunnanica 32: 158166.CrossRefGoogle Scholar
Li, L. 1989. Studies on the cytotaxonomy and systematic evolution of Taxodiaceae Warming. Acta Botanica Yunnanica 11: 113131.Google Scholar
Liu, K.B. 1988. Quaternary history of the temperate forests of China. Quaternary Science Reviews 7(1): 120.CrossRefGoogle Scholar
Liu, T.S. & Su, H.J. 1983. Biosystematic Studies on Taiwania and Numerical Evaluations on the Systematics of Taxodiaceae. Taipei: Taiwan Museum.Google Scholar
Ma, Q.-W., Ferguson, D.K., Li, F. & Li, C.-S. 2009. Leaf epidermal structure of extant plants of Cunninghamia and Taiwania (Cupressaceae sensu lato) and their taxonomic application. Review of Palaeobotany and Palynology 155: 1524.CrossRefGoogle Scholar
Ma, X.-Q., Liu, C.-J., Ilvesniemi, H., Westman, C.J. & Liu, A.-Q. 2002. Biomass, litterfall, and the nutrient fluxes in Chinese for stands of different age in subtropical China. Journal of Forestry Research 13: 165170.Google Scholar
Ma, X.-Q., Heral, K.V., Liu, A. & Jarvis, P.G. 2007. Nutrient cycling and distribution in different aged plantations of Chinese fir in southern China. Forest Ecology and Management 243: 6174.CrossRefGoogle Scholar
Maekawa, F. 1974. Origin and characteristics of Japan’s flora. Pp 3386 in Numa-Ta, N. (ed.), The Flora and Vegetation of Japan. Tokyo: Kodansha.Google Scholar
McIver, E.E. 2001. Cretaceous Widdringtonia Endl. (Cupressaceae) from North America. International Journal of Plant Sciences 162(4): 937961.CrossRefGoogle Scholar
Meng, X.Y., Chen, F. & Deng, S.H. 1988. Fossil plant Cunninghamia asiatica (Krassilov) comb, nov. Acta Botanica Sinica 30: 649654 (in Chinese with English abstract).Google Scholar
Miller, C.N. 1975. Petrified cones and needle-bearing twigs of a new taxodiaceous conifer from the Early Cretaceous of California. American Journal of Botany 62: 706713.CrossRefGoogle Scholar
Miller, C.N. 1977. Mesozoic conifers. Biological Review 43: 218280.Google Scholar
Miller, C.N. 1982. Current status of Paleozoic and Mesozoic conifers. Review of Palaeobotany and Palynology 37: 99114.CrossRefGoogle Scholar
Miller, C.N. 1988. The origin of modern conifer families. Pp 448486 in Beck, C.B. (ed.). Origin and Evolution of Gymnosperms. New York: Columbia University Press.Google Scholar
Miller, C.N. 1990. Stems and leaves of Cunninghamiastrobus goedertii from the Oligocene of Washington. American Journal of Botany 77: 963971.CrossRefGoogle Scholar
Miller, C.N. & Crabtree, D.R. 1989. A new taxodiaceous seed cone from the Oligocene of Washington. American Journal of Botany 76(1): 133142.CrossRefGoogle Scholar
Nguyễn Duc To Luu, & Thomas, P. 2004. Cay La Kim Viet Nam (Conifers of Vietnam: An Illustrated Field Guide). Hanoi: World Publishing House.Google Scholar
Nguyễn Tien Hiep, , Phan Ke Loc, , Nguyễn Duc To Luu, , et al. 2004. Vietnam Conifers: Conservation Status Review 2004. Hanoi: Fauna & Flora International, Vietnam Programme.Google Scholar
Ohana, T. & Kimura, T. 1995. Further observations of Cunninghamiastrobus yubariensis Stopes and Fuji from the Upper Yezo Group (Upper Cretaceous), Hokkaido, Japan. Transactions and Proceedings of the Palaeontological Society of Japan, N.S. 178: 122141.Google Scholar
Ohsawa, T. 1994. Anatomy and relationships of petrified seed cones of the Cupressaceae, Taxodiaceae, and Sciadopityceae. Journal of Plant Research 107: 203512.CrossRefGoogle Scholar
Otto, A., Simoneit, B.R. & Rember, W.C. 2003. Resin compounds from the seed cones of three fossil conifer species from the Miocene Clarkia flora, Emerald Creek, Idaho, USA, and from related extant species. Review of Palaeobotany and Palynology 126(3–4): 225241.CrossRefGoogle Scholar
Palmarev, E., Petkova, A. & Uzunova, K. 1978. Beitrage zur Entwicklungsgeschchter der Gattung Taiwania Hay. Und Cunninghamia R.Br. in Holarktis. Fitologia 9: 316.Google Scholar
Pilger, E. & Melchior, H. 1954. Gymnospermae. Pp 312344 in Engler, A. (ed.), Syllabus der Pflanzenfamilien. Berlin: Gebrunder Borntraeger.Google Scholar
Pimenov, G.M. 1990. Miocene Conifer Floras of South Far East and Their Stratigraphic Significance. Vladivostok: USSR Academy of Sciences.Google Scholar
Rich, T.H., Vickers-Rich, P. & Gangloff, R.A. 2002. Polar dinosaurs. Science 295(5557): 979980.CrossRefGoogle ScholarPubMed
Saiki, K.I. & Kimura, T. 1993. Permineralized taxodiaceous seed cones from the Upper Cretaceous of Hokkaido, Japan. Review of Palaeobotany and Palynology 76(1): 8396.CrossRefGoogle Scholar
Schlarbaum, S.E. & Tsuchiya, T. 1984. The chromosomes of Cunninghamia konishii, C. lanceolata and Taiwania cryptomerioides (Taxodiaceae). Plant Systematics and Evolution 145: 169181.CrossRefGoogle Scholar
Schneider, W. 1979. Zur Feinstratigraphie des 2 Lausitzer Floezhorizonts (Miozaen) unter besonder Beruecksichtigung der Verbreitung der Koniferengattung Cunninghamia R. Br. Zeitschrift fuer geologische Wissenchaften 7: 479-485.Google Scholar
Selvatakshami, S., Valu, D., Zhijun, H., Guo, S. & Ma, X.U. 2018. Soil nutrient dynamics in broadleaved tropical forest soils and Chinese fir plantation in subtropical forests. Journal of Tropical Forest Science 30: 242251.Google Scholar
Seward, A.C. 1919. Fossil Plants. Cambridge: Cambridge University Press.Google Scholar
Shi, G., Leslie, A.B., Herendeen, P.S., et al. 2014. Whole-plant reconstruction and phylogenetic relationships of Elatides zhoui sp. nov. (Cupressaceae) from the Early Cretaceous of Mongolia. International Journal of Plant Sciences 175(8): 911930.CrossRefGoogle Scholar
Shimada, M. 1967. The pollen flora from the Tertiary and Cretaceous of Japan in correlation with the palaeobotanical records. Review of Palaeobotany and Palynology 5: 235241.CrossRefGoogle Scholar
Shimahura, M. 1937. Studies on fossil woods from Japan and adjacent lands . Contribution II. The Cretaceous woods from Japan, Saghalien, and Manchoukuo. Science Reports of Tohoku Imperial University Ser. 2 (Geology) 19(1).Google Scholar
Stefanović, S., Jager, M., Deutsch, J., Broutin, J. & Masselot, M. 1998. Phylogenetic relationships of conifers inferred from partial 28S rRNA gene sequences. American Journal of Botany 85: 688697.CrossRefGoogle Scholar
Stewart, W.N. & Rothwell, G.A. 1993. Palaeobotany and the Evolution of Plants, 2nd edn. Cambridge: Cambridge University Press.Google Scholar
Stockey, R.A., Kvaček, J., Hill, R.S., Rothwell, G.W. & Kvaček, Z. 2005. The fossil record of Cupressaceae s. lat. Pp 5468 in Farjon, A. (ed.), A Monograph of Cupressaceae and Sciadopitys. London: Royal Botanic Gardens Kew.Google Scholar
Stopes, M.C. & Fujii, K. 1910. Studies on the structure and affinities of Cretaceous plants. Philosophical Transactions of the Royal Society of London B 201: 190.Google Scholar
Sveshnikova, I.N. 1963. Atlas and a key for the identification of the living and fossil Sciadopityaceae and Taxodiaceae based on the structure of the leaf epidermis. Paleobotany 4: 207.Google Scholar
Sveshnikova, I.N. 1967. Late Cretaceous Coniferae from the U.S.S.R., I. Fossil Coniferae of the Viliuyian depression. Trud Bot Inst An SSSR Ser 8 Paleobotanika 6: 177203.Google Scholar
Szafer, W. 1958. The genus Cunninghamia R. Br. in the European Miocene. Acta Biologicae Cracow 1: 713.Google Scholar
Tarduno, J.A., Brinkman, D.B., Renne, P.R., et al. 1998. Evidence for extreme climatic warmth from Late Cretaceous Arctic vertebrates. Science 282(5397): 22412243.CrossRefGoogle Scholar
Teodoridis, V. & Sakala, J. 2008. Early Miocene conifer macrofossils from the Most Basin (Czech Republic). Neues Jahrbuch fur Geologie und Palaontologie-Abhandlungen 250(3): 287.CrossRefGoogle Scholar
Thomas, P., Sengdala, K., Lamxay, V. & Khou, E. 2007. New records of conifers in Cambodia and Laos. Edinburgh Journal of Botany. 64(1): 3744.CrossRefGoogle Scholar
Tsumura, Y., Yoshimura, K., Tomaru, N. & Ohba, K. 1995. Molecular phylogeny of conifers using RFLP analysis of PCR amplified specific chloroplast genes. Theoretical and Applied Genetics 91: 12221236.CrossRefGoogle ScholarPubMed
Vakhrameev, V.A. 1991. Jurassic and Cretaceous Floras and Climates of the Earth. Cambridge: Cambridge University Press.Google Scholar
Vávra, N. & Walther, H. 1993. Chemofossilien aus dem Harz von Cunninghamia miocenica ETTINGSHAUSEN (Taxodiaceae; Oligo/Miozän). Neues Jahrbuch für Geologie und Paläontologie-Monatshefte 11: 693704.CrossRefGoogle Scholar
Velenovský, J. 1885. Die Gymnospermen der Böhmischen Kreideformation. Praha: E. Greger.CrossRefGoogle Scholar
Vermeij, G.J. 2008. Escalation and its role in Jurassic biotic history. Palaeogeography, Palaeoclimatology, Palaeoecology 263: 38.CrossRefGoogle Scholar
Walther, H. 1989. Cunninghamia miocenica Ettingshausen, eine wichtige Taxodiacee im Tertar Mittleuropas. Flora 182: 287311.CrossRefGoogle Scholar
Wang, D.Y. & Liu, H.L. 1982. New species and a new variety of Cunninghamia from Sichuan Province [Cunninghamia unicanaliculata, Cunninghamia unicanaliculata var. pyramidalis]. Chih wu fen lei hsueh pao = Acta Phytotaxonomica Sinica 1982.Google Scholar
Wu, M., Shao, X.-X., Zhou, C.-L., & Hu, F. 2009. Soil quality evolvement and its environmental significance of typical plantations in mid-sub-tropics of China. Shentaixue Zazhi 28: 18131817 (seen as abstract only).Google Scholar
Wu, P.-F., Ma, X.-Q., Tigabu, M., et al. 2011. Root morphological plasticity and biomass production of two Chinese fir clones with high phosphorous efficiency under low phosphorous stress. Canadian Journal of Forest Research 41: 228234.CrossRefGoogle Scholar
Xue, L. 1996. Nutrient cycling within a Chinese-fir (Cunninghamia lanceolata) stand on a poor site in Yishan, Guangxi. Forest Ecology and Management 89: 115123.CrossRefGoogle Scholar
Yabe, A., Eunkyoung, J., Kyungsik, K. & Kazuhiko, U. 2018. Oligocene–Neogene fossil history of Asian endemic conifer genera in Japan and Korea. Journal of Systematics and Evolution 57: 114128.CrossRefGoogle Scholar
Yang, Z.Y., Ran, J.H. & Wang, X.Q. 2012. Three genome-based phylogeny of Cupressaceae sl: further evidence for the evolution of gymnosperms and Southern Hemisphere biogeography. Molecular Phylogenetics and Evolution 64(3): 452470.CrossRefGoogle ScholarPubMed
Yao, X., Zhou, Z. & Zhang, B. 1998. Reconstruction of the Jurassic conifer Sewardiodendron laxum (Taxodiaceae). American Journal of Botany 85(9): 12891300.CrossRefGoogle Scholar
Yeh, F.-C., Shi, J., Yang, R., Hong, J.H & Ye, Z. 1994. Genetic diversity and multilocus associations in Cunninghamia lanceolata (Lamb) Hook from the Peoples-Republic-of-China. Theoretical and Applied Genetics 88: 465471.CrossRefGoogle ScholarPubMed
Ying, T.-S. & Li, L.-Q. 1981. Ecological distribution of endemic genera of taxads and conifers in China and neighbouring area in relation to phytogeographical significance. Acta Phytotaxonomica Sinica 14: 415425.Google Scholar
Ying, T.-S., Zhang, Y.-L. & Boufford, D.E. 1993. The Endemic Genera of Seed Plants of China. Beijing: Science Press.Google Scholar
Zhang, J.W., D’Rozario, A., Wang, L.J., Li, Y. & Yao, J.X. 2012. A new species of the extinct genus Austrohamia (Cupressaceae s.l.) in the Daohgou Jurassic flora of China and its phytogeographical implications. Journal of Systematics and Evolution 50: 7282.CrossRefGoogle Scholar
Zhong, A.L. & Hsiung, W.Y. 1993. Evaluation and diagnosis of tree nutritional status in Chinese-fir (Cunninghamia lanceolata (Lamb) Hook) plantations, Jiangxi, China. Forest Ecology and Management 62(1–4): 245270.CrossRefGoogle Scholar
Zhou, Z. 1987. Elatides harrisii, sp. nov. from the Lower Cretaceous of Liaoning, China. Reviews in Palaeobotany and Palynology 51: 189204.Google Scholar

References

Akhmetiev, M.A. & Samsonenko, V.L. 1997. New plant species from the Eocene of the central Rarytkin range, northern Koryakia. Paleontological Journal 31(2): 215224.Google Scholar
An, Z. 2000. Study of geomagnetic field models of the Qinghai‐Xizang (Tibetan) Plateau. Chinese Journal of Geophysics 43(3): 367373.Google Scholar
An, Z., Wang, S., Wu, X., et al. 1999. Eolian evidence from the Chinese Loess Plateau: the onset of the late Cenozoic Great Glaciation in the Northern Hemisphere and Qinghai-Xizang Plateau uplift forcing. Science in China Series D: Earth Sciences 42: 258271.CrossRefGoogle Scholar
Averyanov, L. V., Loc, P. K., Hiep, N. T. & Harder, D. K. 2003. Phytogeographic review of Vietnam and adjacent areas of Eastern Indochina. Komarovia. 3: 183.Google Scholar
Brunsfeld, S.J., Soltis, P.S., Soltis, D.E., Gadek, P.A. & Quinn, C.J. 1994. Phylogenetic relationships amongst the genera of the Taxodicaeae and Cupressaceae: evidence from rbcL sequences. Systematic Botany 19: 253262.CrossRefGoogle Scholar
Chang, S.-T., Wang, D. S.-Y., Wu, C.-L., et al. 2000. Cytotoxicity of extractives from Taiwania cryptomerioides heartwood. Phytochemistry 55: 227232.CrossRefGoogle ScholarPubMed
Chaw, S.-M, Zharkikh, A., Sung, H.-M., Lau, T.-C. & Li, W.-H 1997. Molecular phylogeny of extant gymnosperms and seed plant evolution: analysis of nuclear 18S rDNA sequences. Molecular Biology and Evolution 14: 5668.CrossRefGoogle Scholar
Cheng, Y., Nicholson, G. Tripp, K. & Chaw, S.-M. 2000. Phylogeny of Taxaceae and Cephalotaxaceae genera inferred from chloroplast matK gene and nuclear rDNA ITS region. Molecular Phylogenetics and Evolution 14: 353365.CrossRefGoogle ScholarPubMed
Chou, Y.-W., Thomas, P.I., Ge, X.-J., LePage, B.A. & Wang, C.N. 2011. Refugia and phylogeography of Taiwania in east Asia. Journal of Biogeography 38: 19922005.CrossRefGoogle Scholar
Earl, C. 2011. The Gymnosperm Database: Taiwania flousiana. www.conifers.org/cu/taiwania_flousiana.php.Google Scholar
Eberle, J.J. & Storer, J.E. 1999. Northernmost record of brontotheres, Axel Heiberg Island, Canada: implications for age of the Buchanan Lake Formation and brontothere paleobiology. Journal of Paleontology 73(5): 979983.CrossRefGoogle Scholar
Eckenwalder, J.E. 1976. Re-evaluation of Cupressaceae and Taxodiaceae: a proposed merger. Madrõno 23: 237256.Google Scholar
Farjon, A. & Ortiz García, S. 2003. Cone and ovule development in Cunninghamia and Taiwania (Cupressaceae sensu lato) and its significance for conifer evolution. American Journal of Botany 90: 816.CrossRefGoogle ScholarPubMed
Farjon, A. & Page, C.N. (eds) 1999. Conifers: Status Survey and Conifer Action Plan. IUCN/SSC Conifer Specialist Group Report. Gland: IUCN.Google Scholar
Farjon, A., Thomas, P. & Luu, N.D.T. 2004. Conifer conservation in Vietnam: three potential flagship species. Oryx 38: 257265.CrossRefGoogle Scholar
Ferguson, D.K. 1967. On the phytogeography of Coniferales in the European Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology 33: 73110.CrossRefGoogle Scholar
Fiorillo, A.R. 2004. The dinosaurs of Arctic Alaska. Scientific American 291(6): 8491.CrossRefGoogle ScholarPubMed
Florin, R. 1958. On the Jurassic taxads and conifers from north-western Europe and eastern Greenland. Acta Horti Bergiani 16: 257402.Google Scholar
Gadek, P.A. & Quinn, C.J. 1985. Biflavones of the subfamily Cupressoideae, Cupressaceae. Phytochemistry 24: 267272.CrossRefGoogle Scholar
Gadek, P.A., Alpers, D.L., Heslewood, M.M. & Quinn, C.J. 2000. Relationships within Cupressaceae sensu lato: a combined morphological and molecular approach. American Journal of Botany 87: 10441057.CrossRefGoogle Scholar
Gaussen, H. 1939. Une nouvelle espece de Taiwania, T. flousiana. Travaux Laboratoire Forestier de Toulouse tom 1(3): 19.Google Scholar
Givulescu, R. 1980. Die Gattung Taiwania Hayata im Pliozaen Rumaeniens. Argumenta Palaeobotanica 6: 165168.Google Scholar
Harris, T.M. 1943. The fossil conifer Elatides williamsoni. Annals of Botany 7: 325339.CrossRefGoogle Scholar
Harris, T.M. 1979. The Yorkshire Jurassic Flora. 5. Coniferales. London: British Museum.Google Scholar
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Hayata, B. 1906. On Taiwania, a new genus of Coniferae from the island of Formosa. Journal of the Linnean Society 37: 330.Google Scholar
Hayata, B. 1906. On Taiwania, a new genus of Coniferae from the island of Formosa. Journal of the Linnean Society 37: 330.Google Scholar
Hayata, B. 1907. On Taiwania and its affinity to other genera. Botanical Magazine (Tokyo) 21: 2127.CrossRefGoogle Scholar
Hernández-Castillo, G.R., Stockey, R.A. & Beard, G. 2005. Taxodiaceous pollen cones from the Early Tertiary of British Columbia, Canada. International Journal of Plant Sciences 166(2): 339346.CrossRefGoogle Scholar
Herrera, R., Gordobil, O., Llano-Ponte, R. & Labidi, J. 2016. Esterified lignin as hydrophobic agent for use on wood products. In Proceedings of the COST Action FP1407, 2nd Conference, Innovative Production Technologies and Increased Wood Products Recycling and Reuse, 29–30 September, Brno, Czech Republic.Google Scholar
Hizumae, M. 1989. Karyomorphological studies in twelve species in the Taxodiaceae with species reference to cytotaxonomical positions of Sciadopitys verticillata. Memoirs of the Faculty of Educaton of Ehime University Ser. III Natural Science 9: 734.Google Scholar
Hizumae, M., Kondo, T., Shibata, F. & Ishoizuka, R. 2001. Flow cytometric determination of genome size in the Taxodiaceae, Cupressaceae sensu stricto and Sciadopityaceae. Cytologia (Tokyo) 66: 307311.CrossRefGoogle Scholar
Hu, H.-H. 1934. Distribution of taxads and conifers in China. Proceedings of the 5th Pacific Science Congress, vol. 4, pp. 32733288.Google Scholar
Hu, S.Y. 1980. The Metasequoia flora and its phytogeographic significance. Journal of the Arnold Arboretum 61(1): 4194.CrossRefGoogle Scholar
Hu, Y.‐S. & Ma, R.J. 1989. Anatomy of gymnosperms endemic to China, II. Taiwania flousiana Gaussen (Taxodiaceae). Journal of Systematics and Evolution 27(2): 96104.Google Scholar
Hu, Z.-A., Wang, H.-X. & Liu, C.-J. 1986. Biochemical systematics of gymnosperms (4): seed protein peptides and needle peroxidases of Taxodiaceae. Acta Phytotaxica Sinica 24: 471473.Google Scholar
Huzioka, K. 1963. Geology of the Green Tuff region in Japan. Mining Geology 13(62): 358375.Google Scholar
Jaehnichen, H. 1998. Erstnachweis von Taiwania, Cryptomeria und Liquidambar aus dem Bitterfelder und Baltischen Bernstein. Mitteilungen aus dem Museum fuer Naturkunde in Berlin 1: 167178.Google Scholar
Kermode, C.W.D. 1939 A note on the occurrence of Taiwania cryptomerioides in Burma and its utilisation for coffin boards in China. Indian Forester 65: 204206.Google Scholar
Koidzumi, G. 1942. Further notes on Amentotaxaceae Kudo. Acta Phytotaxica Geobotanica 11: 227229 (in Japanese).Google Scholar
Kuan, C.-T. 1981. Fundamental features of the distribution of Coniferae in Sichuan. Acta Phytotaxica Sinica 14: 407420 (in Chinese).Google Scholar
Kusumi, J., Tsumura, Y., Yoshimaru, H. & Tacida, H. 2000. Phylogenetic relationships in Taxodiaceae and Cupressaceae sensu stricto based on matK gene, chiL gene, trnLtrnF IGS region, and trnL intron sequence. American Journal of Botany 87: 14801488.CrossRefGoogle Scholar
LePage, B.A. 2009. Earliest occurrence of Taiwania (Cupressaceae) from the Early Cretaceous of Alaska; evolution, biogeography, and paleoecology. Proceedings of the Academy of Natural Sciences of Philadelphia 158: 129158.CrossRefGoogle Scholar
Li, C.X. & Yang, Q. 2003. Phylogenetic relationships among the genera of Taxodiaceae and Cupressaceae from 28S rDNA sequences. Yi Chuan = Hereditas 25(2): 177180.Google Scholar
Li, L. 1989. Studies on the cytotaxonomy and systematic evolution of Taxodiaceae Warming. Acta Botanica Yunnanica 11: 113131.Google Scholar
Li, R., Dao, Z. & Li, H. 2011. Seed plant species diversity and conservation in the northern Gaoligong Mountains in western Yunnan, China. Mountain Research and Development 31(2): 160165.CrossRefGoogle Scholar
Li, Z.-C., Wang, X.-L., & Ge, X.-J. 2008. Genetic diversity of the relict plant Taiwania cryptomerioides Hayata (Cupressaceae) in mainland China. Silvae Genetica 57: 242249.CrossRefGoogle Scholar
Liu, T.S. & Su, H.J. 1983. Biosystematic Studies on Taiwania and Numerical Evaluations of the Systematics of Taxodiaceae. Taipei: Taiwan Museum.Google Scholar
López-Pujol, J., Zhang, F.M., Sun, H.Q., Ying, T.S. & Ge, S. 2011. Mountains of southern China as ‘plant museums’ and ‘plant cradles’: evolutionary and conservation insights. Mountain Research and Development 31(3): 261269.CrossRefGoogle Scholar
Ma, Q.-W., Ferguson, D.K., Li, F. & Li, C.-S. 2009. Leaf epidermal structure of extant plants of Cunninghamia and Taiwania (Cupressaceae sensu lato) and their taxonomic application. Review of Palaeobotany and Palynology 155: 1524.CrossRefGoogle Scholar
Masters, M.T. 1906. The conifers of China. Journal of the Linnean Society 37: 410424.Google Scholar
Matsuo, H. 1970. On the Omichdani flora (Upper Cretaceous), inner side of central Japan. Transactions of the Palaeontological Society of Japan N.S. 80: 371389.Google Scholar
Miki, S. 1954. The occurrence of the remains of Taiwania and Palaeotsuga (n. subg.) from Pliocene beds in Japan. Proceedings of the Japan Academy 30 (10): 976981.CrossRefGoogle Scholar
Miller, C.N. 1977. Mesozoic conifers. Biological Review 43: 218280.Google Scholar
Miller, C.N. 1982. Current status of Paleozoic and Mesozoic conifers. Review of Palaeobotany and Palynology 37: 99114.CrossRefGoogle Scholar
Momohara, A. 1994. Floral and paleoenvironmental history from the late Pliocene to middle Pleistocene in and around central Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 108(3–4): 281293.CrossRefGoogle Scholar
Luu, Nguyễn Duc To & Thomas, P. 2004. Cay La Kim Viet Nam (Conifers of Vietnam: An Illustrated Field Guide). Hanoi: World Publishing House.Google Scholar
Hiep, Nguyễn Tien, Doan, Do Tien & Loc, Phan Ke 2002. The diversity of the flora of Vietnam 9. Taiwania Hayata and T. cryptomerioides Hayata (Taxodiaceae): new genus and species for the flora. Journal of Genetics and Applications 1: 3240 (in Vietnamese with English summary).Google Scholar
Nishida, M., Ohsawa, T. & Nishida, H. 1992. Structure and affinities of petrified plants from the Cretaceous of Northern Japan and Saghalien VIII. Parataiwania nihonghii gen. et sp. nov., a taxodiaceous cone from the Upper Cretaceous of Hokkaido. Journal of Japanese Botany 67: 19.Google Scholar
Orr, M.Y. 1933a. Taiwania in Upper Burma: a new record. Notes of the Royal Botanic Garden Edinburgh 18: 6.Google Scholar
Orr, M.Y. 1933b. Plantae Chinenses Forrestianae: Coniferae. Notes of the Royal Botanic Garden Edinburgh 18: 119158.Google Scholar
Page, C.N. 1979. The earliest known find of living Taiwania (Taxodiaceae). Kew Bulletin 34: 527528.CrossRefGoogle Scholar
Pilger, E. & Melchior, H. 1954. Gymnospermae. Pp 312344 in Engler, A. (ed.). Syllabus der Pflanzenfamilien. Berlin: Gebrunder Borntraeger.Google Scholar
Pimenov, G.M. 1990. Miocene Conifer Floras of South Far East and Their Stratigraphic Significance. Vladivostok: USSR Academy of Sciences.Google Scholar
Rich, T.H., Vickers-Rich, P. & Gangloff, R.A. 2002. Polar dinosaurs. Science 295(5557): 979980.CrossRefGoogle ScholarPubMed
Saiki, K. & Kimura, T. 1993. Permineralized taxodiaceous seed cones from the Upper Cretaceous of Hokkaido, Japan. Reviews in Palaeobotany and Palynology 76: 8396.CrossRefGoogle Scholar
Sax, K. & Sax, H.J. 1933. Chromosome number and morphology in the conifers. Journal of the Arnold Arboretum 14: 356375.CrossRefGoogle Scholar
Schlarbaum, S.E. & Tsuchiya, T. 1984. Cytotaxonomy and phylogeny in certain species of Taxodiaceae. Plant Systematics and Evolution 147: 2954.CrossRefGoogle Scholar
Schloemer-Jaeger, A. 1958. Alttertiäre Pflanzen aus Flözen der Brögger-Halbinsel Spitzbergens. Palaeontography B 104: 39103.Google Scholar
Shimahura, M. 1937. Studies on fossil woods from Japan and adjacent lands . Contribution II. The Cretaceous woods from Japan, Saghalien, and Manchoukuo. Science Reports of Tohoku Imperial University Ser. 2 (Geology) 19(1).Google Scholar
Smiley, C.J. 1966. Cretaceous floras from Kuk River area, Alaska: stratigraphic and climatic interpretations. Geological Society of America Bulletin 77(1): 114.CrossRefGoogle Scholar
Sorger, O. 1925. Die systematische Stellung von Taiwania cryptomerioides Hayata. Osterreichsche Botanische Zeitscrift 74: 81102.CrossRefGoogle Scholar
Stefanović, S., Jager, M., Deutsch, J., Broutin, J. & Masselot, M. 1998. Phylogenetic relationships of conifers inferred from partial 28S rRNA gene sequences. American Journal of Botany 85: 688697.CrossRefGoogle Scholar
Stewart, W.N. & Rothwell, G.A. 1993. Palaeobotany and the Evolution of Plants. 2nd edn. Cambridge: Cambridge University Press.Google Scholar
Sveshnikova, I.N. 1957. [Taiwania araucarioides from Eocene deposits of southwestern Ukraine]. Keotsenovoi flore yugo-zapadnoi Ukrainy 207–211 (in Russian).Google Scholar
Sveshnikova, I.N. 1963. Atlas and a key for the identification of the living and fossil Sciadopityaceae and Taxodiaceae based on the structure of the leaf epidermis. Paleobotany 4: 207.Google Scholar
Sveshnikova, I.N. 1967. Late Cretaceous Coniferae from the U.S.S.R., I. Fossil Coniferae of the Viliuyian depression. Trud Bot Inst An SSSR Ser 8 Paleobotanika 6: 177203.Google Scholar
Tarduno, J.A., Brinkman, D.B., Renne, P.R., et al. 1998. Evidence for extreme climatic warmth from Late Cretaceous Arctic vertebrates. Science 282(5397): 22412243.CrossRefGoogle ScholarPubMed
Tsumura, Y., Yoshimura, K., Tomaru, N. & Ohba, K. 1995. Molecular phylogeny of conifers using RFLP analysis of PCR amplified specific chloroplast genes. Theoretical and Applied Genetics 91: 12221236.CrossRefGoogle ScholarPubMed
Vakhrameev, V.A. 1991. Jurassic and Cretaceous Floras and Climates of the Earth. Cambridge: Cambridge University Press.Google Scholar
Wu, S.P. & Chen, Z.S. 2005. Characteristics and genesis of Inceptisols with placic horizons in the subalpine forest soils of Taiwan. Geoderma 125(3–4): 331341.CrossRefGoogle Scholar
Yang, Z.Y., Ran, J.H. & Wang, X.Q. 2012. Three genome-based phylogeny of Cupressaceae sl: further evidence for the evolution of gymnosperms and Southern Hemisphere biogeography. Molecular Phylogenetics and Evolution 64(3): 452470.CrossRefGoogle ScholarPubMed
Yao, X., Taylor, T.N. & Taylor, E.L. 1997. A taxodiaceous seed cone from the Triassic of Antarctica. American Journal of Botany 84(3): 343354.CrossRefGoogle ScholarPubMed
Yao, X., Zhou, Z. & Zhang, B. 1998. Reconstruction of the Jurassic conifer Sewardiodendron laxum (Taxodiaceae). American Journal of Botany 85(9): 12891300.CrossRefGoogle ScholarPubMed
Ying, T.-S. & Li, L.-Q. 1981. Ecological distribution of endemic genera of taxads and conifers in China and neighbouring area in relation to phytogeographical significance. Acta Phytotaxonomica Sinica 14: 415425.Google Scholar
Ying, T.-S., Zhang, Y.-L. & Boufford, D.E. 1993. The Endemic Genera of Seed Plants of China. Beijing: Science Press.Google Scholar

References

Allen, K.J., Ogden, J., Buckley, B.M., Cook, E.R. & Baker, P.J. 2011. The potential to reconstruct broadscale climate indices associated with southeast Australian droughts from Athrotaxis species, Tasmania. Climate Dynamics 37: 17991821.CrossRefGoogle Scholar
Archangelsky, S. 1963. A new Mesozoic flora from Tico, Santa Cruz province, Argentina. Bulletin of the British Museum Natural History Geology 8: 492.Google Scholar
Bell, W.A. 1956. Lower Cretaceous floras of Western Canada. Geological Survey of Canada Memoir 285.Google Scholar
Berry, E.W. 1911. A revision of several genera of gymnospermous plants from the Potomac Group, Maryland and Virginia. U.S. National Museum Proceedings 40: 289318.CrossRefGoogle Scholar
Bowler, J.M. 1976. Aridity in Australia: age, origins and expressions in Aeolian land forms and sediments. Earth Science Reviews 12: 297310.CrossRefGoogle Scholar
Bowler, J.M. 1982. Aridity on the Late Tertiary and Quaternary of Australia. Pp 3545 in Barker, W.R. & Greenslade, P.J.M. (eds.), Evolution of the Flora and Fauna of Arid Australia. Adelaide: Peacock Press.Google Scholar
Brodribb, T. & Hill, R.S. 1998. The photosynthetic drought physiology of a diverse group of Southern Hemisphere conifer species is correlated with minimum seasonal rainfall. Functional Ecology 12: 465471.CrossRefGoogle Scholar
Brown, P.B. 1988. Distribution and Conservation of King Billy Pine. Hobart: Forestry Commission.Google Scholar
Brunsfeld, S.J., Soltis, P.S., Soltis, D.E., Gadek, P.A. & Quinn, C.J. 1994. Phylogenetic relationships amongst the genera of the Taxodiaceae and Cupressaceae: evidence from rbcL sequences. Systematic Botany 19: 253262.CrossRefGoogle Scholar
Cantrill, D.J. & Falcon-Lang, H.J. 2001. Cretaceous (Late Albian) Coniferales of Alexander Island, Antarctica. Part 2. Foliage, reproductive structures and roots. Review of Palaeobotany and Palynology 115: 119145.CrossRefGoogle Scholar
Carpenter, R.J., Hill, R.S. & Jordan, G.J. 1994. Cenozoic vegetation in Tasmania: macrofossil evidence. Pp 276298 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Chaw, S.-M, Zharkikh, A., Sung, H.-M., Lau, T.-C. & Li, W.-H 1997. Molecular phylogeny of extant gymnosperms and seed plant evolution: analysis of nuclear 18S rDNA sequences. Molecular Biology and Evolution 14: 5668.CrossRefGoogle Scholar
Cheng, Y., Nicholson, G., Tripp, K. & Chaw, S.-M. 2000. Phylogeny of Taxaceae and Cephalotaxaceae genera inferred from chloroplast matK gene and nuclear rDNA ITS region. Molecular Phylogenetics and Evolution 14: 353365.CrossRefGoogle ScholarPubMed
Chochieva, K.I. 1980. The family of Taxodiaceae in the fossil flora of Georgia. Izvestiya Akademii Nauk Gruzinsloi SSR Seriya Biologicheskaya (Bulletin of the Academy of Sciences of the Georgian Soviet Socialist Republic, ser. Biological) 6(1): 6166 (in Russian, with English summary).Google Scholar
Colhoun, E.A. 1980. Glacial diversion of drainage in the Cradle Mountain National Park, Tasmania. Australian Geographer 14(6): 365367.CrossRefGoogle Scholar
Clifford, H.T. & Constantine, J. 1980. Fern, Fern Allies and Conifers of Australia. Brisbane: University of Queensland Press.Google Scholar
Costin, A.B. 1981. Vegetation of high mountains in Australia. Pp 717731 in Keast, A. (ed.), Ecological Biogeography of Australia. The Hague: W.Junk.CrossRefGoogle Scholar
Cullen, P.J. 1987. Regeneration patterns in populations of Athrotaxis selaginoides from Tasmania. Journal of Biogeography 14: 3951.CrossRefGoogle Scholar
Cullen, P.J. 1991. Regeneration of Athrotaxis selaginoides and other rainforest tree species on landslide faces in Tasmania, Australia. Pp 191200 in Banks, M.R. (ed.), Aspects of Tasmanian Botany: A Tribute to Winifred Curtis. Hobart: Royal Society of Tasmania.Google Scholar
Cullen, P.J. & Kirkpatrick, J.B. 1988a. Studies on the ecology of Athrotaxis D. Don (Taxodiaceae). I. Regeneration patterns in populations of A. cupressoides. Australian Journal of Botany 36: 547560.CrossRefGoogle Scholar
Cullen, P.J. & Kirkpatrick, J.B. 1988b. Studies on the ecology of Athrotaxis D. Don (Taxodiaceae). II. The distribution and ecological differentiation of A. cupressoides and A. selaginoides. Australian Journal of Botany 36: 561573.CrossRefGoogle Scholar
Curtis, W.M. 1975. The Endemic Flora of Tasmania. Part 5. Text (paintings by Margaret Stones). London: The Ariel Press.Google Scholar
Del Fueyo, G.M., Archangelsky, S. & Cuneo, R. 2008. Coniferous ovulate cones from the lower Cretaceous of Santa Cruz Province, Argentina. International Journal of Plant Sciences 169: 799813.CrossRefGoogle Scholar
Deng, S. 1998. Plant fossils from Early Cretaceous of Pingzhuan–Yuanbaoshan Basin, Inner Mongolia. Geoscience 12: 168172.Google Scholar
Deng, S. 2007. Palaeoclimatic implications of main fossil plants of the Mesozoic (in Chinese with English abstract). Journal of Palaeogeography 9: 559574.Google Scholar
Derbyshire, E. 1972. Pleistocene glaciation of Tasmania: review and speculations. Australian Geographical Studies 10: 7984.CrossRefGoogle Scholar
de Seoane, L.V. 1998. Comparative study of extant and fossil conifer leaves from the Baqueró Formation (Lower Cretaceous), Santa Cruz Province, Argentina. Review of Palaeobotany and Palynology 99(3–4): 247263.CrossRefGoogle Scholar
Dodson, J.R. 2001. A vegetation and fire history in a subalpine woodland and rain-forest region, Solomon Jewel Lake, Tasmania. Holocene 11: 111116.CrossRefGoogle Scholar
Eckenwalder, J.E. 1976. Re-evaluation of Cupressaceae and Taxodiaceae: a proposed merger. Madrõno 23: 237256.Google Scholar
Escapa, I., Cuneo, N.R. & Axsmith, B. 2008. A new genus of Cupressaceae (sensu lato) from the Jurassic of Patagonia: implications for conifer megasporangiate cone homologies. Review of Palaeobotany and Palynology 151: 110122.CrossRefGoogle Scholar
Escapa, I.H., Decombeix, A.L., Taylor, E.L. & Taylor, T.N. 2010. Evolution and relationships of the conifer seed cone Telemachus: evidence from the Triassic of Antarctica. International Journal of Plant Sciences 171: 560573.CrossRefGoogle Scholar
Fang, K., Wang, Y., Yu, T., et al. 2008. Isolation of de-exined pollen and cytological studies of the pollen intines of Pinus bungeana Zucc. Ex Endl and Picea wilsonii Mast Flora morphology distribution. Functional Ecology of Plants 203(4): 332340.CrossRefGoogle Scholar
Farjon, A. & Ortiz García, S. 2003. Cone and ovule development in Cunninghamia and Taiwania (Cupressaceae sensu lato) and its significance for conifer evolution. American Journal of Botany 90: 816.CrossRefGoogle ScholarPubMed
Florin, R. 1960. Die fruhere Verbreitung der Konifergattung Athrotaxis D.Don. Seckenbergiana Lethaea 41: 19207.Google Scholar
Florin, R. 1963. The distribution of conifer and taxad genera in time and space. Acta Horti Bergiani 20: 121319.Google Scholar
Gadek, G.A. & Quinn, C.J. 1989. Biflavones of Taxodiaceae. Biochemical Systematics and Ecology 17: 365372.CrossRefGoogle Scholar
Gadek, P.A., Alpers, D.L., Heslewood, M.M. & Quinn, C.J. 2000. Relationships within Cupressaceae sensu lato: a combined morphological and molecular approach. American Journal of Botany 87: 10441057.CrossRefGoogle Scholar
Gibbs, L.S. 1920. Notes of the phytogeography and flora of the mountain summit plateaux of Tasmania. Journal of Ecology 8: 117, 89–117.CrossRefGoogle Scholar
Gibson, N., Barker, P.C.J., Cullen, P.J. & Shapcott, A. 1995. Conifers of southern Australia. Pp 223251 in Enright, N.J. & Hill, R.S. (eds.), Ecology of the Southern Conifers. Melbourne: Melbourne University Press.Google Scholar
Gregory‐Evans, C.Y., Vieira, H., Dalton, R., et al. 2004. Ocular coloboma and high myopia with Hirschsprung disease associated with a novel ZFHX1B missense mutation and trisomy 21. American Journal of Medical Genetics Part A 131(1): 8690.CrossRefGoogle ScholarPubMed
Greguss, P. 1955. Identification of Living Gymnosperms on the Basis of Xylotomy. Budapest: Akademia Kiado.Google Scholar
Halle, T.G. 1913. Some Mesozoic plant-bearing deposits in Patagonia and Tierra del Fuego and their floras. Kunglinga Svenska Vetenskapsakademiens Handlingar 51: 158.Google Scholar
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Hayata, B. 1906. On Taiwania, a new genus of Coniferae from the island of Formosa. Journal of the Linnean Society 37: 330.Google Scholar
Herman, A.B. 1994. A review of Late Cretaceous floras and climates of Arctic Russia. In Boulter, M.C. & Fisher, H.C. (eds.), Cenozoic Plants and Climates of the Arctic. Berlin: Springer.Google Scholar
Hernández-Castillo, G.R., Stockey, R.A. & Beard, G. 2005. Taxodiaceous pollen cones from the Early Tertiary of British Columbia, Canada. International Journal of Plant Sciences 166(2): 339346.CrossRefGoogle Scholar
Hill, R.S. 2001. The Cenozoic macrofossil record of the Cupressaceae in the Southern Hemisphere. Acta Palaeobotanica 41: 123132.Google Scholar
Hill, R.S. & Carpenter, R.J. 1989. Tertiary gymnosperms from Tasmania: Cupressaceae. Alcheringa 13: 89102.CrossRefGoogle Scholar
Hill, R.S. & Carpenter, R.J. 1991 Extensive past distributions for major Gondwanic floral elements: macrofossil evidence. Papers and Proceedings of the Royal Society of Tasmania 125: 239247.CrossRefGoogle Scholar
Hill, R.S. & McPhail, M.K. 1983. Reconstruction of the Oligocene vegetation at Pioneer, northeast Tasmania. Alcheringa 7: 281299.CrossRefGoogle Scholar
Hill, R.S. & Scriven, L.J. 1995. The angiosperm-dominated woody vegetation of Antarctica: a review. Review of Palaeobotany and Palynology 86(3–4): 175198.CrossRefGoogle Scholar
Hill, R.S., Jordan, G.J. & Carpenter, R.J. 1993. Taxodiaceous macrofossils from Tertiary and Quaternary sediments in Tasmania. Australian Systematic Botany 6: 237249.CrossRefGoogle Scholar
Hizumae, M. 1989. Karyomorphological studies in twelve species in the Taxodiaceae with species reference to cytotaxonomical positions of Sciadopitys verticillata. Memoirs of the Faculty of Educaton of Ehime University Ser. III Natural Science 9: 734.Google Scholar
Hizumae, M., Kondo, T., Shibata, F. & Ishoizuka, R. 2001. Flow cytometric determination of genome size in the Taxodiaceae, Cupressaceae sensu stricto and Sciadopityaceae. Cytologia (Tokyo) 66: 307311.CrossRefGoogle Scholar
Hopf, F.V.L., Colhoun, E.A. & Barton, C.E. 2000. Late-glacial and Holocene record of vegetation and climate at Cynthia Bay, Lake St. Clair, Tasmania. Journal of Quaternary Science 15: 725732.3.0.CO;2-8>CrossRefGoogle Scholar
Iglesias, A., Arbate, A.E. & Morel, E.M. 2011. The evolutions of Patagonian climate and vegetation, from the Mesozoic to the present. Botanical Journal of the Linnean Society 103: 409422.CrossRefGoogle Scholar
Isoda, K., Brodribb, T. & Shiraihi, S. 2000. Hybrid origin of Athrotaxis laxifolia (Taxodiaceae) confirmed by random amplified polymorphic DNA analysis. Australian Journal of Botany 48: 753758.CrossRefGoogle Scholar
Jagel, A. 2002. Morphologische und mophogenetische Untersuchungen zur Systematik und Evolution der Cupressaceae s.l. (Zypressengewächse). Dissertation, Ruhr-University.Google Scholar
James, S.H. 1981. Cytoevolutionary patterns, genetic systems and the phytogeography of Australia. Pp 761782 in Keast, A. (ed.), Ecological Biogeography of Australia. The Hague: W.Junk.CrossRefGoogle Scholar
Jordan, G.J., Brodribb, T.J. & Loney, P.E. 2004. Water loss physiology and the evolution within the Tasmanian conifer genus Athrotaxis (Cupressaceae). Australian Journal of Botany 52: 765771.CrossRefGoogle Scholar
Kershaw, A.P. & McGlone, M.S. 1995. The Quaternary history of the southern conifers. Pp 3063 in Enright, N.J. & Hill, R.S. (eds.), Ecology of the Southern Conifers. Carlton, VIC: Melbourne University Press.Google Scholar
Kirkpatrick, J.B. & Balmer, J. 1991. The vegetation and higher plant flora of the Cradle Mountain-Pencil Pine area, northern Tasmania. Papers and Proceedings of the Royal Society of Tasmania 124(2): 119137.CrossRefGoogle Scholar
Kirkpatrick, J.B. & Dickinson, K.J.M. 1984. The impact of fire on Tasmanian alpine vegetation and soils. Australian Journal of Botany 32: 613629.CrossRefGoogle Scholar
Kirkpatrick, J.B. & Fowler, M. 1998. Locating likely glacial forest refugia in Tasmania using palynological and ecological information to test alternative climatic models. Biological Conservation 85(1–2): 171182.CrossRefGoogle Scholar
Koidzumi, G. 1942. Further notes on Amentotaxaceae Kudo. Acta Phytotaxica Geobotanica 11: 227229 (in Japanese).Google Scholar
Krassilov, V.A. 1967. Early Cretaceous Flora of South Primorye and its Significance to Stratigraphy. Moscow: Nauka.Google Scholar
Kruckeberg, A.R. 1969. Plant life on serpentine and other ferromagnesian rocks in northwestern North America. Syesis 2: 15114.Google Scholar
Kunzmann, L., Mohr, B.A., Bernardes‐de‐Oliveira, M.E. & Wilde, V. 2006. Gymnosperms from the Early Cretaceous Crato Formation (Brazil). II. Cheirolepidiaceae. Fossil Record 9(2): 213225.CrossRefGoogle Scholar
Kusumi, J., Tsumura, Y., Yoshimaru, H. & Tacida, H. 2000. Phylogenetic relationships in Taxodiaceae and Cupressaceae sensu stricto based on matK gene, chiL gene, trnLtrnF IGS region, and trnL intron sequence. American Journal of Botany 87: 14801488.CrossRefGoogle Scholar
Li, L. 1989. Studies on the cytotaxonomy and systematic evolution of Taxodiaceae Warming. Acta Botanica Yunnanica 11: 113131.Google Scholar
Liu, T.S. & Su, H.J. 1983. Biosystematic Studies on Taiwania and Numerical Evaluations on the Systematics of Taxodiaceae. Taipei: Taiwan Museum.Google Scholar
Ma, Q.W., Li, F.L. & Li, C.S. 2006. Epidermal structures of Athrotaxis cupressoides (Taxodiaceae). National Science Museum 2: 4551 (in Chinese with English abstract, seen as English abstract only).Google Scholar
Ma, Q.W., Ferguson, D.K., Li, F. & Li, C.-S. 2009. Leaf epidermal structure of extant plants of Cunninghamia and Taiwania (Cupressaceae sensu lato) and their taxonomic application. Review of Palaeobotany and Palynology 155: 1524.CrossRefGoogle Scholar
Macphail, M.K. 1979. Vegetation and climates in southern Tasmania since the last glaciation. Quaternary Research 11: 306341.CrossRefGoogle Scholar
Macphail, M.K., Hill, R.S., Forsyth, S.M. & Wells, P.M. 1991. A Late Oligocene–Early Miocene cool climate flora in Tasmania. Alcheringa 15: 87106.CrossRefGoogle Scholar
Macphail, M.K., Colhoun, E.A., Kiernan, K. & Hannan, D. 1993. Glacial climates in the Antarctic Region during the late Paleogene: evidence from northwest Tasmania, Australia. Geology 21: 145148.2.3.CO;2>CrossRefGoogle Scholar
Markgraf, V., Bradbury, J. & Busby, J.R. 1986. Palaeoclimates in southwestern Tasmania during the last 13,000 years. Palaeos 1: 368380.CrossRefGoogle Scholar
McElwain, J.C. & Chaloner, W.G. 1996. The fossil cuticle as a skeletal record of environmental change. Palaios 11: 376388.CrossRefGoogle Scholar
McPhail, M.K., Alley, N.F., Trusswell, E.M. & Sluiter, I.R.K. 1994. Early Tertiary vegetation: evidence from pollen and spores. Pp 189261 in Hill, R.S. (ed.) History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
McQuillan, P.B. 1998. Athrotaxivora tasmanica gen. et sp. nov. (Lepidoptera: Gelechioidea): an unusual moth associated with King Wiliam pine (Athrotaxis selaginoides D. Don, Taxodiaceae) in Tasmanian montane rainforest. Australian Journal of Entomology 37: 206213.CrossRefGoogle Scholar
Meyen, S.V. 1997. Permian conifers of Western Angaraland. Review of Palaeobotany and Palynology 96: 351447.CrossRefGoogle Scholar
Miller, C.N. 1982. Current status of Paleozoic and Mesozoic conifers. Review of Palaeobotany and Palynology 37: 99114.CrossRefGoogle Scholar
Miller, C.N. 1988. The origin of modern conifer families. Pp 448486 in Beck, C.B. (ed.), Origin and Evolution of Gymnosperms. New York: Columbia University Press.Google Scholar
Miller, C.N. & LaPasha, C.A. 1981. Structure and affinities of Athrotaxites berryi, a conifer from the Early Cretaceous of Montana, USA. Proceedings of the International Botanical Congress 13: 204.Google Scholar
Miller, C.N. & LaPasha, C.A. 1983. Structure and affinities of Athrotaxis berryi Bell, an Early Cretaceous conifer. American Journal of Botany 70: 772779.CrossRefGoogle Scholar
Mitchell, A.F. 1972. Conifers in the British Isles: A Descriptive Handbook. London: Her Majesty’s Stationery Office.Google Scholar
Nakai, T. 1938. Indigenous species of conifers and taxads of Korea and Manchuria and their distribution. I. Tyosen San-rin Kayho 158: 129 (in Japanese).Google Scholar
Nelson, E.C. 1981. Phytogeography of southern Australia. Pp 733759 in Keast, A. (ed.), Ecological Biogeography of Australia. The Hague: W.Junk.Google Scholar
Ogden, J. 1978. Investigations of the dendrochronology of the genus Athrotaxis D.Don (Taxodiaceae) in Tasmania. Tree-Ring Bulletin 38: 1-13.Google Scholar
Ogden, J. 2006. On the dendrological potential of Australian trees. Austral Ecology 3: 339356.CrossRefGoogle Scholar
Otto, A. & Simoneit, B.R. 2001. Chemosystematics and diagenesis of terpenoids in fossil conifer species and sediment from the Eocene Zeitz formation, Saxony, Germany. Geochemica Cosmochimica Acta 65: 35053527.CrossRefGoogle Scholar
Passalia, M.G. 2007. A Mid-Cretaceous flora from the Kachaike formation, Patagonia, Argentina. Cretaceous Research 28(5): 830840.CrossRefGoogle Scholar
Pilger, E. & Melchior, H. 1954. Gymnospermae. Pp 312344 in Engler, A. (ed.), Syllabus der Pflanzenfamilien. Berlin: Gebrunder Borntraeger.Google Scholar
Rothwell, G.W., Stockey, R.A., Mapes, G. & Hilton, J. 2011. Structure and relationships of the Jurassic conifer seed cone Hughmillerites juddii gen. et comb. nov.: implications for the origin and evolution of Cupressaceae. Review of Palaeobotany and Palynology 164(1–2): 4559.CrossRefGoogle Scholar
Sakai, A., Paton, D.M. & Wardle, P. 1981. Freezing resistance of trees of the south temperate zone, especially subalpine species of Australasia. Ecology 62(3): 563570.CrossRefGoogle Scholar
Seward, A.C. 1926. The Cretaceous plant-bearing rocks of Western Greenland. Philosophical Transactions of the Royal Society of London B. 215: 57175.Google Scholar
Seward, A.C. 1933. Plant Life Through the Ages. Cambridge: Cambridge University Press.Google Scholar
Srinivasan, V. 1995. Conifers from the Puddledock locality (Potomac Group, Early Cretaceous) in eastern North America. Review of Palaeobotany and Palynology 89(3–4): 257286.CrossRefGoogle Scholar
Stewart, W.N. & Rothwell, G.A. 1993. Palaeobotany and the Evolution of Plants. 2nd edn. Cambridge: Cambridge University Press.Google Scholar
Takaso, T. & Tomlinson, P.B. 1992. Seed cone and ovule ontogeny in Metasequoia, Sequoia and Sequoiadendron (Taxodiaceae – Coniferales). Botanical Journal of the Linnean Society 109: 1537.CrossRefGoogle Scholar
Townrow, J.A. 1967. On a conifer from the Jurassic of east Antarctica. Papers and Proceedings of the Royal Society of Tasmania 101: 137147.CrossRefGoogle Scholar
Townrow, J.A. 1969. Some Lower Mesozoic Podocarpaceae and Araucariaceae. Pp 159184 in Gondwanan Stratigraphy. Gap: UNESCO.Google Scholar
Vakhrameev, V.A. 1991. Jurassic and Cretaceous Floras and Climates of the Earth. Cambridge: Cambridge University Press.Google Scholar
White, M.E. 1993. The Greening of Gondwana. Chatswood, NSW: A.H. & A.W. Reed.Google Scholar
Yao, X., Taylor, T.N. & Taylor, E.L. 1997. A taxodiaceous seed cone from the Triassic of Antarctica. American Journal of Botany 84(3): 343354.CrossRefGoogle ScholarPubMed

References

Adam, P. 1992. Australian Rainforests. Oxford: Clarendon Press.CrossRefGoogle Scholar
Aitchison, J.C., Clarke, G.L., Meffre, S. & Cluzel, D. 1995. Eocene arc-continent collision in New Caledonia and implications for regional Southwest Pacific tectonic evolution. Geology 23: 161164.2.3.CO;2>CrossRefGoogle Scholar
Alvin, K.L. 1982. Cheirolepidiaceae: biology, structure and palaeo-ecology. Review of Palaeobotany and Palynology 37: 7198.CrossRefGoogle Scholar
Archangelsky, S. 1966. New gymnosperms from the Tico flora, Santa Cruz Province, Argentina. Bulletin of the British Museum (Natural History), Geology 13: 259295.CrossRefGoogle Scholar
Ash, S.R. & Savidge, R.A. 2004. The bark of the Late Triassic Araucarioxylon arizonicum tree from Petrified Forest National Park, Arizona. Iawa Journal 25: 349368.CrossRefGoogle Scholar
Axsmith, B.J., Escapa, I.H. & Huber, P. 2008. An araucarian bract–scale complex from the Lower Jurassic of Massachusetts: implications for estimating phylogenetic and stratigraphic congruence in the Araucariaceae. Palaeontologia Electronica 11: 12A.Google Scholar
Backes, A. 1988. Condcionamento climático e distribuição geográfica de Araucaria angustifolia (Bert.) O. Ktze no Brazil. Pesquicas Botanicas 49: 540.Google Scholar
Barreda, V.D. 2012. Cretaceous/Paleogene floral turnover in Patagonia: drop in diversity, low extinction and a Classopollis spike. PLoS One 7(12): e52455.CrossRefGoogle Scholar
Berry, E.W. 1908. Some Araucarian remains from the Atlantic coastal plain. Bulletin of the Torrey Botanical Club 35: 249260.CrossRefGoogle Scholar
Beu, A.G., Griffin, M. & Maxwell, P.A. 1997. Opening of Drake Passage gateway and Late Miocene to Pleistocene cooling reflected in Southern Ocean molluscan dispersal: evidence from New Zealand and Argentina. Tectonophysics 281: 8397.CrossRefGoogle Scholar
Bigwood, A.J. & Hill, R.S. 1985. Tertiary araucarian macrofossils from Tasmania. Australian Journal of Botany 33: 645656.CrossRefGoogle Scholar
Bo, S., Siegert, M.J., Mud, S., et al. 2009. The Gamburtsev Mountains and the origins and early evolution of the Antarctic Ice Sheet. Nature 459: 690693.CrossRefGoogle ScholarPubMed
Bock, W. 1954. Primarucaria, a new araucarian genus from the Virginis Triassic. Journal of Paleontology 28: 3242.Google Scholar
Bosama, H.F., van Konijnenburg-van Cittert, J.H.A., van der Ham, R.W.J.M., van Amerom, H.W.J., & Hartkopf-Fröder, C. 2008. Conifers from the Santonian of Limburgh, the Netherlands. Cretaceous Research 30: 113.Google Scholar
Bose, M.N. 1975. Araucaria haastii Ettingshausen from Shag Point, New Zealand. Palaeobotanist 2: 7680.Google Scholar
Bose, M.N. & Jain, K.P. 1964. A megastrobilus belonging to the Araucariaceae from the Rajmahal Hills, Bihar, India. Palaeobotanist 12: 229231.Google Scholar
Bose, M.N. & Maheshwari, H.K. 1973. Some detached seed-scales belonging to Araucariaceae from the Mesozoic rocks of India. Geophytology 3: 205214.Google Scholar
Bowler, J.M. 1982. Aridity on the Late Tertiary and Quaternary of Australia. Pp 3545 in Barker, W.R. & Greenslade, P.J.M. (eds.), Evolution of the Flora and Fauna of Arid Australia. Adelaide: Peacock Press.Google Scholar
Brookfield, H.C. & Hart, D. 1966. Rainfall in the Tropical Southwest Pacific. Canberra: Australian National University.Google Scholar
Brown, J.T. 1977. On Araucarites rogersii Seward, from the Lower Cretaceous Kirkwood Formation of the Algoa Basin, Cape Province, South Africa. Palaeontologica Africana 20: 4751.Google Scholar
Burrows, G.E., Boag, T.S. & Stockey, R.A. 1992. A morphological investigation of the unusual cryptogeal germination strategy of Bunya pine (Araucaria bidwillii): an Australian rainforest conifer. International Journal of Plant Science 153: 503512.CrossRefGoogle Scholar
Calder, M.G. 1953. A coniferous petrified forest in Patagonia. Bulletin of the British Museum (Natural History) Geology 2: 97138.Google Scholar
Cantrill, D.J. 1992. Araucarian foliage from the Lower Cretaceous of southern Victoria, Australia. International Journal of Plant Sciences 153: 622645.CrossRefGoogle Scholar
Cantrill, D.J. & Falcon-Lang, H.J. 2001. Cretaceous (Late Albian) Coniferales of Alexander Island, Antarctica: part 2. Foliage, reproductive structures and roots. Review of Palaeobotany and Palynology 115: 119145.CrossRefGoogle Scholar
Cantrill, D.J. & Poole, I. 2005. A new Eocene Araucaria from Seymour Island, Antarctica: evidence from growth form and bark morphology. Alcheringa 29: 341350.CrossRefGoogle Scholar
Cantrill, D.J., Wanntorp, L. & Drinnan, A.N. 2011. Mesofossil flora from the Late Cretaceous of New Zealand. Cretaceous Research 32: 164173.CrossRefGoogle Scholar
Cesari, S.N., Marenssi, S.A. & Santilana, S.N. 2001. Conifers from the Upper Cretaceous of Cape Lamb, Vega Island, Antarctica. Cretaceous Research 22: 309319.CrossRefGoogle Scholar
Chambers, T.C., Drinnan, A.N. & McLoughlin, S. 1998. Some morphological features of Wollemi Pine (Wollemia nobilis: Araucariaceae) and their comparison to Cretaceous plant fossils. International Journal of Plant Sciences 1569: 160171.CrossRefGoogle Scholar
Clement, A.C., Seager, R. & Cane, M.A. 2000. Suppression of El Niño during the mid‐Holocene by changes in the Earth’s orbit. Paleoceanography 15(6): 731737.CrossRefGoogle Scholar
Cookson, I.C. 1947. Plant microfossils from the lignites of Kerguelen Archipelago. Report of the British, Australian and New Zealand Antarctic Expedition A 2: 127142.Google Scholar
Cookson, I.C. & Duigan, S.L. 1951. Tertiary Araucariaceae from south-eastern Australia, with notes on living species. Australian Journal of Scientific Research B 4: 415449.Google Scholar
Darrow, B.S. 1936. A fossil araucarian embryo from the Cerro Cuadrado of Patagonia. Botanical Gazette 98: 323337.CrossRefGoogle Scholar
Del Fueyo, G.M. & Archangelsky, A. 2002. Araucaria grandifolia Feruglio from the Lower Cretaceous of Patagonia, Argentina. Cretaceous Research 23(2): 265277.CrossRefGoogle Scholar
Del Fueyo, G.M. & Archangelsky, S. 2005. A new araucarian pollen cone with in situ Cyclusphaera Elsik from the Aptian of Patagonia, Argentina. Cretaceous Research 26(5): 757768.CrossRefGoogle Scholar
Del Fueyo, G.M., Caccavari, M.A. & Dome, E.A. 2008. Morphology and structure of the pollen cone and pollen grain of the Araucaria species from Argentina. Biocell 32: 4960.CrossRefGoogle ScholarPubMed
Delcois, X., Arilo, A., Penalver, E., et al. 2007. Fossiliferous amber deposits from the Cretaceous (Albian) of Spain. Comptes Rendus Palevol 6: 135149.Google Scholar
Dettmann, M.E. 1981. The Cretaceous flora. Pp 357375 in Keast, A. (ed.), Ecological Biogeography of Australia. The Hague: W.Junk.Google Scholar
Dettmann, M.E. 1994. Cretaceous vegetation: the microfossil record. Pp 143170 in Hill, R. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Adelaide: University of Adelaide Press.Google Scholar
Dettmann, M.E. & Jarzen, D.M. 2000. Pollen of extant Wollemia (Wollemi pine) and comparisons with pollen of other extant and fossil Araucariaceae. Pp 167203 in Harley, M.M., Morton, C.M. & Blackmore, S. (eds.), Pollen and Spores: Morphology and Biology. Kew: Royal Botanic Gardens.Google Scholar
Dettmann, M.E., Molnar, R.E., Douglas, J.G., et al. 1992. Australian Cretaceous terrestrial faunas and floras: biostratigraphic and biogeographic implications. Cretaceous Research 13(3): 207262.CrossRefGoogle Scholar
Dettmann, M.E., Clifford, H.T. & Peters, M. 2012. Emwadea microcarpa gen. et sp. nov: anatomically preserved araucarian seed cones from the Winton Formation (late Albian), western Queensland, Australia. Alcheringa 36: 217237.CrossRefGoogle Scholar
DiesterHass, L. & Zahn, R. 1996. Eocene–Oligocene transition in the Southern Ocean: history of water mass circulation and biological productivity. Geology 24: 163166.2.3.CO;2>CrossRefGoogle Scholar
Dingle, R.V. & Lavelle, M. 1998. Late Cretaceous Cenozoic climatic variations of the northern Antarctic Peninsula: new geochemical evidence and review. Palaeogeography, Paleoclimatology and Palaeoecology 141: 215232.CrossRefGoogle Scholar
Douglas, J.G. 1969. The Mesozoic floras of Victoria: Parts 1 & 2. Memoirs of the Geological Survey of Victoria 28: 1310.Google Scholar
Douglas, J.G. & Williams, G.E. 1982. Southern polar forests: the Early Cretaceous floras of Victoria and their palaeoclimatic significance. Palaeogeography, Palaeoclimatology, Palaeoecology 39: 171185.CrossRefGoogle Scholar
Duarte, L.S., dos Santos, M.M.G., Hartz, S.M. & Pillar, V.D. 2006. Role of nurse plants on Araucaria forest expansion over grassland in south Brazil. Austral Ecology 31: 520528.CrossRefGoogle Scholar
Enright, N. 1982. The ecology of Araucaria species in New Guinea. Australian Journal of Ecology 7: 2338.CrossRefGoogle Scholar
Enright, N.J., Ogden, J. & Rigg, L.S. 1999. Dynamics of forests with Araucariaceae in the western Pacific. Journal of Vegetation Science 10: 793804.CrossRefGoogle Scholar
Enright, N.J., Rigg, L. and Jaffré, T. 2001. Environmental controls on species composition along a (maquis) shrubland to forest gradient in ultramafics at Mont Do, New Caledonia. South African Journal of Science 97: 573580.Google Scholar
Escapa, I.H. & Catalano, S.A. 2013. Phylogenetic analysis of Araucariaceae: integrating molecules, morphology, and fossils. International Journal of Plant Sciences 174(8): 11531170.CrossRefGoogle Scholar
Escapa, I.H., Sterli, J., Pol, D. & Nicoli, L. 2008. Jurassic tetrapods and flora of Cañadón Asfalto Formation in Cerro Cóndor Area, Chubut Province. Revista de la Associatión Geológical Argentina 63: 613624.Google Scholar
Escapa, I.H., Cuneo, N.R., Rothwell, G. & Stockey, R.A. 2013. Pararaucaria delfueyoi sp. nov. from the Late Jurassic Canadon Calcareo Formation, Chubut, Argentina: insights into the evolution of the Cheirolepidiaceae. International Journal of Plant Sciences 174: 458470.CrossRefGoogle Scholar
Falaschi, P., Grosfeld, J., Zamuner, A.B., Foix, N. & Rivera, S.M. 2011. Growth architecture and silhouette of Jurassic conifers from La Matilde Formation, Patagonia, Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology 302: 122141.CrossRefGoogle Scholar
Falaschi, P., Zamaioa, M.D., Caviglia, N. & Romero, E.J. 2012. Gymnosperm flora from the Nirihuau Formation (Late Oligocene–Early Miocene), Rio Negro Province, Argentina. Ameghiniana 49: 525551.CrossRefGoogle Scholar
Fang, K., Wang, Y., Yu, T., et al. 2008. Isolation of de-exined pollen and cytological studies of the pollen intines of Pinus bungeana Zucc. Ex Endl and Picea wilsonii Mast Flora morphology distribution. Functional Ecology of Plants 203(4): 332340.CrossRefGoogle Scholar
Farjon, A. & Page, C.N. (eds.) 1999. Conifers: Status Survey and Conifer Action Plan. IUCN/SSC Conifer Specialist Group Report. Gland: IUCN.Google Scholar
Feruglio, E. 1951. Piante del mesozoico della Patagonia. Pubblicazioni Dell’Istituto Geologico Della Universita Di Torino 1: 3580.Google Scholar
Florin, R. 1931. Untersuchungen zur Stammesgeschichte der Coniferales und Cordaitales. I. Morphologie und Epidermisstruktur der Assimilationsorgane bei den rezenten Koniferen. Kungluska Svenska Vetenskapsakademiens Handlangar 10: 1588.Google Scholar
Florin, R. 1944. Die Koniferen des Oberkarbon und unteren Perms. Morphologie der weiblichen Reproduktionsorgane der fossilen Cordaitales, fossilen und recenten Coniferales und Taxales. Palaeontographica 85: 457654.Google Scholar
Florin, R. 1963. The distribution of conifer and taxad genera in time and space. Acta Horti Bergiani 20: 121319.Google Scholar
Galloway, R.W. & Kemp, E.M. 1981. Late Cainozoic environments in Australia. Pp 5180 in Keast, A. (ed.), Ecological Biogeography of Australia. New York: Springer.CrossRefGoogle Scholar
Gaudeul, M., Rouhan, G., Gardner, M.F. & Hollingsworth, P.M. 2012. AFLP markers provide insights into the evolutionary relationships and diversification of new Caledonian Araucaria species (Araucariaceae). American Journal of Botany 99: 6881.CrossRefGoogle ScholarPubMed
Gifford, E.M. & Foster, A.S. 1989. Morphology and Evolution of Vascular Plants, 3rd edn. New York: W.H. Freeman.Google Scholar
Gnaedinger, S. & Herbst, R. 2009. First record of gymnosperm woods from the Roca Blanca Formation (Lower Jurassic), Santa Cruz Province, Argentina. Ameghiniana 46: 5971.Google Scholar
Gould, R.E. 1974. The fossil flora of the Walloon coal measures: a survey. Proceedings of the Royal Society of Queensland 85: 3341.Google Scholar
Gould, R.E. 1975. The succession of Australian pre-Tertiary megafossil floras. Botanical Review 41: 453483.CrossRefGoogle Scholar
Grubb, P.J. & Stevens, P.F. 1976. The Forests of the Fatima Basin and Mt Kerigomna and a Review of Montane and Subalpine Forests Elsewhere in Papua New Guinea. Canberra: Australian National University.Google Scholar
Halle, T.G. 1913. Some Mesozoic plant-bearing deposits in Patagonia and Tierra del Fuego and their floras. Kunglinga Svenska Vetenskapsakademiens handlingar 51: 158.Google Scholar
Harris, T.M. 1979. The Yorkshire Jurassic Flora. 5. Coniferales. London: British Museum.Google Scholar
Havel, J.J. 1971. The Araucaria forests of New Guinea and their regenerative capacity. Journal of Ecology 59: 203214.CrossRefGoogle Scholar
Hill, R.S. 1990. Araucaria (Araucariaceae) species from Australian Tertiary sediments: a micromorphological study. Australian Systematic Botany 3: 203220.CrossRefGoogle Scholar
Hill, R.S. & Bigwood, A.J. 1987. Tertiary gymnosperms from Tasmania: Araucariaceae. Alcheringa 11: 325335.CrossRefGoogle Scholar
Holdaway, R.J., Richardson, S.J., Dickie, I.A., Peltzer, D.A. & Coomes, D.A. 2011. Species‐ and community‐level patterns in fine root traits along a 120 000‐year soil chronosequence in temperate rain forest. Journal of Ecology 99(4): 954963.CrossRefGoogle Scholar
Hope, G. & Tulip, J. 1994. A long vegetation history from lowland Irian Jaya, Indonesia. Palaeogeography, Palaeoclimatology, Palaeoecology 109(2–4): 385398.CrossRefGoogle Scholar
Hueck, K. 1972. As Florestal de América do Sul: Ecologia, Imposição e Importância Econômica. Sao Paulo: Universidad de Bresilia, Editoria Poligono.Google Scholar
Jaramillo, C., Zavada, M., Oritz, J., Pardo, A. & Ochoa, D. 2013. Biogeography of the araucarian dispersed pollen Cyclusphaera. International Journal of Plant Sciences 174: 489498.CrossRefGoogle Scholar
Jeske-Pieruschka, V. & Behling, H. 2012. Palaeoenvironmental history of the Sao Francisco de Paula region in southern Brazil during the late Quaternary inferred from the Rincao das Cabritas core. Holocene 22: 12511262.CrossRefGoogle Scholar
Johnson, L.A.S. & Briggs, B.G. 1981. Three old southern families: Myrtaceae, Proteaceae and Restionaceae. Pp 427469 in Keast, A. (ed.), Ecological Biogeography of Australia. The Hague: W.Junk.CrossRefGoogle Scholar
Jovane, L., Coccioni, R., Marsili, A. & Acton, G. 2009. Late Eocene Earth: Hothouse, icehouse and impacts. Geological Society of America Special Papers 452: 149168.Google Scholar
Kendall, M.W. 1949. On a new conifer from the Scottish Lias. Annals and Magazine of Natural History 12(2): 299307.CrossRefGoogle Scholar
Kershaw, P. & Wagstaff, B. 2001. The southern conifer family Araucariaceae: history, status and value for palaeoenvironmental reconstruction. Annual Review of Ecology and Systematics 32: 397414.CrossRefGoogle Scholar
Klein, R.M. 1960. O aspecto dinâmico do pinhero brasileiro. Sellowia 12: 1744.Google Scholar
Kong, W.S. 1995. The distribution of conifers and taxads in time and space in the Korean Peninsula. Journal of the Korean Geographical Society 30(1): 113.Google Scholar
Kong, W.S. 2000. Vegetational history of the Korean Peninsula. Global Ecology and Biogeography 9(5): 391402.CrossRefGoogle Scholar
Krassilov, V. 1971. Evolution and systematics of conifers, a critical review. Paleontologiske Zhurnal 1: 720 (in Russian).Google Scholar
Krassilov, V. 1982. Early Cretaceous flora of Mongolia. Palaeontographica, Abt., B. 181: 143.Google Scholar
Krassilov, V. A. 1977. Fossil Araucaria from the Sahara. Priroda 5: 6568 (in Russian).Google Scholar
Krassilov, V. A. 1978. Araucariaceae as indicators of climate and paleolatitudes. Review of Palaeobotany and Palynology 26: 113124.CrossRefGoogle Scholar
Krassilov, V. & Schrank, E. 2011. New Albian macro- and palynoflora from the Negev (Israel) with description of a new gymnosperm morphotaxon. Cretaceous Research 32(1): 1329.CrossRefGoogle Scholar
Krassilov, V., Berner, A. & Barinova, S. 2013. Jurassic flora of the Negev Desert: plant taphonomy, paleoecology and paleogeographic inference. Palaeogeography, Palaeoclimatology, Palaeoecology 378: 112.CrossRefGoogle Scholar
Krausel, R. 1922. Beiträge zur Kenntnis der Kreideflora. I. Über einige Kreidep-flanzen von Swalmen (Niederlande). Mededeelingen van’s Rijks Geologischen Dienst, Serie A 40(2).Google Scholar
Kunzmann, L. 2007. Araucariaceae (Pinopsida): aspects in palaeobiogeography and palaeodiversity in the Mesozoic. Zoologischer Anzeiger 246: 257277.CrossRefGoogle Scholar
Laverack, P.S. & Godwin, M. 1987. Rainforests of northern Cape York Peninsula. Pp 201222 in Davis, B. (ed.), The Rainforest Legacy, vol 1. Canberra: Australian Government Publishing Service.Google Scholar
Li, L. & Hsu, P. 1984. Karyotype analysis in Platycladus orientalis and Fokienia hodginsii. Acta Botanica Yunnanica 9: 447451.Google Scholar
Li, L.C. 1995. Studies on the karyotype and phylogeny of the Pinaceae. Acta Phytotaxonomica Sinica 33: 417432.Google Scholar
Liu, N., Zhu, Y., Wei, Z.X., et al. 2009. Phylogenetic relationships and divergence times of the family Araucariaceae based on the DNA sequences of eight genes. Chinese Science Bulletin 54: 26482655.CrossRefGoogle Scholar
Longmore, M.E. 1997. Quaternary palynological records from perched lake sediments, Fraser Island, Queensland, Australia: rainforest, forest history and climatic control. Australian Journal of Botany 45(3): 507526.CrossRefGoogle Scholar
Lu, Y., Hautevelle, Y. & Michels, R. 2013. Determination of the molecular signature of fossil conifers by experimental palaeochemotaxonomy: part 1. The Araucariaceae family. Biogeosciences 10: 19431962.CrossRefGoogle Scholar
Macphail, M.K., Hill, K., Partrifge, A.D., Trusswell, E.M. & Foster, C. 1995. ‘Wollemi pine’: old pollen records for a newly discovered genus of gymnosperms. Geology Today 11: 4850.Google Scholar
Martin, H.A. 1981. The Tertiary flora. Pp 391406 in Keast, A. (ed.), Ecological Biogeography of Australia. The Hague: W.Junk.CrossRefGoogle Scholar
McCoy, S.G., Jaffré, T., Rigault, F. & Ash, J.E. 1999. Fire and succession in the ultramafic maquis of New Caledonia. Journal of Biogeography 26: 579594.CrossRefGoogle Scholar
Mehrotra, R.C. 2011. Living gymnosperms of India: past and recent. Phytotaxonomy 11: 8085.Google Scholar
Menendez, C.A. & Caccavari, M.A. 1966. Estructtura epdermica de Araucaria nathorstii Dus. del Terciaro de Pico Quemado, Rio Negro. Ameghiniana 4: 195199.Google Scholar
Meyen, S.V. 1984. Basic feature of gymnosperm systematics and phylogeny as evidenced by the fossil record. Botanical Review 50: 1111.CrossRefGoogle Scholar
Mickle, J.E. 1993. Cuticular micromorphology of Pagiophyllum bladensis, comb nov., from the Late Cretaceous of the North Carolina Coastal Plain, USA. Bulletin of the Torrey Botanical Club 120: 387391.CrossRefGoogle Scholar
Mildenhall, D.C. & Johnston, M.R. 1971. A megastrobilus belonging to the genus Araucarites from the Upper Motuan (Upper Albian) Waiparapa, North Island, New Zealand. New Zealand Journal of Botany 9: 6779.CrossRefGoogle Scholar
Miller, C.N. 1977. Mesozoic conifers. Biological Review 43: 218280.Google Scholar
Mitra, A.K. 1927. On the occurrence of two ovules on araucarian cone-scales. Annals of Botany 41: 461471.CrossRefGoogle Scholar
Mundo, I.A., Roig Juñet, F.A, Villalba, R., Kizberger, T. & Barcelo, M.B. 2012. Araucaria araucana tree ring chronologies in Argentina: spatial growth variations and climate influences. Trees 26: 443454.CrossRefGoogle Scholar
Nishida, M. 1981. A corm-like hypocotyle of araucarian seedling from the Upper Cretaceous of Hokkaido. Journal of Japanese Botany 56: 1520.Google Scholar
Ntima, O.O. 1968. The Araucarias: Fast-Growing Timber Trees of the Lowland Tropics. Oxford: University of Oxford.Google Scholar
Ogden, J. 1981. Dendrochronological studies and the determination of tree ages in the Australian tropics. Journal of Biogeography 8: 405420.CrossRefGoogle Scholar
Ohsawa, T., Nishida, H. & Nishida, M. 1995. The structure and affinities of the petrified plants from the Cretaceous of northern Japan and Saghalien. 15. Yezonia, a new section of Araucaria (Araucariaceae) based on permineralised vegetative and reproductive organs from the Upper Cretaceous of Hokkaido, Japan. Journal of Plant Research 108: 2539.CrossRefGoogle Scholar
Page, C.N. 1972. An assessment of inter-specific relations in Equisetum subgenus Equisetum. New Phytologist 71: 335369.CrossRefGoogle Scholar
Page, C.N. 1979. Macaronesian heathlands. Pp 117123 in Specht, R.L. (ed.), Ecosystems of the World No 9A: Heathlands and Related Shrublands. Amsterdam: Elsevier.Google Scholar
Page, C.N. 1990. Economic importance of conifer conservation. Pp. 293294 in Kubitsky, K. & Green, P.S. (eds.), The Families and Genera of Vascular Plants. I. Pteridophytes and Gymnosperms. Berlin: Springer.Google Scholar
Page, C.N. 2003. The conifer flora of New Caledonia: stasis, evolution and survival in an ancient group. Pp 149155 in Mill, R.R. (ed.), Conifers for the Future? Proceedings of the Fourth International Conifer Conference. Wye: Acta Horticulturae.Google Scholar
Page, C.N. & Clifford, H.T. 1981. Ecological biogeography of Australian conifers and ferns. Pp 473498 in Keast, A. (ed.), Ecological Biogeography of Australia. The Hague: W. Junk.Google Scholar
Pant, D.D. & Srivastava, G.K. 1968. On the cuticular structure of Araucaria (Araucarites) cutchensis (Feistmantel) comb. nov. from the Jabalpur series, India. Journal of the Linnean Society Botany 61: 201206.CrossRefGoogle Scholar
Panti, C., Pujana, R.R., Zamaloa, M.C. & Romero, E.J. 2012. Arauariaceae macrofossil record for South America and Antarctica. Alcheringa 36: 122.CrossRefGoogle Scholar
Philippe, M. & Daviero, V. 2000. Observation of vertical reiterations by Araucaria araucana (Mol.) K.Koch, and inferences for Mesozoic landscapes. Revue de Paléobiologie 19: 157163.Google Scholar
Pigram, C.J. & Davies, H.L. 1987. Terranes and the accretion history of the New Guinea orogen. Journal of Australian Geology and Geophysics 10: 193211.Google Scholar
Poiner, G., Lambert, J.B. & Wu, Y.Y. 2004. NMR analysis of amber in the Zubair Formation, Khafji oilfield (Saudi Arabia – Kuwait): coal as a source rock? Journal of Petroleum Geology 27: 207209.CrossRefGoogle Scholar
Pole, M. 2000. Dicotyledonous leaf macrofossils from the latest Albian–earliest Cenomanian of the Eromanga Basin, Queensland, Australia. Paleontological Research 4(1): 3952.Google Scholar
Pole, M. 2007. Early Eocene dispersed cuticles and mangrove to rainforest vegetation at Strahan-Regatte Point, Tasmania. Palaeontologica Electronica 10(3).Google Scholar
Pole, M. 2008. The record of Araucariaceae macrofossils in New Zealand. Alcheringa 32: 405426.CrossRefGoogle Scholar
Pole, M. & Philippe, M. 2010. Cretaceous plant fossils of Pitt island, the Chatham group, New Zealand. Alcheringa 34: 231263.CrossRefGoogle Scholar
Rack, F.R. 1993. A geologic perspective on the Miocene evolution of the Antarctic Circumpolar Current system. Tectonophysics 222: 397415.CrossRefGoogle Scholar
Ratcliffe, J.B. 1984. Cagar Alam Pegunungan Cyclops, Irian Jaya, Indonesia: management plan 1985–1989. IUCN/WWF Report no. 11.Google Scholar
Raubeson, L.A. & Gensel, P.G. 1991. Upper Cretaceous conifer leaf fossils from the Black Creek Formation, with an assessment of affinities using principal component analysis. Botanical Gazette 152: 380392.CrossRefGoogle Scholar
Richards, B.N. 1967. Introduction of the rain-forest species Araucaria cunninghamii Ait. to a dry sclerophyll forest environment. Plant and Soil 27: 201216.CrossRefGoogle Scholar
Rigg, L.S. 2005. Disturbance processes and spatial patterns of two emergent conifers in New Caledonia. Austral Ecology 30: 363373.CrossRefGoogle Scholar
Rigg, L.S., Enright, N.J. & Jaffré, T. 1998. Stand structure of the emergent conifer Araucaria laubenfelsii in forest and maquis at Mt. Do. Province Sud, New Caledonia. Australian Journal of Ecology 23: 528538.CrossRefGoogle Scholar
Rigg, L.S., Enright, N.J., Perry, G.L.W. & Miler, B.P. 2002. The role of cloud-combing and shading by isolated trees in the succession from maquis to rainforest in New Caledonia. Biotropica 34: 199210.CrossRefGoogle Scholar
Rigg, L.S., Enright, N.J. & Jaffré, T. 2010. Contrasting population dynamics of the endemic New Caledonian conifer Araucaria laubenfelsii in maquis and rain forest. Biotropica 42: 479487.CrossRefGoogle Scholar
Rogers, L.J. 1954. Reforestation of Paraná Pine. Unasylva 8: 1518.Google Scholar
Rouane, M. I. & Woltz, P. 1979. Apport de l’éltude des plantules pour la taxonomie et l’évolution des Araucariacées. Bulletin de la Société Botanique de France. Actualités Botaniques 3: 6776.CrossRefGoogle Scholar
Rouane, M.l. & Woltz, P. 1980. Interét des plantules pour la systématique et la évolution des Araucariacées. Bulletin de la Société d’histoire naturelle de Toulouse 116: 120136.Google Scholar
Setoguchi, H., Asakawa Osawa, T., Pintaud, J.C., Jaffré, T. & Veillon, J.M. 1998. Phylogenetic relationships within Araucariaceae based on rbcL gene sequences. American Journal of Botany 85(11): 15071516.CrossRefGoogle ScholarPubMed
Seward, A.C. 1919. Fossil Plants. Cambridge: Cambridge University Press.Google Scholar
Shackleton, N.J., Crowhurst, S., Hagelberg, T., Pisias, N. & Schneider, D.A. 1995. A new late Neogene timescale: applications to leg 138 sites. Proceedings of Ocean Drilling Program, Scientific Results 138: 73101Google Scholar
Sharma, B.D. & Bohra, D.R. 1977. Petrified araucarian megastrobili from the Jurassic of the Rajmahal Hills, India. Acta Palaeobotanica 18: 3136.Google Scholar
Shepherd, J.D. & Ditton, J.D. 2013. Rodent handling of Araucaria araucana seeds. Austral Ecology 38: 2332.CrossRefGoogle Scholar
Sing, G. 1957. Araucarites nipaniensis sp. nov.: a female araucarian cone-scale from the Rajmahal Series. Palaeobotanist 5: 6465.Google Scholar
Specht, R.L. 1981. Evolution of the Australian flora: some generalizations. Pp 783805 in Keast, A. (ed.), Ecological Biogeography of Australia. The Hague: W.Junk.CrossRefGoogle Scholar
Spegazzini, C. 1924. Coniferales fóssiles Patagónicas. Anales de la Sociedad Científica Argentina 97: 125139.Google Scholar
Spicer, R.A., Herman, A.B., Ahlberg, A.T., Raikevich, M.I. & Rees, P.M. 2002. Mid-Cretaceous Grebenka Flora of North-eastern Russia: stratigraphy, palaeobotany, taphonomy, and palaeoenvironment. Palaeogeography, Palaeoclimatology, Palaeoecology 184: 65105.CrossRefGoogle Scholar
Stefanović, S., Jager, M., Deutsch, J., Broutin, J. & Masselot, M. 1998. Phylogenetic relationships of conifers inferred from partial 28S rRNA gene sequences. American Journal of Botany 85: 688697.CrossRefGoogle Scholar
Stockey, R.A. 1975. Seeds and embryos of Araucaria mirabilis. American Journal of Botany 62: 856868.CrossRefGoogle Scholar
Stockey, R.A. 1977. Reproductive biology of the Cerro Cuadrado (Jurassic) fossil conifers: Pararaucaria patagonica Weiland. American Journal of Botany 64: 733744.CrossRefGoogle Scholar
Stockey, R.A. 1978. Reproductive biology of Cerro Cuadrado (Jurassic) fossil conifers: ontogeny and reproductive strategies in Araucaria mirabilis (Spegazzini) Windhausen. Palaeontographica B 166: 115.Google Scholar
Stockey, R.A. 1980. Jurassic Araucarian cone from southern England. Palaeontology 23: 657666.Google Scholar
Stockey, R.A. 1982. The Araucariaceae: an evolutionary perspective. Review of Palaeobotany & Palynology 37: 133154.CrossRefGoogle Scholar
Stockey, R.A. 1990. Antarctic and Gondwana conifers. Pp 179191 in Taylor, T.N. & Taylor, E.L. (eds.), Antarctic Paleobiology: Its Role in the Reconstruction of Gondwana. New York: Springer.CrossRefGoogle Scholar
Stockey, R.A. 1994. Mesozoic Araucariaceae: morphology and systematic relationships. Journal of Plant Research 107: 493502.CrossRefGoogle Scholar
Stockey, R.A. & Atkinson, I.J. 1993. Cuticle micromorphology of Agathis Salisbury. International Journal of Plant Sciences 154: 187225.CrossRefGoogle Scholar
Stockey, R.A. & Ko, H. 1986. Cuticle micromorphology of Araucaria de Jussieu. Botanical Gazette 147: 508548.CrossRefGoogle Scholar
Stockey, R.A. & Rothwell, G. 2013. Pararaucaria carrii sp. nov., anatomically preserved evidence for the conifer family Cheirolepidiaceae in the Northern Hemisphere. International Journal of Plant Sciences 174: 445457.CrossRefGoogle Scholar
Stockey, R.A. & Taylor, T.N. 1978. On the structure and evolutionary relationships of the Cerro Cuadrado fossil conifer seedlings. Botanical Journal of the Linnean Society 76: 161176.CrossRefGoogle Scholar
Stockey, R.A. & Taylor, T.N. 1981. Scanning electron microscopy of epidermal patterns and cuticular structure in the genus Agathis. Scanning Electron Microscopy 3: 207212.Google Scholar
Stockey, R.A., Nishida, M. & Nishida, H. 1990. Structure and diversity of the woody conifer seedling-like structures from the Upper Cretaceous of Hokkaido, Japan. Botanical Gazette 151: 252262.CrossRefGoogle Scholar
Stockey, R.A., Nishida, M. & Nishida, H. 1992. Upper Cretaceous araucarian cones from Hokkaido: Araucaria nihongii sp. nov. Review of Palaeobotany and Palynology 72: 2740.CrossRefGoogle Scholar
Stockey, R.A., Nishida, M. & Nishida, H. 1994. Upper Cretaceous araucarian cones from Hokkaido and Saghalien: Araucaria nipponensis sp. nov. International Journal of Plant Sciences 155: 800809.CrossRefGoogle Scholar
Stultz, D.Z., Axsmith, B.J., Knight, T.K. & Bingham, P.S. 2012. The conifer Araucaria bladensis and associated large pollen and ovulate cones from the Upper Cretaceous Ingersol shale (Eutaw Formation) of Alabama. Cretaceous Research 34: 142148.CrossRefGoogle Scholar
Takhtajan, A. 1986. Floristic Regions of the World. Berkley, CA: University of California Press.Google Scholar
Taylor, T.N. 1981. Palaeobotany: An Introduction to Fossil Plant Biology. New York: McGraw Hill.Google Scholar
Tognetti, R., Lombaridi, F., Lasserre, B., et al. 2012. Tree-ring responses in Araucaria araucana to two major eruptions of Lonquimay Volcano (Chile). Trees: Structure and Function 26: 18051819.CrossRefGoogle Scholar
Townrow, J.A. 1967. On a conifer from the Jurassic of east Antarctica. Papers and Proceedings of the Royal Society of Tasmania 101: 137147.CrossRefGoogle Scholar
Townrow, J.A. 1969. Some Lower Mesozoic Podocarpaceae and Araucariaceae. Pp 159184 in Gondwanan Stratigraphy. Gap: UNESCO.Google Scholar
Vakhrameev, V.A. 1970. Range and palaeoecology of Mesozoic conifers, the Cheirolepidiaceae. Palaeontological Zhurnal 1: 1934.Google Scholar
Van der Ham, R.W.J.M., van Konijnenburg-van Cittert, J.H.A., Dortangs, R.W., Herngreen, G.F.W. & van den Burgh, J. 2003. Brachyphyllum patens (Miquel) comb. nov. (Cheirolepidiaceae?): remarkable conifer foliage from the Maastrichtian type area (Late Cretaceous, NE Belgium, SE Netherlands). Review of Palaeobotany and Palynology 127: 7797.CrossRefGoogle Scholar
Van der Ham, R.W.J.M., Jagt, J.W.M., Renkens, S. & van Konijnenburg-van Cittert, J.H.A. 2010. Seed cone scales from the Upper Maastrichtian document the last occurrence in Europe of the Southern hemisphere conifer family Araucariaceae. Palaeogeography, Palaeoclimatology, Palaeoecology 291: 469473.CrossRefGoogle Scholar
van Konijnenburg-van Cittert, J.H. & Morgans, H.S., 1999. The Jurassic Flora of Yorkshire, Vol. 8. London: Palaeontological Association.Google Scholar
Van Royen, P. 1965. An outline of the flora and vegetation of the Cyclops Mountains. Nova Guinea N.S. 21: 451469.Google Scholar
Veblen, T.T. 1982. Regeneration patterns in Araucaria araucana forests in Chile. Journal of Biogeography 9: 1128.CrossRefGoogle Scholar
Veillon, J.-M. 1980. Architecture des espèces néo-calédonienne du genre Araucaria. Candollea 35: 609640.Google Scholar
Vera, E.I. & Cesari, S.N. 2012. Fossil woods (Coniferales) from the Baquero Group (Aptian), Santa Cruz Province, Argentina. Anals da Academia Brasileira de Ciencias 84: 617625.CrossRefGoogle Scholar
Vishnu-Mittre, M. 1954. Araucarites bindrabundensis sp. nov., a petrified megastrobilus from the Jurassic of Rajmahal Hills, Bihar. Palaeobotanist 3: 103108.Google Scholar
Wade, L.K. & McVean, D.N.L. 1969. Mt Wilhelm Studies. I. The Alpine and Subalpine Vegetation. Canberra: Australian National University.Google Scholar
Wagstaff, S.J., Martinsson, K. & Swenson, U. 2000. Divergence estimates of Tetrachondra hamiltonii and T. patagonica (Tetrachomdraceae) and their implications for Southern Hemisphere biogeography. New Zealand Journal of Botany 38: 587596.CrossRefGoogle Scholar
Webb, L.J. 1959. A physiognomic classification of Australian rainforests. Journal of Ecology 47: 551570.CrossRefGoogle Scholar
Webb, L.J. 1968. Environmental relationships of the structural types of Australian rainforest vegetation. Ecology 49: 296311.CrossRefGoogle Scholar
Webb, L.J. & Tracey, J.G. 1967. An ecological guide to new planning areas and site potential for hoop pine. Australian Forestry 31: 224239.CrossRefGoogle Scholar
Webb, L.J. & Tracey, J.G. 1981. Australian rainforests: patterns and change. Pp 605694 in Keast, A.J. (ed.), Ecological Biogeography of Australia. The Hague: W. Junk.CrossRefGoogle Scholar
Whitmore, T.C. 1966. The social status of Agathis in rainforests in Melanesia. Journal of Ecology 54: 285301.CrossRefGoogle Scholar
Wieland, G.R. 1935. The Cerro Cuadrado Petrified Forest. Washington, DC: Carnegie Institute of Washington Publications.Google Scholar
Wilde, M.H. & Eames, A.J. 1948. The ovule and ‘seed’ of Araucaria bidwillii, with discussion of the taxonomy of the genus. I. Morphology. Annals of Botany N.S. 12: 311326.CrossRefGoogle Scholar
Wilde, M.H. & Eames, A.J. 1955. The ovule and ‘seed’ of Araucaria bidwillii with discussion of the taxonomy of the genus. III. Anatomy of multi-ovulate cone scales. Annals of Botany N.S. 19: 343349.CrossRefGoogle Scholar
Wolfe, A.P., Tappert, R., Muehlenbachs, K., et al. 2009. A new proposal concerning the botanical origin of Baltic amber. Proceedings of the Royal Society B: Biological Sciences 276(1672): 34033412.CrossRefGoogle ScholarPubMed
Yamaguchi, L.F., Kato, M.J. & Paolo, D.M. 2009. Biflavenoids from Araucaria angustifolia protect against DNA UV-induced damage. Phytochemistry 70: 615620.CrossRefGoogle ScholarPubMed
Young, P.A.R. & McDonald, W.J.F. 1987. The distribution, composition and status of the rainforests of southern Queensland. Pp 119140 in Davis, B. (ed.), The Rainforest Legacy, vol 1. Canberra: Australian Government Publishing Service.Google Scholar
Zheng, S.L., Zhang, L.D., Zhang, W. & Yang, Y.J. 2008. A new female cone, Araucaria beipolaoensis sp. nov. from the Middle Jurassic Tiaojishan Formation, Beipiao, western Liaoning, China and its evolutionary significance. Acta Geological Sinica 82: 266282.Google Scholar
Zhou, Z., Barrett, P.M. & Hilton, J. 2003. An exceptionally preserved Lower Cretaceous ecosystem. Nature 421: 807814.CrossRefGoogle ScholarPubMed
Zonneveld, B.J.M. 2012. Genome sizes of all 19 Araucaria species are connected to geographical distance. Plant Systematics and Evolution 298: 12491255.CrossRefGoogle Scholar

References

Adam, P. 1992. Australian Rainforests. Oxford: Clarendon Press.CrossRefGoogle Scholar
Archangelsky, S. 1963. A new Mesozoic flora from Tico, Santa Cruz province, Argentina. Bulletin of the British Museum Natural History Geology 8: 492.Google Scholar
Askin, R.A. 1989. Endemism and heterochronicity in the Late Cretaceous (Campanian) to Paleocene palynofloras of Seymour Island, Antarctica: implications for origins, dispersal and palaeoclimates of southern floras. Pp 107119 in Crane, J.A. (ed.), Origins and Evolution of the Antarctic Biota. London: Geological Society of London.Google Scholar
Bigwood, A.J. & Hill, R.S. 1985. Tertiary araucarian macrofossils from Tasmania. Australian Journal of Botany 33: 645656.CrossRefGoogle Scholar
Cantrill, D.J. 1991. Broad leaved coniferous foliage from the Lower Cretaceous Otway Group, southeastern Australia. Alcheringa 15: 177190.CrossRefGoogle Scholar
Cantrill, D.J. 1992. Araucarian foliage from the Lower Cretaceous of southern Victoria, Australia. International Journal of Plant Sciences 153: 622645.CrossRefGoogle Scholar
Cantrill, D.J. 2000. A Cretaceous (Aptian) flora from President Head, Snow Island, Antarctica. Palaeontographica B, 253: 153191.CrossRefGoogle Scholar
Cantrill, D.J. & Falcon-Lang, H.J. 2001. Cretaceous (Late Albian) Coniferales of Alexander Island, Antarctica. Part 2. Foliage, reproductive structures and roots. Review of Palaeobotany and Palynology 115: 119145.CrossRefGoogle Scholar
Cantrill, D.J. & Poole, I. 2012. The Vegetation of Antarctica through Geological Time. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Cantrill, D.J. & Raine, J.I. 2006. Wairarapaia mildenhallii gen. et sp. nov., a new araucarian cone related to Wollemia from the Cretaceous (Albian–Cenomanian) of New Zealand. International Journal of Plant Sciences 167: 12591269.CrossRefGoogle Scholar
Cardemil, L., Salas, E. & Godoy, M. 1984. Comparative study of the karyotypes of South American species of Araucaria. Journal of Heredity 75: 121132.CrossRefGoogle Scholar
Carpenter, R.J. & Pole, M. 1995. Eocene plant fossils from the Lefroy and Cowan palaeodrainages, Western Australia. Australian Systematic Botany 8: 11071154.CrossRefGoogle Scholar
Carpenter, R.J., Jordan, G.J., Macphail, M.K. & Hill, R.S. 2012. Near-tropical Early Eocene terrestrial temperatures at the Australo-Antarctic margin, western Tasmania. Geology 40(3): 267270.CrossRefGoogle Scholar
Chambers, T.C., Drinnan, A.N. & McLoughlin, S. 1998. Some morphological features of Wollemi Pine (Wollemia nobilis: Araucariaceae) and their comparison to Cretaceous plant fossils. International Journal of Plant Sciences 1569: 160171.CrossRefGoogle Scholar
Christophel, D.C. & Greenwood, D.R. 1988. A comparison of Australian tropical rainforest and Tertiary fossil leaf beds. Proceedings of the Ecological Society of Australia 15: 139148.Google Scholar
Cookson, I.C. 1947. Plant microfossils from the lignites of Kerguelen Archipelago. Report of the British, Australian and New Zealand Antarctic Expedition A 2: 127142.Google Scholar
Dainty, A.L. 1982. Chromosome numbers and karyotype variation in Araucaria. Kew Bulletin 37: 511514.CrossRefGoogle Scholar
Davies, B.J., O’Brien, I.E.W. & Murray, B.G. 1997. Karyotypes, chromosome bands and genome size variation in New Zealand endemic gymnosperms. Plant Systematics and Evolution 208: 169185.CrossRefGoogle Scholar
Dettmann, M.E. 1989. Antarctic: Cretaceous cradle of austral temperate rainforests ? Pp 89105 in Crane, J.A. (ed.) Origins and Evolution of the Antarctic Biota. London: Geological Society of London.Google Scholar
Dettmann, M.E. & Jarzen, D.M. 2000. Pollen of extant Wollemia (Wollemi pine) and comparisons with pollen of other extant and fossil Araucariaceae. Pp 167203 in Harley, M.M., Morton, C.M. & Blackmore, S. (eds.), Pollen and Spores: Morphology and Biology. Kew: Royal Botanic Gardens.Google Scholar
Douglas, J.G. & Williams, G.E. 1982. Southern polar forests: the Early Cretaceous floras of Victoria and their palaeoclimatic significance. Palaeogeography, Palaeoclimatology, Palaeoecology 39: 171185.CrossRefGoogle Scholar
Drinnan, N. & Chambers, T.C. 1986. Flora of the Lower Cretaceous Koonwarra Fossil Bed (Korumburra Group), South Gippsland, Victoria. Pp 177 in Jell, P.A. & Roberts, J. (eds.), Plants and Invertebrates from the Koonwarra Fossil Bed, South Gippsland, Victoria. Sydney: Association of Australasian Palaeontologists.Google Scholar
Escapa, I.H. & Catalano, S.A. 2013. Phylogenetic analysis of Araucariaceae: integrating molecules, morphology, and fossils. International Journal of Plant Sciences 174(8): 11531170.CrossRefGoogle Scholar
Falcon-Lang, H.J. & Cantrill, D.J. 2002. Terrestrial paleoecology of the Cretaceous (early Aptian) Cerro Negro Formation, South Shetland Islands, Antarctica: a record of polar vegetation in a volcanic arc environment. Palaios 17: 709725.2.0.CO;2>CrossRefGoogle Scholar
Fensom, G. & Offord, C. 1997. Propagation of the wollemi pine (Wollemia nobilis). Combined Proceedings of the International Plant Propagators Society 47: 6667.Google Scholar
Flory, W.S. 1936. Chromosome numbers and phylogeny in the gymnosperms. Journal of the Arnold Arboretum 17: 8389.CrossRefGoogle Scholar
Gilmore, S. & Hill, K.D. 1997. Relationships of the Wollemi Pine (Wollemia nobilis) and a molecular phylogeny of the Araucariaceae. Telopea 7: 275291.CrossRefGoogle Scholar
Hanson, L. 2001. Chromosome number, karyotype and DNA C-value of the Wollemi Pine (Wollemia nobilis, Araucariaceae). Botanical Journal of the Linnean Society 135: 271274.CrossRefGoogle Scholar
Harris, W.K. 1965. Basal tertiary microfloras from the Princetown area, Victoria, Australia. Palaeontographica 115B: 75106.Google Scholar
Hill, K.D. 1997. Architecture of the Wollemi pine (Wollemia nobilis, Araucariaceae), a unique combination of model and reiteration. Australian Journal of Botany 45: 817826.CrossRefGoogle Scholar
Hill, R.S. & Macphail, M.K. 1983. Reconstruction of the Oligocene vegetation at Pioneer, north-east Tasmania. Alcheringa 7: 281299.CrossRefGoogle Scholar
Jones, W.G., Hill, K.D. & Allen, J.M. 1995. Wollemia nobilis, a new living Australian genus and species in the Araucariaceae. Telopea 6: 173176.CrossRefGoogle Scholar
Kershaw, P. & Wagstaff, B. 2001. The southern conifer family Araucariaceae: history, status and value for palaeoenvironmental reconstruction. Annual Review of Ecology and Systematics 32: 397414.CrossRefGoogle Scholar
Khoshoo, T.N. 1961. Chromosome numbers in gymnosperms. Silvae Genetica 10: 132.Google Scholar
Li, Z.X. & Powell, C.McA. 2001. An outline of the palaeogeographic evolution of the Australasian region since the beginning of the Neoproterozoic. Earth-Science Reviews 53: 237277.CrossRefGoogle Scholar
Liu, N., Zhu, Y., Wei, Z.-X., et al. 2009. Phylogenetic relationships and divergence times of the family Araucariaceae based on the DNA sequences of eight genes. Chinese Science Bulletin 54: 26482655.CrossRefGoogle Scholar
Lu, Y., Hautevelle, Y. & Michels, R. 2013. Determination of the molecular signature of fossil conifers by experimental palaeochemotaxonomy: part 1. The Araucariaceae family. Biogeosciences 10: 19431962.CrossRefGoogle Scholar
Macphail, M.K., Alley, N.F., Trusswell, E.M. & Sluiter, I.R.K. 1994. Early Tertiary vegetation: evidence from spores and pollen. Pp 189261 in Hill, R.S. (ed.), History of Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Macphail, M.K., Hill, K., Partridge, A.D., Truswell, E.M. & Foster, C. 1995. Australia: ‘Wollemi pine’: old pollen records for a newly discovered genus of gymnosperms. Geology Today, March–April: 48–50.Google Scholar
Macphail, M., Carpenter, R.J., Iglesias, A. & Wilf, P. 2013. First evidence for Wollemi pine-type pollen (Dilwynites: Araucariaceae) in South America. PLoS One 8(7): e69281.CrossRefGoogle Scholar
McLoughlin, S. & Vajda, V. 2005. Ancient Wollemi pines resurgent: ten years after its discovery, a vanishingly rare tree from the Cretaceous Period is a scientific darling and may soon become a commercial success too. American Scientist 93(6): 540548.CrossRefGoogle Scholar
McLoughlin, S., Drinnan, A.N. & Rozefelds, A.C. 1995. A Cenomanian flora from the Winton Formation, Eromanga Basin, Queensland, Australia. Memoirs of the Queensland Museum 38: 273313.Google Scholar
Mehra, P.N. 1988. Indian Conifers, Genotypes and Phylogeny. Chandigarh: Punjab University.Google Scholar
Morley, R.J. 1998. Palynological evidence for Tertiary plant dispersal in the SE Asian region in relation to plate tectonics and climate. Pp 211234 in Hall, R. & Holloway, J.D. (eds.), Biogeography and Geological Evolution in SE Asia. Leiden: Backbuys.Google Scholar
Offord, C.A. & Meagher, P.F. 2001. Effects of temperature, light and stratification on seed germination of wollemi pine (Wollemia nobilis, Araucariaceae). Australian Journal of Botany 49: 699704.CrossRefGoogle Scholar
Ohri, D. & Khoshoo, T. 1986. Genome size in gymnosperms. Plant Systematics and Evolution 153: 119132.CrossRefGoogle Scholar
Page, C.N. 1980. Leaf micromorphology in Agathis and its taxonomic implications. Plant Systematics and Evolution 135: 7179.CrossRefGoogle Scholar
Page, C.N. 1990. Araucariaceae. Pp 294299 in Kubitsky, K. & Green, P.S. (eds.), The Families and Genera of Vascular Plants. I. Pteridophytes and Gymnosperms. Berlin: Springer.Google Scholar
Page, C.N. & Clifford, H.T. 1981. Ecological biogeography of Australian conifers and ferns. Pp 473498 in Keast, A. (ed.), Ecological Biogeography of Australia. The Hague: W. Junk.Google Scholar
Parrish, J.T., Daniel, I.L., Kennedy, E.M. & Spicer, R.A. 1998. Palaeoclimatic significance of mid-Cretaceous floras from the Middle Clarence Valley, New Zealand. Palaios 13: 149159.CrossRefGoogle Scholar
Peakall, R., Ebert, D., Scott, J., Meagher, P.F. & Offord, C.A. 2003. Comparative genetic study confirms exceptionally low genetic variation in the ancient and endangered relictual conifer, Wollemia nobilis (Araucariaceae). Molecular Ecology 12: 23312343.CrossRefGoogle ScholarPubMed
Pole, M. 2007. Early Eocene dispersed cuticles and mangrove to rainforest vegetation at Strahan-Regatte Point, Tasmania. Palaeontologica Electronica 10(3).Google Scholar
Setoguchi, H., Asakawa Osawa, T., Pintaud, J.C., Jaffré, T. & Veillon, J.M. 1998. Phylogenetic relationships within Araucariaceae based on rbcL gene sequences. American Journal of Botany 85(11): 15071516.CrossRefGoogle Scholar
Seward, A.C. 1904. On a collection of Jurassic plants from Victoria. Records of the Geological Survey of Victoria 1: 155211.Google Scholar
Spicer, R.A. & Chapman, J.L. 1990. Climate change and the evolution of high-latitude terrestrial vegetation and floras. Trends in Ecology and Evolution 5: 279284.CrossRefGoogle ScholarPubMed
Stockey, R.A. 1990. Antarctic and Gondwana conifers. Pp 179191 in Taylor, T.N. & Taylor, E.L. (eds.), Antarctic Paleobiology. New York: Springer.CrossRefGoogle Scholar
Stockey, R.A. 1994. Mesozoic Araucariaceae: morphology and systematic relationships. Journal of Plant Research 107: 493502.CrossRefGoogle Scholar
Stockey, R.A. & Atkinson, I.J. 1993. Cuticle micromorphology of Agathis Salisbury. International Journal of Plant Sciences 154: 187225.CrossRefGoogle Scholar
Stockey, R.A. & Ko, H. 1986. Cuticle micromorphology of Araucaria De Jussieu. Botanical Gazette 147: 508548.CrossRefGoogle Scholar
Strobel, G.A., Hess, W.M., Li, Y.-J., et al. 1997. Pestalotiopsis guepinii, a taxol-producing endophyte of the wollemi pine, Wollemia nobilis. Australian Journal of Botany 45: 10731082.CrossRefGoogle Scholar
Taylor, A.H. 1990. Habitat segregation and regeneration patterns of red fir and mountain hemlock in ecotonal forests, Lassen Volcanic National park, California. Physical Geography 11: 3648.CrossRefGoogle Scholar
Tomlinson, P.B. & Murch, S.J. 2009. Wollemia nobilis (Araucariaceae): branching, vasculature and histology in juvenile stages. American Journal of Botany 96: 17871797.CrossRefGoogle ScholarPubMed
Truswell, E.M. 1990. Cretaceous and Tertiary vegetation of Antarctica: a palynological perspective. Pp 7188 in Taylor, T.N. & Taylor, E.L. (eds.), Antarctic Palaeobiology. New York: Springer.CrossRefGoogle Scholar
Truswell, E.M. 1991. Antarctica: a history of terrestrial vegetation. Pp 499537 in Tinget, R.J. (ed.), The Geology of Antarctica. Oxford: Clarendon Press.Google Scholar
Wagstaff, S.J., Martinsson, K. & Swenson, U. 2000. Divergence estimates of Tetrachondra hamiltonii and T. patagonica (Tetrachomdraceae) and their implications for Southern Hemisphere biogeography. New Zealand Journal of Botany 38: 587596.CrossRefGoogle Scholar
Woodford, J. 2000. The Wollemi Pine: The Incredible Discovery of a Living Fossil from the Age of the Dinosaurs. Melbourne: Text Publishing.Google Scholar

References

Adam, P. 1992. Australian Rainforests. Oxford: Clarendon Press.CrossRefGoogle Scholar
Ahmed, M. & Ogden, J. 1985. Modern New Zealand tree-ring chronologies. III. Agathis australis (Salisb.) kauri. Tree Ring Bulletin 45: 1124.Google Scholar
Ahmed, M. & Ogden, J. 1987. Population dynamics of the emergent conifer Agathis australis (D.Don) Lindl. (kauri) in New Zealand. 1. Population structures and tree growth rates in mature stands. New Zealand Journal of Botany 25: 217229.CrossRefGoogle Scholar
Ahmed, M. & Ogden, J. 1991. Descriptions of some mature kauri forests of New Zealand. Tane 33: 89112.Google Scholar
Ash, J. 1983. Growth rings in Agathis robusta and Araucaria cunninghamii from tropical Australia (Queensland). Australian Journal of Botany 31: 269275.CrossRefGoogle Scholar
Ash, J. 1985. Growth rings and longevity in Agathis vitiensis (Seeman) Benth. and Hook. F. ex Drake in Fiji. Australian Journal of Botany 33: 8288.CrossRefGoogle Scholar
Attiwill, P.M. & Leeper, G.W. 1987. Forest Soils and Nutrient Cycles. Melbourne: Melbourne University PressGoogle Scholar
Bande, M.B. & Prakash, U. 1986. The Tertiary flora of southeast Asia with remarks on its palaeoenvironment and phytogeography of the Indo-Malayan region. Review of Palaeobotany and Palynology 49: 203233.CrossRefGoogle Scholar
Barton, M. 1993. Factors controlling plant distributions: drought, competition and fire in montane pines in Arizona. Ecological Monographs 63: 367397.CrossRefGoogle Scholar
Baylis, G.T.S., McNabb, R.F.R. & Morrison, T.M. 1963. The mycorrhizal nodules of podocarps. Transactions of the British Mycological Society 46: 378384.CrossRefGoogle Scholar
Beadle, N.C.W. 1981. The Vegetation of Australia. Stuttgart: Gustav Fischer Verlag.Google Scholar
Beveridge, A.E. 1975. Kauri forests of the New Hebrides. Philosophical Transactions of the Royal Society of London B272: 369383.Google Scholar
Bigwood, A.J. & Hill, R.S. 1985. Tertiary araucarian macrofossils from Tasmania. Australian Journal of Botany 33: 645657.CrossRefGoogle Scholar
Bond, W.J. 1989. The tortoise and the hare: ecology of angiosperm dominance and gymnosperm persistence. Biological Journal of the Linnean Society 36: 227249.CrossRefGoogle Scholar
Bowden, M.R. & Whitmore, T.C. 1980. A Second Look at Agathis. Oxford: Commonwealth Forestry Institute.Google Scholar
Bridge, M.C. & Ogden, J. 1986. A sub-fossil kauri (Agathis australis) tree-ring chronology. Journal of the Royal Society of New Zealand 16: 1723.CrossRefGoogle Scholar
Brünig, E.F. 1974. Ecological Studies in the Kerangas Forests of Sarawak and Brunei. Kuching: Borneo Literature Bureau for Sarawak Forest Department.Google Scholar
Buckley, B.M., Ogden, J. Palmer, J.G., Fowler, A. & Salinger, J. 2000. Dendroclimatic interpretation of tree-rings in Agathis australis (kauri). 1. Climate correlation functions and master chronology. Journal of the Royal Society of New Zealand 30: 263276.CrossRefGoogle Scholar
Burns, B.R. & Leathwick, J.R. 1996. Vegetation-environment relationships at Waipoua Forest, Northland, New Zealand. New Zealand Journal of Botany 34: 7992.CrossRefGoogle Scholar
Cantrill, D.J. 1991. Broad leaved coniferous foliage from the Lower Cretaceous of southern Victoria, Australia. Alcheringa 15: 177190.CrossRefGoogle Scholar
Cantrill, D.J. 1992. Araucarian foliage from the Lower Cretaceous of southern Victoria, Australia. International Journal of Plant Sciences 153: 622645.CrossRefGoogle Scholar
Cardemil, L., Salas, E. & Godoy, M. 1984. Comparative study of the karyotypes of South American species of Araucaria. Journal of Heredity 75: 121132.CrossRefGoogle Scholar
Carpenter, R.J., Hill, R.S., Greenwood, D.R. Partdidge, A.D. & Banks, M.A. 2004. No snow in the mountains: Early Eocene plant fossils from Hotham Heights, Victoria, Australia. Australian Journal of Botany 52: 685718.CrossRefGoogle Scholar
Chambers, T.C., Drinnan, A.W. & McLoughlin, S. 1998. Some morphological features of Wollemi Pine (Wollemia nobilis: Araucariaceae) and their comparison to Cretaceous plant fossils. International Journal of Plant Sciences 159: 160171.CrossRefGoogle Scholar
Chapin, F.S. 1980. The mineral nutrition of wild plants. Annual Review of Ecology and Systematics 11: 233260.CrossRefGoogle Scholar
Chen, Y. 1988. Early Holocene population expansion of some rainforest trees at Lake Barrine basin, Queensland. Australian Journal of Botany 13: 225233.Google Scholar
Christophel, D.C. 1981. Tertiary megafossil floras of Australia as indicators of floristic associations and the palaeoclimate. Pp 379390 in Keast, A. (ed.), Ecological Biogeography of Australia. The Hague: W. Junk.Google Scholar
Christophel, D.C. & Blackburn, D.T. 1978. The Tertiary megafossil Flora of Masilin Bay, South Australia: a preliminary report. Alcheringa 2: 311319.CrossRefGoogle Scholar
Claessens, L., Verburg, P.H., Schoorl, J.M. & Veldkamp, A. 2006. Contribution of topographically based landslide hazard modelling to the analysis of the spatial distribution and ecology of kauri (Agathis australis). Landscape Ecology 21: 6376.CrossRefGoogle Scholar
Cockayne, L. 1928. The Vegetation of New Zealand. 2nd edn. Leipzig: Engleman.Google Scholar
Collins, L. & Burns, B. 2001. The dynamics of Agathis australisNothofagus truncata forest in the Hapuakohe Ecological District, Waikato region, New Zealand. New Zealand Journal of Botany 39: 423433.CrossRefGoogle Scholar
Cook, E.R., Buckley, B.M., Palmer, J.G., et al. 2006. Millennia-long tree ring records from Tasmania and New Zealand: a basis for modelling climate variability and forcing, past present and future. Journal of Quaternary Science 21: 689699.CrossRefGoogle Scholar
Cookson, I.C. & Duigan, S.L. 1951. Tertiary Araucariaceae from south-eastern Australia, with notes on living species. Australian Journal of Scientific Research B 3: 133164.Google Scholar
Cooper, A., Lalueza-Fox, C., Anderson, S., et al. 2001. Complete mitochondrial genome sequences of two extinct moas clarify ratite evolution. Nature 409: 704707.CrossRefGoogle ScholarPubMed
Corner, E.J.H. 1967. Ficus in the Solomon Islands and its bearing on the post-Jurassic history of Melanesia. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 253: 23159.Google Scholar
Couper, R.A. 1960. Southern Hemisphere Mesozoic and Tertiary Podocarpaceae and Fagaceae and their palaeogeographic significance. Proceedings of the Royal Society of London. Series B, Biological Sciences 152(949): 491500.Google Scholar
Cranwell, L.M. 1959. Fossil pollen from Seymour Island, Antarctica. Nature 184(4701): 17821785.CrossRefGoogle Scholar
Dainty, A.L. 1982. Chromosome numbers and karyotype variation in Araucaria. Kew Bulletin 37: 511514.CrossRefGoogle Scholar
Davies, B.J., O’Brien, I.E.W. & Murray, B.G. 1997. Karyotypes, chromosome bands and genome size variation in New Zealand endemic gymnosperms. Plant Systematics and Evolution 208: 169185.CrossRefGoogle Scholar
Dawson, J. & Lucas, R. 2013. New Zealand’s Native Trees. Nelson: Craig Potton Publishing.Google Scholar
Dawson, J.W. & Sneddon, B.V. 1969. The New Zealand rainforest: a comparison with tropical rainforest. Pacific Science 23: 131147.Google Scholar
De Laubenfels, D.J. 1969. A revision of the Malesian and Pacific rainforest conifers. I. Podocarpaceae, in part. Journal of the Arnold Arboretum 50: 274369.CrossRefGoogle Scholar
De Laubenfels, D.J. 1972. Gymnospermes. Pp 1167 in Aubréville, A. & Leroy, J.F. (eds.), Flore de la Nouvelle-Calédonie et Dépendances. Paris: Museum National D’Histoire Naturelle.Google Scholar
De Laubenfels, D.J. & Silba, J. 1987. The Agathis of Esperitu Santo (Araucariaceae, New Hebrides). Phytologia 61: 448452.Google Scholar
Delclòs, X., Arillo, A., Penalver, E., et al. 2007. Fossiliferous amber deposits from the Cretaceous (Albian) of Spain. Comptes Rendus Palevol 6(1–2): 135149.CrossRefGoogle Scholar
Dettmann, M.E. & Jarzen, D.M. 1990. The Antarctic/Australasian rift valley: late Cretaceous cradle of northeastern Australasian relicts? Review of Palaeobotany and Palynology 65: 131144.CrossRefGoogle Scholar
Dettmann, M.E. & Jarzen, D.M. 2000. Pollen of extant Wollemia (Wollemi pine) and comparisons with pollen of other extant and fossil Araucariaceae. Pp 167203 in Harley, M.M., Morton, C.M. & Blackmore, S. (eds.), Pollen and Spores: Morphology and Biology. Kew: Royal Botanic Gardens.Google Scholar
DiMichele, W.A., Mamay, S.H., Chaaney, D.S. Hook, R.W. & Nelson, W.J. 2001. An Early Permian flora with Late Permian and Mesozoic affinities from North-Central Texas. Journal of Paleontology 75: 449460.2.0.CO;2>CrossRefGoogle Scholar
Dodson, J.R., Enright, N.J. & McLean, R.F. 1988. A late Quaternary vegetation history for far northern New Zealand. Journal of Biogeography 15: 647656.CrossRefGoogle Scholar
Doyle, M.F. 1999. Regional Action Plan: conifers of the oceanic islands of the insular South Pacific (Fiji, Tonga, Solomon Islands and Vanuatu). Pp 7274 in Farjon, A. & Page, C.N. (eds.), Conifers: Status Survey and Conifer Action Plan. Gland: IUCN.Google Scholar
Ecroyd, C.E. 1982. Biological flora of New Zealand. 8. Agathis australis (D.Don) Lindl. (Araucariaceae) kauri. New Zealand Journal of Botany 20: 1736.CrossRefGoogle Scholar
Elliot, M. 1998. Late Quaternary pollen records of vegetation and climate change from Kaitaia Bog, far northern New Zealand. Review of Palaeobotany and Palynology 99: 189202.CrossRefGoogle Scholar
Elliot, M., Neall, V. & Wallace, C. 2005. A Late Quaternary pollen record from Lake Tangonge, far northern New Zealand. Review of Palaeobotany and Palynology 136: 143158.CrossRefGoogle Scholar
Enright, N.J. 1995. Conifers of tropical Australia. Pp 197222 in Enright, N.J. & Hill, R.S. (eds.), Ecology of the Southern Conifers. Melbourne: Melbourne University Press.Google Scholar
Enright, N.J. 1999. Litterfall in a mixed conifer–angiosperm forest in northern New Zealand. Journal of Biogeography 26: 149157.CrossRefGoogle Scholar
Enright, N.J. & Cameron, E.K. 1988. The soil seed bank of a kauri (Agathis australis) forest remnant near Auckland, New Zealand. New Zealand Journal of Botany 26(2): 223236.CrossRefGoogle Scholar
Enright, N.J. & Goldblum, D. 1998. Stand structure of the emergent conifer Agathis ovata in forest and maquis, Province Sud, New Caledonia. Journal of Biogeography 25: 641648.CrossRefGoogle Scholar
Enright, N.J., Rigg, J. & Jaffré, T. 2001. Environmental controls on species composition along a (maquis) shrubland to forest gradient on ultramafics at Mont Do, New Caledonia. South African Journal of Science 97: 573580.Google Scholar
Enright, N.J., Miller, B.P. & Perry, G.L.W. 2003. Demography of the long-lived conifer Agathis ovata in maquis and rainforest, New Caledonia. Journal of Vegetation Science 14: 625636.Google Scholar
Ericson, P.G., Christidis, L., Cooper, A., et al. 2002. A Gondwanan origin of passerine birds supported by DNA sequences of the endemic New Zealand wrens. Proceedings of the Royal Society of London. Series B, Biological Sciences 269(1488): 235241.CrossRefGoogle ScholarPubMed
Escapa, I.H. & Catalano, S.A. 2013. Phylogenetic analysis of Araucariaceae: integrating molecules, morphology, and fossils. International Journal of Plant Sciences 174(8): 11531170.CrossRefGoogle Scholar
Escapa, I., Iglesias, A., Wilf, P. & Cuneo, N. 2013. Oldest macrofossil record of Agathis (Araucariaceae), early Paleocene of Patagonia, Argentina, and its evolutionary significance. Abstracts, session 44. Botany 2013, New Orleans, USA.Google Scholar
Farjon, A. 2010. A Handbook of the World’s Conifers. Leiden: Konninklijke Brill NV.CrossRefGoogle Scholar
Farjon, A. & Page, C.N. 1999a. Global assessment of conifer diversity and threats. Pp 126 in Farjon, A. & Page, C.N. (eds.), Conifers: Status Survey and Conifer Action Plan. Gland: IUCN.Google Scholar
Fleming, C.A. 1963. Age of the New Zealand biota. Proceedings of the New Zealand Ecological Society 10.Google Scholar
Florin, R. 1963. The distribution of conifer and taxad genera in time and space. Acta Horti Bergiani 20: 121319.Google Scholar
Flory, W.S. 1936. Chromosome numbers and phylogeny in the gymnosperms. Journal of the Arnold Arboretum 17: 8389.CrossRefGoogle Scholar
Fowler, A. 2005. Sea-level pressure composite mapping in dendroclimatology: advocacy and an Agathis australis (kauri) case study. Climate Research 29: 7384.CrossRefGoogle Scholar
Fowler, A., Palmer, J., Salinger, J. & Ogden, J. 2000. Dendroclimatic interpretation of tree-rings in Agathis australis (kauri): evidence of a significant relationship with ENSO. Journal of the Royal Society of New Zealand 30: 277292.CrossRefGoogle Scholar
Fowler, A., Boswijk, G. & Ogden, J. 2004. Tree-ring studies on Agathis australis (kauri): a synthesis of development work on late Holocene chronologies. Tree-Ring Research 60: 1529.CrossRefGoogle Scholar
Gifford, E.M. & Foster, A.S. 1989. Morphology and Evolution of Vascular Plants, 3rd edn. New York: W.H. Freeman.Google Scholar
Gilmore, S. & Hill, K.D. 1997. Relationships of the Wollemi Pine (Wollemia nobilis) and a molecular phylogeny of the Araucariaceae. Telopea 7: 275291.CrossRefGoogle Scholar
Gressitt, J.L. 1958. New Guinea and insect distribution. Pp 767773 in Proceedings of the Tenth International Congress of Entomology. Montreal: Mortimer.Google Scholar
Grubb, P.J. 1989. The role of mineral nutrition in the tropics: a plant ecologist’s view. Pp 419439 in Proctor, J. (ed.), Mineral Nutrients in Tropical Forest and Savannah Ecosystems. Oxford: Blackwell Scientific.Google Scholar
Guillaumin, A. 1938. A florula of the island of Espiritu Santo, one of the New Hebrides. Journal of the Linnean Society (Botany) 51: 547566.Google Scholar
Hanebuth, T.J.J. & Stattegger, K. 2004. Depositional sequences on a late Pleistocene–Holocene tropical siliciclastic shelf (Sunda Shelf, southeast Asia). Journal of Asian Earth Sciences 23(1): 113126.CrossRefGoogle Scholar
Hanebuth, T., Stattegger, K. & Grootes, P.M. 2000. Rapid flooding of the Sunda Shelf: a late-glacial sea-level record. Science 288(5468): 10331035.CrossRefGoogle Scholar
Hanson, L. 2001. Chromosome number, karyotype and DNA C-value of the Wollemi pine (Wollemia nobilis, Araucariaceae). Botanical Journal of the Linnean Society 135(3): 271277.CrossRefGoogle Scholar
Havel, J.J. 1971. The Araucaria forests of New Guinea and their regenerative capacity. Journal of Ecology 59: 203214.CrossRefGoogle Scholar
Hill, R.S. & Bigwood, A.J. 1987. Tertiary gymnosperms from Tasmania: Araucariaceae. Alcheringa 11: 325335.CrossRefGoogle Scholar
Hill, R.S. & Brodribb, T.J. 1999. Southern conifers in time and space. Australian Journal of Botany 47: 639696.CrossRefGoogle Scholar
Hill, R.S. & Merrifield, H.E. 1993. An Early Tertiary macroflora from West Dale, south-western Australia. Alcheringa 17: 285326.CrossRefGoogle Scholar
Hill, R.S. & Scriven, L.J. 1995. The angiosperm-dominated woody vegetation of Antarctica: a review. Review of Palaeobotany and Palynology 86: 175198.CrossRefGoogle Scholar
Hill, R.S., Lewis, T., Carpenter, R.J. & Whang, S.S. 2008. Agathis (Araucariaceae) macrofossils from Cainozoic sediments in south-eastern Australia. Australian Systematic Botany 21: 162177.CrossRefGoogle Scholar
Hope, G.S. & Peterson, J.A. 1976. Palaeoenvironments. Pp 173206 in Hope, G.S., Peterson, J.A., Radok, U. & Allison, I. (eds.), The Equatorial Glaciers of New Guinea. Rotterdam: Balkema.Google Scholar
Horrocks, M. & Ogden, J. 2000. Evidence for Lateglacial and Holocene tree-line fluctuations from pollen diagrams from the subalpine zone on Mt. Tongariro National Park, New Zealand. Holocene 10: 6173.CrossRefGoogle Scholar
Horrocks, M., Augustinus, P., Deng, Y., Shane, P. & Andersson, S. 2005. Holocene vegetation, environment and tephra recorded from Lake Pupuke, Auckland, New Zealand. New Zealand Journal of Geology and Geophysics 48: 8594.CrossRefGoogle Scholar
Horrocks, M., Nichol, S.L., Mildenhall, D.C. & Lawlor, I. 2007. A discontinuous Late Cenozoic vegetation record from a maar crater in Auckland, New Zealand. New Zealand Geographer 63: 517.CrossRefGoogle Scholar
Jaffre, T. 1995. Distribution and ecology of the conifers of New Caledonia. Pp 171196 in Enright, N.J. & Hill, R.S. (eds.), Ecology of the Southern Conifers. Melbourne: Melbourne University Press.Google Scholar
Janzen, D.H. 1974. Tropical blackwater rivers, animals, and mass fruiting by the Dipterocarpaceae. Biotropica 6: 69103.CrossRefGoogle Scholar
Jones, W.G., Hill, K.D. & Allen, J.M. 1995. Wollemia nobilis, a new living Australian genus and species in the Araucariaceae. Telopea 6: 173176.CrossRefGoogle Scholar
Jordan, G.J., Carpenter, R.J., Bannister, J.M., et al. 2011. High conifer diversity in Oligo-Miocene New Zealand. Australian Systematic Botany 24(2): 121136.CrossRefGoogle Scholar
Kajewski, S.F. 1930. A plant collector’s notes on the New Hebrides and Santa Cruz Islands. Journal of the Arnold Arboretum 11: 172180.CrossRefGoogle Scholar
Kershaw, A.P. 1970. A pollen diagram from Lake Euramoo, north-east Queensland, Australia. New Phytologist 70: 669681.CrossRefGoogle Scholar
Kershaw, A.P. 1994. Pleistocene vegetation of the humid tropics of northeastern Queensland, Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 109: 39412.CrossRefGoogle Scholar
Kershaw, A.P. & McGlone, M.S. 1995. The Quaternary history of the southern conifers. Pp 3063 in Enright, N.J. & Hill, R.S. (eds.), Ecology of the Southern Conifers. Carlton, VIC: Melbourne University Press.Google Scholar
Kershaw, A.P. & Nix, H.A. 1988. Quantitive paleoclimatic estimates from pollen spectra using bioclimatic estimates of extant taxa. Journal of Biogeography 15: 589602.CrossRefGoogle Scholar
Kershaw, P. & Wagstaff, B. 2001. The southern conifer family Araucariaceae: history, status and value for palaeoenvironmental reconstruction. Annual Review of Ecology and Systematics 32: 397414.CrossRefGoogle Scholar
Kershaw, A.P., McKenzie, G.M. & McMinn, A. 1993. A Quaternary vegetation history of northeastern Queensland from pollen analysis of ODP site 820. Proceedings of the Ocean Drilling Program, Scientific Results 133: 107114.Google Scholar
Khoshoo, T.N. 1961. Chromosome numbers in gymnosperms. Silvae Genetica 10: 132.Google Scholar
Kitamura, K. & Bin-Abdul-Rahman, M.Y. 1992. Genetic diversity amongst natural populations of Agathis borneensis (Araucariaceae), a tropical rainforest conifer from Brunei Darussalam, Borneo, southeast Asia. Canadian Journal of Botany 70: 19451949.CrossRefGoogle Scholar
Knapp, M., Mudaliar, R., Havell, D., Wagstaff, S.J. & Lockhart, P.J. 2007. The drowning of New Zealand and the problem of Agathis. Systematic Biology 56(5): 862870.CrossRefGoogle ScholarPubMed
Latter, H.B. 1932. An ecological study of kauri forest. New Zealand Journal of Forestry 3: 8892.Google Scholar
Lee, D.E., Bannister, J.M. & Lindqvist, J.K. 2007. Late Oligocene–Early Miocene leaf macrofossils confirm a long history of Agathis in New Zealand. New Zealand Journal of Botany 45: 565578.CrossRefGoogle Scholar
Lee, D.E., Conran, J.G., Lindqvist, J.K., Bannister, J.M. & Mildenhall, D.C. 2012. New Zealand Eocene, Oligocene and Miocene macrofossil and pollen records and modern plant distributions in the Southern Hemisphere. The Botanical Review 78: 235260.CrossRefGoogle Scholar
Leonhardt, S.D. & Blüthgen, N. 2009. A sticky affair: resin collection by Bornean stingless bees. Biotropica 41(6): 730736.CrossRefGoogle Scholar
Liu, N., Zhu, Y., Wei, Z.X., et al. 2009. Phylogenetic relationships and divergence times of the family Araucariaceae based on the DNA sequences of eight genes. Chinese Science Bulletin 54: 26482655.CrossRefGoogle Scholar
Lu, Y., Hautevelle, Y. & Michels, R. 2013. Determination of the molecular signature of fossil conifers by experimental palaeochemotaxonomy: part 1. The Araucariaceae family. Biogeosciences 10: 19431962.CrossRefGoogle Scholar
Lusk, C.H. & Contreras, O. 1999. Foliage area and crown nitrogen turnover in temperate rainforest juvenile trees of differing shade tolerance. Journal of Ecology 87: 973984.CrossRefGoogle Scholar
Macphail, M.K., Alley, N.F., Trusswell, E.M. & Sluiter, I.R.K. 1994. Early Tertiary vegetation: evidence from spores and pollen. Pp 189261 in Hill, R.S. (ed.), History of Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Macphail, M.K., Carpenter, R.J., Iglesias, A. & Wilf, P. 2013. First evidence for Wollemi pine-type pollen (Dilwynites: Araucariaceae) in South America. PLoS One 8(7): e69281.CrossRefGoogle Scholar
Martill, D.M., Loveridge, R.F., De Andrade, J.A.F.G. & Cardoso, A.H. 2005. An unusual occurrence of amber in laminated limestones: the Crato Formation Lagerstatte (Early Cretaceous) of Brazil. Palaeontology 18: 13991408.CrossRefGoogle Scholar
Martin, H.A. & McMinn, A. 1993. Palynology of sites 815 and 823: the Neogene vegetation history of coastal northeast Australia. Proceedings of the Ocean Drilling Program, Scientific Results 133: 115128.Google Scholar
McCoy, S., Jaffré, T., Rigault, F. & Ash, J.E. 1999. Fire and succession in the ultramafic maquis of New Caledonia. Journal of Biogeography 26: 579594.CrossRefGoogle Scholar
McGlone, M.S. 1988. New Zealand. Pp 557602 in Huntley, B. & Webb, T. III (eds.), Vegetation History of New Zealand. Dordrecht: Kluwer.CrossRefGoogle Scholar
McGlone, M.S., Kershaw, A.P. & Markgraf, V. 1992. El Nino/Southern Oscillation climatic variability in Australasian and South American paleoenvironmental records. Pp 435462 in Díaz, H.F. & Markgraf, V. (eds.), El Niño: Historical and Palaeoclimatic Aspects of the Southern Oscillation. Cambridge: Cambridge University Press.Google Scholar
McKenzie, E.H.C., Buchanan, P.K. & Johnston, P.R. 2002. Checklist of fungi on kauri (Agathis australis) in New Zealand. New Zealand Journal of Botany 40(2): 269296.CrossRefGoogle Scholar
McMichael, D.F. & Hiscock, I.D. 1958. A monograph of the freshwater mussels (Mollusca: Pelecypoda) of the Australian region. Marine and Freshwater Research 9(3): 372508.CrossRefGoogle Scholar
Medina, E. & Cuevas, E. 1989. Pattern of nutrient accumulation in Amazonian forests of the upper Rio Negro basin. Pp 217240 in Proctor, J. (ed.), Mineral Nutrients in Tropical Forest and Savannah Ecosystems. Oxford: Blackwell Scientific.Google Scholar
Medina, E., García, V. & Cuevas, E. 1990. Sclerophylly and oligotrophic environments: relationships between leaf structure, mineral nutrient content, and drought resistance in tropical rainforests of the Upper Rio Negro region. Biotropica 22: 5164.CrossRefGoogle Scholar
Mehra, P.N. 1988. Indian Conifers, Genotypes and Phylogeny. Chandigarh: Punjab University.Google Scholar
Mildenhall, D.C. 1980. New Zealand Late Cretaceous and Cenozoic plant biogeography: a contribution. Palaeogeography, Palaeoclimatology, Palaeoecology 31: 197233.CrossRefGoogle Scholar
Miller, C.N. 1977. Mesozoic conifers. Biological Review 43: 218280.Google Scholar
Miller, C.N. 1988. The origin of modern conifer families. Pp 448486 in Beck, C.B. (ed.), Origin and Evolution of Gymnosperms. New York: Columbia University Press.Google Scholar
Mirams, R.V. 1957. Aspects of natural regeneration of the kauri (Agathis australis Salisb.). Transactions of the Royal Society of New Zealand 48: 661680.Google Scholar
Miyamoto, K., Rahajoe, J.S. & Kohyama, T. 2007. Forest structure and primary productivity in a Bornean heath forest. Biotropica 39: 3542.CrossRefGoogle Scholar
Molino, J.F. & Sabatier, D. 2001. Tree diversity in tropical rain forests: a validation of the intermediate disturbance hypothesis. Science 294(5547): 17021704.CrossRefGoogle ScholarPubMed
Moore, P.R. & Wallace, R. 2000. Petrified wood from the Miocene volcanic sequence of Coromandel Peninsula, northern New Zealand. Journal of the Royal Society of New Zealand 30: 115130.CrossRefGoogle Scholar
Moran, J.A., Barker, M.G., Moran, A.J., Beckler, P. & Ross, S.M. 2000. A comparison of the soil water, nutrient status, and litterfall characteristics of tropical heath and mixed dipterocarp forest sites in Brunei. Biotropica 32: 213.Google Scholar
Morley, R.J. 1978. Palynology of Tertiary and Quaternary sediments in Southeast Asia. Pp 255–276 in Proceedings of the Indonesian Petroleum Association 6th Annual Convention.Google Scholar
Morrison, T.M. & English, D.A. 1967. The significance of mycorrhizal nodules of Agathis australis. New Phytologist 66: 245250.CrossRefGoogle Scholar
Nasi, R. 1982. Essai pour une meilleure connaissance et une meilleure compréhension des Araucariacées dans la végétation calédonienne. Noumea: Centre Technique forestier tropical.Google Scholar
Neil, P. 1991. Conservation and management possibilities for Agathis macrophylla in Vanuatu. Forest Ecology and Management 35: 239248.CrossRefGoogle Scholar
Newberry, D.M. 1991. Floristic variation within kerangas (heath) forest: re-evaluation of data from Sarawak and Brunei. Vegetatio 96: 4386.CrossRefGoogle Scholar
Newberry, D.M. & Proctor, J. 1984. Ecological studies in four contrasting lowland rain forests in Guniung Mulu National Park, Sarawak. Journal of Ecology 72: 475493.CrossRefGoogle Scholar
Newnham, R.M. 1992. A 30,000 year pollen, vegetation and climate record from Otakairangi (Hikurrangi), Northland, New Zealand. Journal of Biogeography 19: 541554.CrossRefGoogle Scholar
Newnham, R.M., Ogden, J. & Mildenhall, D.C. 1993. A vegetation history of the Far North of New Zealand during the last Late Otira (Last) Glaciation. Quaternary Research 39: 361372.CrossRefGoogle Scholar
Ogden, J. & Stewart, G.H. 1995. Community dynamics of the New Zealand conifers. Pp 81119 in Enright, N.J. & Hill, R.S. (eds.), Ecology of the Southern Conifers. Washington, DC: Smithsonian Institution Press.Google Scholar
Ogden, J., Wardle, G.M. & Ahmed, M. 1987. Population dynamics of the emergent conifer Agathis australis (D.Don) Lindl. (kauri) in New Zealand. 2. Seedling population sizes and gap-phase regeneration. New Zealand Journal of Botany 25: 231242.CrossRefGoogle Scholar
Ogden, J., Wilson, A, Hendy, C. & Newnham, R.M. 1992. The late Quaternary history of kauri (Agathis australis) in New Zealand and its climatic significance. Journal of Biogeography 19: 611622.CrossRefGoogle Scholar
Ogden, J., Newnham, R.M., Plamer, J.G., Serra, R.G., & Mitchell, N.D. 1993. Climatic implications of macro- and microfossil assemblages from Late Pleistocene deposits in northern New Zealand. Quaternary Research 39: 107119.CrossRefGoogle Scholar
Ohri, D. & Khoshoo, T. 1986. Genome size in gymnosperms. Plant Systematics and Evolution 153: 119132.CrossRefGoogle Scholar
Ohsawa, M. 1990. An interpretation of latitudinal patterns of forest limits in South and East Asian mountains. Journal of Ecology 78: 326339.CrossRefGoogle Scholar
Owens, J.N., Catalano, G.L., Morris, S.J. & Aitken-Christie, J. 1995. The reproductive biology of kauri (Agathis australis). I. Pollination and prefertilisation development. International Journal of Plant Sciences 156: 257269.CrossRefGoogle Scholar
Page, C.N. 1980. Leaf micromorphology in Agathis and its taxonomic implications. Plant Systematics and Evolution 135: 7179.CrossRefGoogle Scholar
Page, C.N. 2003. The conifer flora of New Caledonia: stasis, evolution and survival in an ancient group. Pp 149155 in Mill, R.R. (ed.), Conifers for the Future? Proceedings of the Fourth International Conifer Conference. Wye: Acta Horticulturae.Google Scholar
Page, C.N. & Clifford, H.T. 1981. Ecological biogeography of Australian conifers and ferns. Pp 473498 in Keast, A. (ed.), Ecological Biogeography of Australia. The Hague: W. Junk.Google Scholar
Palmer, J., Lorrey, A., Turney, C.S.M., et al. 2006. Extension of New Zealand’s kauri (Agathis australis) tree-ring chronologies into oxygen isotope stage (OIS) 3. Journal of Quaternary Science 21: 779787.CrossRefGoogle Scholar
Parrish, J.T., Daniel, I.L., Kennedy, E.M. & Spicer, R.A. 1998. Paleoclimatic significance of mid-Cretaceous floras from the middle Clarence Valley, New Zealand. Palaios 13(2): 149159.CrossRefGoogle Scholar
Poinar, G. 2004. Evidence of parasitism by Strepsiptera in Dominican amber. Biocontrol 49: 239244CrossRefGoogle Scholar
Poinar, G. Jr, Archibald, B. & Brown, A. 1999. New amber deposit provides evidence of early Paleogene extinctions, paleoclimates, and past distributions. Canadian Entomologist 131: 171177.CrossRefGoogle Scholar
Pole, M.S. 1993. Miocene broad-leaved Podocarpus from Foulden Hills, New Zealand. Alcheringa 17: 173177.CrossRefGoogle Scholar
Pole, M.S. 1994. The New Zealand flora: entirely long-distance dispersal? Journal of Biogeography 21: 625635.CrossRefGoogle Scholar
Pole, M.S. 2007. Early Eocene dispersed cuticles and mangrove to rainforest vegetation at Strahan-Regatte Point, Tasmania. Palaeontologica Electronica 10(3).Google Scholar
Pole, M.S., Hill, R.S., Green, N. & Macphail, M.K. 1993. The Oligocene Berwick Quarry flora: rainforest in a drying environment. Australian Systematic Botany 6(5): 399427.CrossRefGoogle Scholar
Proctor, J., Anderson, J.M., Chai, P. & Vallack, H.W. 1983. Ecological studies in four contrasting lowland rain forests in Guniung Mulu National Park, Sarawak. I. Forest environment, structure and floristics. Journal of Ecology 71: 237260.CrossRefGoogle Scholar
Quinn, C.J. & Price, R.A. 2003. Phylogeny of the Southern Hemisphere conifers. Pp 129133 in Mill, R.R. (ed.), Conifers for the Future? Proceedings of the Fourth International Conifer Conference. Wye: Acta Horticulturae.Google Scholar
Rahajoe, J.S. & Kohyama, T. 2003. The relationship between N, P, returned via litter production and nutrient use efficiency of heath and peat swamp forests in central Kalimantan. Tropics 13: 18.CrossRefGoogle Scholar
Richards, P.W. 1952. The Tropical Rain Forest. Cambridge: Cambridge University Press.Google Scholar
Rigg, L.S., Enright, N.J. & Jaffré, T. 1998. Stand structure of the emergent conifer Araucaria laubenfelsii in maquis and rainforest, Mont Do, New Caledonia. Australian Journal of Ecology 23: 528538.CrossRefGoogle Scholar
Schweizer, M., Seehausen, O., Güntert, M. & Hertwig, S.T. 2010. The evolutionary diversification of parrots supports a taxon pulse model with multiple trans-oceanic dispersal events and local radiations. Molecular Phylogenetics and Evolution 54(3): 984994CrossRefGoogle Scholar
Setoguchi, H., Osawa, T.A., Pintaud, J.-C., Jaffré, T. & Veillon, J.-M. 1998. Phylogenetic relationships within Araucariaceae based on rbcL genes sequences. American Journal of Botany 85: 15071516.CrossRefGoogle Scholar
Soepadmo, E., Wong, K.M., Saw, L.G., Chung, R.C.K. & Kiew, R. 1995. Tree Flora of Sabah and Sarawak. Kuala Lumpur: Forest Research Institute Malaysia.Google Scholar
Stefanović, S., Jager, M., Deutsch, J., Broutin, J. & Masselot, M. 1998. Phylogenetic relationships of conifers inferred from partial 28S rRNA gene sequences. American Journal of Botany 85: 688697.CrossRefGoogle Scholar
Steward, G.A. & Beveridge, A.E. 2010. A review of New Zealand kauri (Agathis australis (D. Don) Lindl.): its ecology, history, growth and potential for management for timber. New Zealand Journal of Forestry Science 40: 3359.Google Scholar
Stockey, R.A. 1982. The` Araucariaceae: an evolutionary perspective. Review of Palaeobotany and Palynology 37: 133154.CrossRefGoogle Scholar
Stockey, R.A. 1990. Antarctic and Gondwana conifers. Pp 179191 in Taylor, T.N. & Taylor, E.L. (eds.), Antarctic Paleobiology. New York: Springer.CrossRefGoogle Scholar
Stockey, R.A. 1994. Mesozoic Araucariaceae: morphology and systematic relationships. Journal of Plant Research 107: 493502.CrossRefGoogle Scholar
Stockey, R.A. & Atkinson, I.J. 1993. Cuticle micromorphology of Agathis Salisbury. International Journal of Plant Sciences 154: 187225.CrossRefGoogle Scholar
Stockey, R.A. & Ko, H. 1986. Cuticle micromorphology of Araucaria De Jussieu. Botanical Gazette 147: 508548.CrossRefGoogle Scholar
Stockey, R.A., Ko, H. & Woltz, P. 1992. Cuticle micromorphology of Falcatifolium de Laubenfels (Podocarpaceae). International Journal of Plant Sciences 153: 589601.CrossRefGoogle Scholar
Stöckler, K., Daniel, I.L. & Lockhart, P.J. 2002. New Zealand kauri (Agathis australis (D. Don) Lindl., Araucariaceae) survives Oligocene drowning. Systematic Biology 51(5): 827832.CrossRefGoogle Scholar
Swanson, F.J., Kratz, T.K., Caine, N. & Woodmansee, R.G. 1988. Landform effects on ecological processes and features. BioScience 38: 9298.CrossRefGoogle Scholar
Swindale, L.D. 1957. The effect of kauri vegetation upon the development of the soils from rhyolite and olivine basalt. New Zealand Soil News 5: 115118.Google Scholar
Thorne, R.F. 1963. Biotic distribution patterns in the Tropical Pacific. Pp 311354 in Gressitt, J.L. (ed.), Pacific Basin Biogeography. Honolulu, HI: Bishop Museum Press.Google Scholar
Thorne, R.F. 1969. Floristic relationships between New Caledonia and the Solomon Islands. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 255(800): 595602.Google Scholar
Van Balgooy, M.M.J. 1960. Preliminary plant-geographic analysis of the Pacific. Blumea 10: 385430.Google Scholar
Veblen, T.T. & Ashton, D.H. 1982. The regeneration status of Fitzroya cupressoides in the Cordillera Pelada, Chile. Biological Conservation 23: 141161.CrossRefGoogle Scholar
Verkaik, E., Jongkind, A.G. & Berendse, F. 2006. Short-term and long-term effects of tannins on nitrogen mineralisation and litter decomposition in kauri (Agathis australis (D.Don) Lindl.) forests. Plant and Soil 287: 337345.CrossRefGoogle Scholar
Verkaik, E., Berendse, F. & Gardner, R.O. 2007. Low soil water and nutrient availability below New Zealand kauri (Agathis australis (D. Don) Lindl.) trees increase the relative fitness of kauri seedlings. Plant Ecology 191: 163170.CrossRefGoogle Scholar
Virot, R. 1956. La vegetation canaque. Memoires du Museum National d’Histoire Naturelle de Paris, ser. 3, Botanique 7: 1400.Google Scholar
Walker, F.S. 1948. The Forests of the British Solomon Islands Protectorate: A Report. London: Crown Agents.Google Scholar
Watt, A. 1999. Conifers of New Caledonia. Pp 4149 in Farjon, A. & Page, C.N. (eds.), Conifers: Status Survey and Conifer Action Plan. Gland: IUCN.Google Scholar
Webb, L.J. 1959. A physiognomic classification of Australian rainforests. Journal of Ecology 47: 551570.CrossRefGoogle Scholar
Webb, L.J. 1968. Environmental relationships of the structural types of Australian rainforest vegetation. Ecology 49: 296311.CrossRefGoogle Scholar
Webb, L.J. & Tracey, J.G. 1967. An ecological guide to new planting areas and site potential for hoop pine. Australian Forestry 31: 224239.CrossRefGoogle Scholar
Webb, L.J. & Tracey, J.G. 1981. Australian rainforests: patterns and change. Pp 605694 in Keast, A.J. (ed.), Ecological Biogeography of Australia. The Hague: W. Junk.CrossRefGoogle Scholar
White, M.E. 1981. Revision of the Talbragar Fish Bed Flora (Jurassic) of New South Wales. Records of the Australian Museum 33: 695721.CrossRefGoogle Scholar
Whitmore, T.C. 1966a. Guide to the Forests of the British Solomon Islands. Oxford: Oxford University Press.Google Scholar
Whitmore, T.C. 1966b. The social status of Agathis in a rainforest in Melanesia. Journal of Ecology 54: 285301.CrossRefGoogle Scholar
Whitmore, T.C. 1975. Tropical Rainforest of the Far East. Oxford: Clarendon Press.Google Scholar
Whitmore, T.C. 1977. A First Look at Agathis. Oxford: University of Oxford.Google Scholar
Whitmore, T.C. & Page, C.N. 1980. Evolutionary implications of the distribution and ecology of the tropical conifer Agathis. New Phytologist 84: 407416.CrossRefGoogle Scholar
Wilf, P. 2012. Rainforest conifers of Eocene Patagonia: attached cones and foliage of the extant Southeast Asian and Australasian genus Dacrycarpus (Podocarpaceae). American Journal of Botany 99: 562584.CrossRefGoogle Scholar
Wilf, P., Escapa, I.H., Cúneo, N.R., et al. 2014. First South American Agathis (Araucariaceae), Eocene of Patagonia. American Journal of Botany 101: 156179.CrossRefGoogle Scholar
Wilson, V.R., Gould, K.S., Lovell, P.H. & Aitken-Christie, J. 1998. Branch morphology and abscission in kauri, Agathis australis (Araucariaceae). New Zealand Journal of Botany 36: 135240.CrossRefGoogle Scholar
Worthy, T.H., Tennyson, A.J., Archer, M., et al. 2006. Miocene mammal reveals a Mesozoic ghost lineage on insular New Zealand, southwest Pacific. Proceedings of the National Academy of Sciences 103(51): 1941919423.CrossRefGoogle ScholarPubMed
Wunder, J., Fowler, A.M., Cook, E.R., Pirie, M. & McCloskey, S.P.J. 2013. On the influence of tree size on the climate–growth relationship of New Zealand kauri (Agathis australis): insights from annual, monthly and daily growth patterns. Trees: Structure and Function. 27: 937948.CrossRefGoogle Scholar
Yokohama, Y., Lambeck, K., De Dekker, P., Johnston, P. & Fifield, K. 2000. Timing of the Late Glacial Maximum from observed sea-level minima. Nature 406: 713716.CrossRefGoogle Scholar

References

Abdillahi, H.S. 2011. Anti-inflammatory, antioxidant, anti-tyrosinase and phenolic content of four Podocarpus species used in traditional medicine in South Africa. Journal of Ethnopharmacology 136: 496503.CrossRefGoogle ScholarPubMed
Abdillahi, H.S., Stafford, G.I., Finnie, J.F. & von Staden, J. 2010. Ethnobotany, phytochemistry and pharmacology of Podocarpus sensu latissimo (s.l.). South African Journal of Botany 76: 124.CrossRefGoogle Scholar
Adam, P. 1992. Australian Rainforests. Oxford: Clarendon Press.CrossRefGoogle Scholar
Adie, H. & Lawes, M.J. 2009. Explaining conifer dominance in Afrotemperate forests: shade tolerance favours Podocarpus latifolius over angiosperm species. Forest Ecology and Management 259(2): 176186.CrossRefGoogle Scholar
Anderson, J.M. & Anderson, H.M. 2003. Heyday of the Gymnosperms: Systematics and Biodiversity of the Late Triassic Molteno Fructifications. Pretoria: National Botanical Institute.Google Scholar
Archangelsky, S. 1963. A new Mesozoic flora from Tico, Santa Cruz province, Argentina. Bulletin of the British Museum Natural History Geology 8: 492.Google Scholar
Archangelsky, S. & Delfueyo, G. 1989. Squamostrobus gen. N. a fertile podocarp from the early Cretaceous of Patagonia, Argentina. Review of Palaeobotany and Palynology 59: 109126.CrossRefGoogle Scholar
Archangelsky, S. & Romero, E. 1974. Pollen de Gimnospermos (Coniferas) del Cretacico superior y Paleocento de Patagonia. Ameghiniana 11: 217236.Google Scholar
Askin, R.A. 1989. Endemism and heterochronity in the Late Cretaceous (Campanian) to Paleocene palynofloras of Seymour Island, Antarctica: implications for origins, dispersal and palaeoclimates of southern floras. Pp 107119 in Crane, J.A. (ed.), Origins and Evolution of the Antarctic Biota. London: Geological Society of London.Google Scholar
Askin, R.A. & Raine, J.I. 2000. Oligocene and Early Miocene terrestrial palynology of the Cape Roberts Drillhole CRP-2/2A, Victoria Land Basin, Antarctica. Terra Antarctica 7: 493501.Google Scholar
Barrett, P.J. 1999. Antarctic climate history over the last 100 million years. Terra Antarctica Reports 3: 5372.Google Scholar
Baylis, G.T.S. 1969. Mycorrhizal nodules and growth in Podocarpus in nitrogen-poor soil. Nature 223: 13851386.CrossRefGoogle Scholar
Baylis, G.T.S., McNabb, R.F.R. & Mossison, T.M. 1963. The root nodules of podocarps. Transactions of the British Mycological Society 46: 378384.CrossRefGoogle Scholar
Beard, J.S. 1977. Tertiary evolution of the Australian flora in the light of latitudinal movements of the continent. Journal of Biogeography 4: 111118.CrossRefGoogle Scholar
Bera, S. & Sen, I. 2004. Podocarpoxylon pantii sp. Nov., first record of podocarpaceous wood from the Tertiary sediments of Bengal Basin, Eastern India. Pp 241247 in Srivastava, P.C. (ed.), Vistas in Palaeobotany and Plant Morphology: Evolutionary and Environmental Perspectives. Lucknow: U.P. Offset.Google Scholar
Berendse, F. & Scheffer, M. 2009. The angiosperm radiation revisited: an ecological explanation for Darwin’s ‘abominable mystery’. Ecological Letters 12: 865872.CrossRefGoogle ScholarPubMed
Bergersen, F.J. & Costin, B. 1964. Root nodules of Podocarpus lawrencei and their ecological significance. Australian Journal of Biological Sciences 17: 4448.CrossRefGoogle Scholar
Bergin, D. O., Kinberley, M.O. & Low, C.B. 2008. Provenance variation in Podocarpus totara (D.Don): growth, tree form and wood density on a coastal site in the north of the natural range, New Zealand. Forest Ecology and Management 255: 13671378.CrossRefGoogle Scholar
Berry, E.W. 1938. Tertiary flora from the Rio Pichileufu, Argentina. Geological Society of America Special Papers 12: 1149.CrossRefGoogle Scholar
Beu, A.G., Griffin, M. & Maxwell, P.A. 1997. Opening of Drake Passage gateway and Late Miocene to Pleistocene cooling reflected in Southern Ocean molluscan dispersal: evidence from New Zealand and Argentina. Tectonophysics 281: 8397.CrossRefGoogle Scholar
Bice, K.L., Huber, B.T. & Norris, R.D. 2003. Extreme polar warmth during the Cretaceous greenhouse? Paradox of the late Turonian δ18O record at Deep Sea Drilling project Site 511. Paleoceanography 18: 1031.CrossRefGoogle Scholar
Biffin, E., Conran, J.G. & Lowe, A.J. 2011. Podocarp evolution: a molecular phylogenetic perspective. Ecology of the Podocarpaceae in tropical forests. Pp 120 in Turner, B. & Cemusak, L. (eds.), Smithsonian Contributions to Botany. Washington, DC: Smithsonian Institution.Google Scholar
Birkenmajer, K., Gaździcki, A. & Krajewaki, K.P. 2005. First Cenozoic glaciers in West Antarctica. Polish Polar Research 26: 312.Google Scholar
Blackburn, D.T. & Sluiter, I.R. 1994. The Oligo-Miocene coal floras of southeastern Australia. Pp 328367 in Hill, R.S. (ed.), Australian Vegetation History: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Blakey, R.C. 2008. Gondwana paleogeography from assembly to breakup: a 500 m.y. odyssey. Pp 128 in Fielding, C.R., Frank, T.D. & Isbell, J.L. (eds.), Resolving the Late Paleozoic Ice Age in Time and Space. Boulder, CO: Geological Society of America.Google Scholar
Bobrov, A.V. & Melikian, A.P. 1998. Spetsificheskie priznakh semennoj kozhur’ i vozmozhnost’ ikh ispol’ovaniya v sistematike semejstva Podocarpaceae Endlicher, 1847. Byull. Mosk. Obshch. Isp. Prir., Otd. Biol. 103(1): 5662.Google Scholar
Bond, W.J. 1989. The tortoise and the hare: ecology of angiosperm dominance and gymnosperm persistence. Biological Journal of the Linnean Society 36: 227249.CrossRefGoogle Scholar
Boyce, C.K., Brodribb, T., Feild, T.S. & Zwieniecki, M.A. 2009. Angiosperm leaf vein evolution was physiologically and environmentally transformative. Proceedings of the Royal Society of London B 276: 17711776.Google ScholarPubMed
Brea, M., Bellosi, E. & Krause, M. 2009. Taxaceoxylon katuatenkum sp. nov. en la Formación Koluel-Kaike (Eoceno inferior-medio), Chubut, Argentina: un componente de los bosques subtropicales paleógenos de Patagonia. Ameghiniana 46(1): 127140.Google Scholar
Brentnall, S.J., Beerling, D.J. & Osborne, C.P. 2005. Climatic and ecological determinants of leaf lifespan in polar forests of the high CO2 Cretaceous ‘greenhouse’ world. Global Change Biology 11: 21772195.CrossRefGoogle ScholarPubMed
Brodribb, T. & Hill, R.S. 2004. The rise and fall of the Podocarpaceae in Australia: a physiological explanation. Pp 381399 in Hemsley, A.R. & Poole, I. (eds.), The Evolution of Plant Physiology: From Whole Plants to Ecosystems. London: Academic Press.CrossRefGoogle Scholar
Brodribb, T.J., Pittermann, J. & Coomes, D.A. 2012. Elegance versus speed: examining the competition between conifer and angiosperm trees. International Journal of Plant Sciences 173(6): 673694.CrossRefGoogle Scholar
Brown, M.J. & Hill, R.S. 1999. Regional action plan: conifers of Tasmania. Pp 6371. In Farjon, A. & Page, C.N. (eds.), Status Survey and Conservation Action Plan: Conifers. Gland: IUCN.Google Scholar
Brundrett, M.C. 2002. Coevolution of roots and mycorrhizas of land plants. New Phytologist 154(2): 275304.CrossRefGoogle ScholarPubMed
Brunsfeld, S.J., Soltis, P.S., Soltis, D.E., Gadek, P.A. & Quinn, C.J. 1994. Phylogenetic relationships amongst the genera of the Taxodicaeae and Cupressaceae: evidence from rbcL sequences. Systematic Botany 19: 253262.CrossRefGoogle Scholar
Buchholz, J.T. 1941. Embryogeny of the Podocarpaceae. Botanical Gazette 103: 137.CrossRefGoogle Scholar
Buchholz, J.T. & Gray, N.E. 1948. A taxonomic revision of Podocarpus. I. Journal of the Arnold Arboretum 29: 4963.CrossRefGoogle Scholar
Cameron, D.G. 1987. Temperate rainforests of East Gippsland. Pp 3646 in Werren, G. & Kershaw, A.P. (eds.), The Rainforest Legacy: Australian National Rainforests Study. Canberra: AGPS.Google Scholar
Cantrill, D.J. 1991. Broad leaved coniferous foliage from the Lower Cretaceous of southern Victoria, Australia. Alcheringa 15: 177190.CrossRefGoogle Scholar
Cantrill, D.J. 1992. Araucarian foliage from the Lower Cretaceous of southern Victoria, Australia. International Journal of Plant Sciences 153: 622645.CrossRefGoogle Scholar
Cantrill, D.J. 1995 The occurrence of the fern Hausmannia Dunker (Dipteridaceae) in the Cretaceous of Alexander Island, Antarctica. Alcheringa 19: 243254.CrossRefGoogle Scholar
Cantrill, D.J. 1996. Fern thickets from the Cretaceous of Alexander Island, Antarctica, containing Alamatus bifurcates Douglas and Aculea acicularis sp. nov. Cretaceous Research 17: 169182.CrossRefGoogle Scholar
Cantrill, D.J. 1998. Early Cretaceous fern foliage from President Head, Snow Island, Antarctica. Alcheringa 22: 241258.CrossRefGoogle Scholar
Cantrill, D.J. 2000. A Cretaceous (Aptian) flora from President Head, Snow Island, Antarctica. Palaeontographica B, 253: 153191.CrossRefGoogle Scholar
Cantrill, D.J. & Falcon-Lang, H.J. 2001. Cretaceous (Late Albian) Coniferales of Alexander Island, Antarctica. Part 2. Foliage, reproductive structures and roots. Review of Palaeobotany and Palynology 115: 119145.CrossRefGoogle Scholar
Cantrill, D.J. & Poole, I. 2002. Cretaceous patterns of floristic change in the Antarctic Peninsula. Pp 141152 in Crame, J.A. & Owen, A.W. (eds.), Palaeobiogeography and Biodiversity Change: The Ordovician and Mesozoic–Cenozoic Radiations. London: Geological Society of London.Google Scholar
Cantrill, D.J. & Poole, I. 2012. The Vegetation of Antarctica through Geological Time. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Cantrill, D.J., Wanntorp, L. & Drinnan, A.N. 2011. Mesofossil flora from the Late Cretaceous of New Zealand. Cretaceous Research 32: 164173.CrossRefGoogle Scholar
Carpenter, R.J. 1991. Palaeovegetation and environment at Cethana, Tasmania. PhD Thesis, University of Tasmania.Google Scholar
Carpenter, R.J., Hill, R.S. & Jordan, G.J. 1994. Cenozoic vegetation in Tasmania: macrofossil evidence. Pp 276298 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Césari, S.N., Remesal, M. & Parica, C. 2001. Ferns: a palaeoclimatic significant component of the Cretaceous flora from Livingstone Island, Antarctica. Pp 4550 in 7th International Symposium on Mesozoic Terrestrial Ecosystems. Buenos Aires: Associatión Paleontologica Argentina.Google Scholar
Chaloner, W.G. & Creber, G.T. 1989. The phenomenon of forest growth in Antarctica: a review. Pp 8588 in Crane, J.A. (ed.) Origins and Evolution of the Antarctic Biota. London: Geological Society of London.Google Scholar
Chaw, S.M., Long, H., Wang, B.-S., Zharkikh, A. & Li, W.-H. 1993. The phylogenetic position of Taxaceae based on 18S rRNA sequences. Journal of Molecular Evolution 37: 624630.CrossRefGoogle Scholar
Chesson, P.L. & Warner, R.R. 1981. Environmental variability promotes coexistence in lottery competitive systems. The American Naturalist 117(6): 923943.CrossRefGoogle Scholar
Christophel, D.C. 1981. Tertiary megafossil floras of Australia as indicators of floristic associations and the palaeoclimate. Pp 379390 in Keast, A. (ed.), Ecological Biogeography of Australia. The Hague: W. Junk.Google Scholar
Christophel, D.C. 1994. The early Tertiary macrofloras of continental Australia. Pp 263275 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Christophel, D.C. & Blackburn, D.T. 1978. The Tertiary megafossil Flora of Masilin Bay, South Australia – a preliminary report. Alcheringa 2: 311319.CrossRefGoogle Scholar
Christophel, D.C. & Greenwood, D.R. 1988. A comparison of Australian tropical rainforest and Tertiary fossil leaf beds. Proceedings of the Ecological Society of Australia 15: 139148.Google Scholar
Collins, L.S., Coates, A.G., Berggren, W.A., Aubry, M.P. & Zhang, J. 1996. The late Miocene Panama Isthmian Strait. Geology 24(8): 687690.2.3.CO;2>CrossRefGoogle Scholar
Conran, J.G., Wood, G.A., Martin, P.G., et al. 2000. Generic relationships within and between the gymnosperm families Podocarpaceae and Phyllocladaceae based on an analysis of the chloroplast gene rbcL. Australian Journal of Botany 48: 715724.CrossRefGoogle Scholar
Cornelissen, J.H., Diez, P.C. & Hunt, R. 1996. Seedling growth allocation and leaf attributes in a wide range of woody plant species and types. Journal of Ecology 84: 755765.CrossRefGoogle Scholar
Couper, R.A. 1960. Southern Hemisphere Mesozoic and Tertiary Podocarpaceae and Fagaceae and their palaeogeographic significance. Proceedings of the Royal Society of London B. 152: 491500.Google Scholar
Coxall, H.K., Wilson, P.A., Pälike, H., Lear, C.H. & Backman, J. 2005. Rapid stepwise onset of Antarctic glaciations and deeper calcite compensation in the Pacific Ocean. Nature 433; 5357.CrossRefGoogle ScholarPubMed
Davies, B.J., O’Brien, I.E.W. & Murray, B.G. 1997. Karyotypes, chromosome bands and genome size variation in New Zealand endemic gymnosperms. Plant Systematics and Evolution 208: 169185.CrossRefGoogle Scholar
De Conto, R.M. & Pollard, D. 2003. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature 421: 245249.CrossRefGoogle Scholar
De Laubenfels, D.J. 1969a. A revision of the Malesian and Pacific rainforest conifers. I. Podocarpaceae, in part. Journal of the Arnold Arboretum 50: 274314.CrossRefGoogle Scholar
De Laubenfels, D.J. 1969b. A revision of the Malesian and Pacific rainforest conifers. I. Podocarpaceae, in part. Journal of the Arnold Arboretum 50: 315369.CrossRefGoogle Scholar
De Laubenfels, D.J. 1985. A taxonomic revision of the genus Podocarpus. Blumea 30(2): 250278.Google Scholar
Dettmann, M.E. 1986. Significance of the Cretaceous–Tertiary spore genus Cyatheacidite in tracing the origin and migration of Lophosoria (Filicopsida). Special Papers in Palaeontology 35: 6394.Google Scholar
Dettmann, M.E. 1989. Antarctic: Cretaceous cradle of austral temperate rainforests ? Pp 89105 in Crane, J.A. (ed.), Origins and Evolution of the Antarctic Biota. London: Geological Society of London.Google Scholar
Dettmann, M.E. 1994. Cretaceous vegetation: the microfossil record. Pp 143170 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Dettmann, M.E. & Jarzen, D.M. 1990. The Antarctic/Australasian rift valley: late Cretaceous cradle of northeastern Australasian relicts? Review of Palaeobotany and Palynology 65: 131144.CrossRefGoogle Scholar
Dettmann, M.E. & Jarzen, D.M. 1991. Pollen evidence for Late Cretaceous differentiation of Proteaceae in southern polar forests. Canadian Journal of Botany 69: 901906.CrossRefGoogle Scholar
Dettmann, M.E. & Thomson, M.R.A. 1987. Cretaceous palymorphs from the James Ross island areas, Antarctica: a pilot study. British Antarctic Survey Bulletin 77: 1359.Google Scholar
Dew, J.L. & Wright, P. 1998 Frugivory and seed dispersal by four species of primates in Madagascar’s eastern rain forest. Biotropica 30: 425437.CrossRefGoogle Scholar
Di Pasquo, M. & Martin, J.E. 2013. Palyno assemblages associated with a theropod dinosaur from Snow Hill Island Formation (Lower Maastrichtian) at the Naze, James Ross Island, Antarctica. Cretaceous Research 45: 135154.CrossRefGoogle Scholar
Dickie, I.A. & Holdaway, R.J. 2010. Podocarp roots, mycorrhizas, and nodules. Pp 175187 in Turner, B.L. & Cernusak, L. (eds), Ecology of Podocarpaceae in Tropical Forests. Washington, DC: Smithsonian Institution Scholarly Press.Google Scholar
Diester-Haass, L. & Zahn, R. 1996. Eocene–Oligocene transition in the Southern Ocean: history of water mass circulation and biological productivity. Geology 24: 163166.2.3.CO;2>CrossRefGoogle Scholar
Dilcher, D.L. 1969. Podocarpus from the Eocene of North America. Science 164: 299301.CrossRefGoogle ScholarPubMed
Dingle, R.V. & Lavelle, M. 1998. Late Cretaceous Cenozoic climatic variations of the northern Antarctic Peninsula: new geochemical evidence and review. Palaeogeography, Paleoclimatology, Palaeoecology 141: 215232.CrossRefGoogle Scholar
Dodson, J.R. & Macphail, M.K. 2004. Palynological evidence for aridity events and vegetation change during the Middle Pliocene, a warm period in southwestern Australia. Global Planetary Change 41: 34.CrossRefGoogle Scholar
Douglas, J.G. 1994. Cretaceous vegetation: the macrofossil record. Pp 171188 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Douglas, J.G. & Williams, G.E. 1982. Southern polar forests: the Early Cretaceous floras of Victoria and their palaeoclimatic significance. Palaeogeography, Palaeoclimatology, Palaeoecology 39: 171185.CrossRefGoogle Scholar
Doyle, M.F. 1999. Regional action plan: conifers of the oceanic islands of the Insular South Pacific (Fiji, Tonga, Solomon Islands and Vanuatu). Pp 7274 in Farjon, A. & Page, C.N. (eds.), Conifers: Status Survey and Conifer Action Plan. Gland: IUCN.Google Scholar
Drinnan, N. & Chambers, T.C. 1986. Flora of the Lower Cretaceous Koonwarra Fossil Bed (Korumburra Group), South Gippsland, Victoria. In Jell, P.A. & Roberts, J. (eds.), Plants and Invertebrates from the Koonwarra Fossil Bed, South Gippsland, Victoria. Sydney: Association of Australasian Palaeontologists.Google Scholar
Enright, N.J. & Hill, R.S. (eds.). 1995. Ecology of the Southern Conifers. Carlton, Victoria. Washington, DC: Smithsonian Institution Press.Google Scholar
Escapa, I.H. & Catalano, S.A. 2013. Phylogenetic analysis of Araucariaceae: integrating molecules, morphology, and fossils. International Journal of Plant Sciences 174: 11531170.CrossRefGoogle Scholar
Escudero, A., Del Arco, J.M., Sanz, I.C. & Ayala, J. 1992. Effects of leaf longevity and retranslocation efficiency on the retention time of nutrients in the leaf biomass of different woody species. Oecologia 90: 8087.CrossRefGoogle ScholarPubMed
Everard, D.A., Midggley, J.J. & van Wyk, G.F. 1995. Dynamics of some forests in KwaZulu-Natal, South Africa, based on ordinations and size-class distributions. South African Journal of Botany 61: 283292.CrossRefGoogle Scholar
Falcon-Lang, H.J. & Cantrill, D.J. 2002. Terrestrial paleoecology of the Cretaceous (early Aptian) Cerro Negro Formation, South Shetland Islands, Antarctica: a record of polar vegetation in a volcanic arc environment. Palaios 17: 709725.2.0.CO;2>CrossRefGoogle Scholar
Fang, K., Wang, Y., Yu, T., et al. 2008. Isolation of de-exined pollen and cytological studies of the pollen intines of Pinus bungeana Zucc. Ex Endl and Picea wilsonii Mast Flora morphology distribution. Functional Ecology of Plants 203(4): 332340.CrossRefGoogle Scholar
Ferguson, D.K. 1967. On the phytogeography of Coniferales in the European Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology, 33: 73110.CrossRefGoogle Scholar
FIVI (Forest Inventory and Planning Institute, Vietnam) 1996. Vietnam Forest Trees. Hanoi: Agricultural Publishing House.Google Scholar
Florin, R. 1940. The Tertiary conifers of southern Chile and their phytogeographical significance. Kungliga Svenska Vetenskapsakademiens Handlingar 19: 1107.Google Scholar
Florin, R. 1958. Notes of the systematics of the Podocarpaceae. Acta Horti Bergiani 17: 403411.Google Scholar
Florin, R. 1963. The distribution of conifer and taxad genera in time and space. Acta Horti Bergiani 20: 121319.Google Scholar
Flory, W.S. 1936. Chromosome numbers and phylogeny in the gymnosperms. Journal of the Arnold Arboretum. 17: 8389.CrossRefGoogle Scholar
Fradkina, A.F. 1985. Paleogene and Neogene in the lower reaches of the Kolyma River. Pp 5265 in Palynological Stratigraphy of Mesozoic and Cenozoic. Russia: Novosibirsk.Google Scholar
Francis, J.E. 1986. Growth rings in Cretaceous and Tertiary wood from Antarctica and their palaeoclimatic interpretations. Palaeontology 29: 665684.Google Scholar
Frederiksen, N.O. 1984. Stratigraphy, paleoclimatic and paleobiogeographic significance of Tertiary sporomorphs from Massachusetts. US Geological Survey Professional Paper 1308: 1–25.Google Scholar
Gee, C.T. 1989. Revision of the Late Jurassic/Early Cretaceous flora from Hope Bay, Antarctica. Palaeontographica B 213: 149214.Google Scholar
Gentry, A.H. 1993. A Field Guide to the Families and Genera of Woody Plants of Northwest South America (Columbia, Ecuador, Peru). Washington, DC: Conservation International.Google Scholar
Gilmore, S. & Hill, K.D. 1997. Relationships of the Wollemi Pine (Wollemia nobilis) and a molecular phylogeny of the Araucariaceae. Telopea 7: 275291.CrossRefGoogle Scholar
Gray, N.E. 1953. A taxonomic revision of Podocarpus VIII. The African species of section Eupodocarpus, subsections A and E. Journal of the Arnold Arboretum 34: 163175.CrossRefGoogle Scholar
Gray, N.E. & Buchholz, J.T. 1948. A taxonomic revision of Podocarpus III. The American species of Podocarpus. Journal of the Arnold Arboretum 19: 117122.Google Scholar
Greenwood, D.R. 1987. Early Tertiary Podocarpaceae megafossils from the Eocene Anglesea locality, Victoria, Australia. Australian Journal of Botany 35: 111133.CrossRefGoogle Scholar
Greenwood, D.R. 1994. Palaeobotanical evidence for Tertiary climates. Pp 4459 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Hair, J.B. 1963. Cytological relationships of the southern Podocarps. Pp 401414 in Gressitt, J.L. (ed.), Pacific Basin Biogeography. Honolulu: Bishop Museum Press.Google Scholar
Hair, J.B. & Beuzenberg, E.J. 1958. Chromosomal evolution in the Podocarpaceae. Nature, London 181: 15841586.CrossRefGoogle Scholar
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Hewitt, E.J. 1952. Sand and water culture methods used in the study of plant nutrition. Commonwealth Agriculture Bureau, Technical Communication 22: 1241.Google Scholar
Hill, R.S. (ed.). 1994. History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Hill, R.S. 2004. Origins of the southeastern Australian vegetation. Philosophical Transactions of the Royal Society London B 359: 15371549.CrossRefGoogle ScholarPubMed
Hill, R.S. & Brodribb, T.J. 1999. Southern conifers in time and space. Australian Journal of Botany 47: 639696.CrossRefGoogle Scholar
Hill, R.S. & Macphail, M.K. 1994. Tertiary history and origins of the flora and vegetation. In Reid, J.B., Hill, R.S. & Brown, M.J. (eds.), Vegetation of Tasmania. Hobart: Government Printer.Google Scholar
Hill, R.S. & Merrifield, H.E. 1993. An Early Tertiary macroflora from West Dale, south-western Australia. Alcheringa 17: 285326.CrossRefGoogle Scholar
Hill, R.S. & Pole, M. 1992. Leaf and shoot morphology of extant Afrocarpus, Nageia and Retrophyllum (Podocarpaceae) species and species with similar leaf arrangement from Tertiary sediments in Australasia. Australian Systematic Botany 5: 337358.CrossRefGoogle Scholar
Hill, R.S. & Scriven, L.J. 1995. The angiosperm-dominated woody vegetation of Antarctica: a review. Review of Palaeobotany and Palynology 86: 175198.CrossRefGoogle Scholar
Iglesias, A., Wilf, P., Johnson, K.R., et al. 2007. A Paleocene lowland macroflora from Patagonia reveals significantly greater richness than North American analogues. Geology 35: 947950.CrossRefGoogle Scholar
Iglesias, A., Arbate, A.E. & Morel, E.M. 2011. The evolutions of Patagonian climate and vegetation, from the Mesozoic to the present. Botanical Journal of the Linnean Society 103: 409422.CrossRefGoogle Scholar
Ivany, L., Van Simaeys, S., Domack, E.W. & Sampson, S.D. 2006. Evidence for an earliest Oligocene ice sheet on the Antarctic peninsula. Geology 34: 377380.CrossRefGoogle Scholar
Jamieson, S.S.R., Sugden, D.E. & Hulton, N.R.J. 2010. The evolution of the sub-glacial landscape of Antarctica. Earth and Planetary Science Letters 293: 127.CrossRefGoogle Scholar
Janse, J.M. 1897. Les endophytes radicaux de quleques plantes javanaises. Annales du Jardin Botanique se Buitenzorg 14: 53201.Google Scholar
Johns, R.J., Edwards, P.J., Utteridge, T.M.A. & Hopkins, H.C.F. 2006. Alpine and Subalpine Flora of Mount Jaya. London: Royal Botanic Gardens Kew.Google Scholar
Jovane, L., Coccioni, R., Marsili, A. & Acton, G. 2009. Late Eocene Earth: Hothouse icehouse and impacts. Geological Society of America Special Papers 452: 149168.Google Scholar
Kaeiser, M. 1954. Microstructure of wood of Podocarpus. Phytomorphology 4: 3947.Google Scholar
Kelch, D.G. 1997. The phylogeny of the Podocarpaceae based on morphological evidence. Systematic Botany 22: 113131.CrossRefGoogle Scholar
Kelch, D.G. 1998. Phylogeny of Podocarpaceae: comparison of evidence from morphology and 18S rDNA. American Journal of Botany 85: 986996.CrossRefGoogle ScholarPubMed
Kemp, E.M. 1978. Tertiary climatic evolution and vegetation history in the southeast Indian Ocean region. Palaeogeography, Palaeoclimatology, Palaeoecology 24: 169208.CrossRefGoogle Scholar
Keng, H. 1977. Phyllocladus and its bearing on the systematics of conifers. Pp 235251 in Kubitsky, K. (ed.), Flowering Plants: Evolution and Classification of the Higher Categories. New York: Springer.CrossRefGoogle Scholar
Kennett, J.P. 1980. Palaeoceanographic and biogeographical evolution of the Southern Ocean during the Cenozoic, and Cenozoic microfossil datums. Palaeogeography, Palaeoclimatology, Palaeoecology 31: 123152.CrossRefGoogle Scholar
Kershaw, A.P. 1994. Pleistocene vegetation of the humid tropics of northeastern Queensland, Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 109: 39412.CrossRefGoogle Scholar
Khan, A.G. 1967. Podocarpus root nodules in sterile culture. Nature 215: 5106.CrossRefGoogle Scholar
Khan, A.M. 1976. Palynology of Tertiary sediments for Papua New Guinea: II. Gymnosperm pollen from Upper Tertiary sediments. Australian Journal of Botany 24: 783791.CrossRefGoogle Scholar
Khoshoo, T.N. 1959. Polyploidy in gymnosperms. Evolution 13: 2439.CrossRefGoogle Scholar
Kimura, T., Ohana, T. & Mimoto, K. 1988. Discovery of a podocarpaceous plant from the Lower Cretaceous of Kohi Prefecture, in the Uter zone of southwest Japan. Proceedings of the Japan Academy B 64: 213216.CrossRefGoogle Scholar
Knopf, P., Schulz, C., Little, D.P., Stützel, T. & Stevenson, D.W. 2012. Relationships within Podocarpaceae based on DNA sequence, anatomical, morphological, and biogeographical data. Cladistics 28: 271299.CrossRefGoogle ScholarPubMed
Kondo, T. 1931. Zur Kenntnis des N-Gehaltes des Mykorrhiza-Knölichens von Podocarpus macrophyllus D.Don. Botanical Magazine (Tokyo) 45: 495501 (in Japanese and German).Google Scholar
Krassilov, V.A. 1967. Early Cretaceous Flora of South Primorye and Its Significance to Stratigraphy. Moscow: Nauka.Google Scholar
Krassilov, V.A. 1971. Evolution and systematics of conifers, a critical review. Paleontologiske Zhurnal 1: 720 (in Russian).Google Scholar
Krassilov, V.A. 1974. Podocarpus from the Upper Cretaceous of eastern Asia and its bearing on the theory of conifer evolution. Paleontology 17: 365370.Google Scholar
Lertzman, K.P. 1992. Patterns of gap-phase replacement in a sub-alpine, old-growth forest. Ecology 70: 657669.CrossRefGoogle Scholar
Leslie, A.B., Beaulieu, J.M., Rai, H.S., et al. 2012. Hemisphere-scale differences in conifer evolutionary dynamics. Proceedings of the National Academy of Sciences 109(40): 1621716221.CrossRefGoogle ScholarPubMed
Li, L.-C & Fu, Y.-X. 1996. Studies on the karyotypes and the cytogeography of Cupressus (Cupressaceae). Acta Botanica Sinica 34: 117123.Google Scholar
Li, L.C. 1993. Studies on the karyotype and systematic position of Larix Mill. (Pinaceae). Acta Phytotaxonomica Sinica 31: 405412.Google Scholar
Li, L.C. 1995. Studies on the karyotype and phylogeny of the Pinaceae. Acta Phytotaxonomica Sinica 33: 417432.Google Scholar
Little, D.P., Knopf, P. & Schulz, C. 2013. DNA barcode identification of Podocarpaceae: the second largest conifer family. PLoS One 8: e81008.CrossRefGoogle Scholar
Liu, G.G. & Leopold, E.B. 1992. Paleoecology of a Miocene flora from Shanwang Formation, Shandong Province, north east China. Palynology 16: 187212.CrossRefGoogle Scholar
Lusk, C.H. 1996. Stand dynamics of the shade-tolerant conifers Podocarpus nubigena and Saxegothaea conspicua in Chilean temperate rain forest. Journal of Vegetation Science 7: 549558.CrossRefGoogle Scholar
Lusk, C.H. & Matus, F. 2000. Juvenile tree growth rates and species-sorting on fine-scale soil fertility gradients in a Chilean temperate rainforest. Journal of Biogeography 27: 10111020.CrossRefGoogle Scholar
Lusk, C.H. & Ogden, J. 1992. Age structure and dynamics of a podocarp-broadleaf forest in Tongariro national park, New Zealand. Journal of Ecology 80: 379393.CrossRefGoogle Scholar
Lusk, C.H. & Smith, B. 1998. Life history differences and tree species coexistence in an old-growth New Zealand rain forest. Ecology 79: 795806.CrossRefGoogle Scholar
Macphail, M.K., Hill, R.S., Forsyth, S.M. & Wells, P.M. 1991. A Late Oligocene–Early Miocene cool climate flora from Tasmania. Alcheringa 15: 87106.CrossRefGoogle Scholar
Macphail, M.K., Alley, N., Truswell, E.M. & Sluiter, I.R.K. 1994. Early Tertiary vegetation: evidence from spores and pollen. Pp 189261 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Marshall, C.W., Chagné, D., Deusch, O., et al. 2015. A DNA-based diagnostic for differentiating among New Zealand endemic Podocarpus. Tree Genetics and Genomes 11: 113.CrossRefGoogle Scholar
McLuckie, J. 1923. Contribution to the morphology and physiology of the root nodules of Podocarpus spinulosus and P. elata. Proceedings of the Linnean Society of New South Wales 48: 8293.Google Scholar
McVaugh, R. 1966. The occurrence of the genus Podocarpus in western Mexico. Ciencia, Mex., 24: 223226.Google Scholar
Mehra, P.N. & Khoshoo, T.N. 1956. Cytology of conifers I, II. Journal of Genetics 54: 165180, 181–185.CrossRefGoogle Scholar
Melendi, D.L., Scafati, L.H. & Volkheimer, W. 2003. Palynostratigraphy of the Paleogene Huitera Formation in N-W Patagonia. Neues Jahrbuch für Geologie und Paläontologie 228: 205273.CrossRefGoogle Scholar
Menéndez, C.A. 1969. Die fossilen floren Südamerikas. Biogeography and Ecology in South America 2: 519561.Google Scholar
Midgley, J.J., Seydack, A., Reynell, D. & Mckelly, D. 1990. Fine-grain pattern in Southern Cape Plateau forests. Journal of Vegetation Science 1: 539546.CrossRefGoogle Scholar
Midgley, J.J., Bond, W.J. & Geldenhuys, C.J. 1995. The ecology of southern African conifers. Pp 6480 in Enright, N.J. & Hill, R.S. (eds.), Ecology of the Southern Conifers. Melbourne: Melbourne University Press.Google Scholar
Migliore, J., Lézine, A.M. & Hardy, O.J. 2020. The recent colonization history of the most widespread Podocarpus tree species in Afromontane forests. Annals of Botany 126(1): 7383.CrossRefGoogle Scholar
Mildenhall, D.C. 1976. Early Cretaceous podocarp Megastrobilus. New Zealand Journal of Geology and Geophysics 19(3): 389391.CrossRefGoogle Scholar
Mill, R.R. 2003. Towards a biogeography of the Podocarpaceae. Pp 137147 in Mill, R.R. (ed.), Conifers for the Future? Proceedings of the Fourth International Conifer Conference. Wye: Acta Horticulturae.Google Scholar
Miller, C.N. 1988. The origin of modern conifer families. Pp 448486 in Beck, C.B. (ed.), Origin and Evolution of Gymnosperms. New York: Columbia University Press.Google Scholar
Miller, C.N. 1999. Implications of fossil conifers for the phylogenetic relationships of living families. The Botanical Review 65: 239277.CrossRefGoogle Scholar
Muller, J. 1966. Montane pollen from the Tertiary of northwest Borneo. Blumea 14: 231235.Google Scholar
Murray, B.G., Friesen, N. & Hesop-Harrison, J.S. 2002. Molecular cytogenetic analysis of Podocarpus and comparisons with other gymnosperm species. Annals of Botany 89: 483489.CrossRefGoogle ScholarPubMed
Nakamura, J. & Yamanaka, M. 1992. Vegetation history during the Quaternary in southern Shikoku, Japan. The Quaternary Research (Daiyonki-kenkyu) 31(5): 389397.CrossRefGoogle Scholar
Ogden, J. & Stewart, G.H. 1995. Community dynamics of the New Zealand conifers. Pp 81119 in Enright, N.J. & Hill, R.S. (eds.), Ecology of the Southern Conifers. Washington, DC: Smithsonian Institution Press.Google Scholar
Ogden, J., Fordham, R.A., Horrocks, M, Pilkington, S. & Serra, R.C. 2005. Long-term dynamics of the long-lived conifer Libocedrus bidwillii after a volcanic eruption 2000 years ago Journal of Vegetation Science 16: 321330.Google Scholar
Ornelas, J.F., Ruiz‐Sánchez, E. & Sosa, V. 2010. Phylogeography of Podocarpus matudae (Podocarpaceae): pre‐Quaternary relicts in northern Mesoamerican cloud forests. Journal of Biogeography 37(12): 23842396.CrossRefGoogle Scholar
Orr, M.Y. 1944. The leaf anatomy of Podocarpus. Transactions and Proceedings of the Botanical Society of Edinburgh 34: 154.CrossRefGoogle Scholar
Osborne, C.P. & Beerling, D.J. 2003. The penalty of a long hot summer: photosynthetic acclimation to high CO2 and continuous light in ‘living fossil’ conifers. Plant Physiology 133: 803812.CrossRefGoogle ScholarPubMed
Osborne, C.P., Royer, D.L. & Beeerling, D.J. 2004. Adaptive role of leaf-habit in extinct polar forests. International Forestry Review 6: 181186.CrossRefGoogle Scholar
Page, C.N. 1979. The diversity of ferns: an ecological perspective. Pp 1056 in Dyer, A.F. (ed.), The Experimental Biology of Ferns. London: Academic Press.Google Scholar
Page, C.N. 1982. The Ferns of Britain and Ireland, 1st edn. Cambridge: Cambridge University Press.Google Scholar
Page, C.N. 1988. Ferns: Their Habitats in the Landscape of Britain and Ireland. London: Collins.Google Scholar
Page, C.N. 1990. Araucariaceae. Pp 294299 in Kubitsky, K. & Green, P.S. (eds.), The Families and Genera of Vascular Plants. I. Pteridophytes and Gymnosperms. Berlin: Springer.Google Scholar
Page, C.N. 2002. Ecological strategies in fern evolution: a neopteridological overview. Review of Palaeobotany and Palynology 119: 133.CrossRefGoogle Scholar
Page, C.N. 2004. Adaptive ancientness of vascular plants to exploitation of low-nutrient substrates: a neobotanical overview. Pp 445466 in Hemsley, A.R. & Poole, I. (eds.), The Evolution of Plant Physiology: From Whole Plants to Ecosystems. Amsterdam: Elsevier Academic Press.Google Scholar
Page, C.N. 2006. Fern range determination within the Atlantic Arc by an environment of complex and interacting factors. Pp 5964 in Leach, S.J., Page, C.N., Peytoureau, Y. & Sandford, M.N. (eds.), Botanical Links in the Atlantic Arc. London: BSBI & English Heritage.Google Scholar
Page, C.N. 2019. New and maintained genera in the taxonomic alliance of Prumnopitys s.l. (Podocarpaceae), and circumscription of a new genus: Pectinopitys. New Zealand Journal of Botany 57(3): 137153.CrossRefGoogle Scholar
Palazzesi, L. & Barreda, V. 2007. Major vegetation trends in the Tertiary in Patagonia (Argentina): a qualitative approach based on palynological evidence. Flora 202: 328337.CrossRefGoogle Scholar
Parrish, J.T., Daniel, I.L., Kennedy, E.M., & Spicer, R.A. 1998. Palaeoclimatic significance of mid-Cretaceous floras from the Middle Clarence Valley, New Zealand. Palaios 13: 149159.CrossRefGoogle Scholar
Pilger, E. 1926. Coniferae. Pp 121407 in Engler, A. & Prantl, K. (eds.), Die Naturlichen Pflanzenfamilien, 2nd edn. Leipzig: Wilhelm Engelmann.Google Scholar
Pole, M.S. 1992. Eocene vegetation from Hasties, north-east Tasmania. Australian Systematic Botany 5: 431475.CrossRefGoogle Scholar
Pole, M.S. 1993. Miocene broad-leaved Podocarpus from Foulden Hills, New Zealand. Alcheringa 17: 173177.CrossRefGoogle Scholar
Pole, M. 1997. Miocene conifers from the Manuherikia Group, New Zealand. Journal of the Royal Society of New Zealand 27: 355370.CrossRefGoogle Scholar
Pole, M.S. 2000. Mid-Cretaceous conifers from the Eromanga Basin, Australia. Australian Systematic Botany 13(2): 153197.CrossRefGoogle Scholar
Powell, C.McA., Roots, S.R. & Veevers, J.J. 1988. Pre-breakup continental extension in East Gondwanaland and the early opening of the eastern Indian Ocean. Tectonophysics 155: 261283.CrossRefGoogle Scholar
Quilty, P.G. 1994. The background: 144 million years of Australian palaeoclimate and palaeogeography. Pp 1443 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Quinn, C.J. 1970. Generic boundaries in the Podocarpaceae. Proceedings of the Linnean Society N.S.W. 94: 166172.Google Scholar
Quinn, C.J. & Price, R.A. 2003. Phylogeny of the Southern Hemisphere conifers. Pp 129133 in Mill, R.R. (ed.), Conifers for the Future? Proceedings of the Fourth International Conifer Conference. Wye: Acta Horticulturae.Google Scholar
Quiroga, M.P., Mathiasen, P., Iglesias, A., Mill, R.R. & Premoli, A.C. 2016. Molecular and fossil evidence disentangle the biogeographical history of Podocarpus, a key genus in plant geography. Journal of Biogeography 43(2): 372383.CrossRefGoogle Scholar
Rack, F.R. 1993. A geologic perspective on the Miocene evolution of the Antarctic Circumpolar Current system. Tectonophysics 222: 397415.CrossRefGoogle Scholar
Read, J. & Francis, J. 1992. Responses of some Southern Hemisphere tree species to a prolonged dark period and their implications for high-latitude Cretaceous and Tertiary floras. Palaeogeography, Palaeoclimatology, Palaeoecology 99(3–4): 271290.CrossRefGoogle Scholar
Read, J. & Hill, R.S. 1988. The dynamics of some rainforest associations in Tasmania. Journal of Ecology 76: 558584.CrossRefGoogle Scholar
Reinink-Smith, L.M. & Leopold, E.B. 2005. Warm climate in the late Miocene of the south coast of Alaska and the occurrence of Podocarpaceae pollen. Palynology 29: 205262.CrossRefGoogle Scholar
Richards, B.N. & Voigt, G.K. 1964. Role of mycorrhiza in nitrogen fixation. Nature 201(4916): 310311.CrossRefGoogle Scholar
Rothwell, G.W., Mapes, G., Stockey, R.A. & Hilton, J. 2012. The seed cone Eathiestrobus gen. nov.: fossil evidence for a Jurassic origin of the Pinaceae. American Journal of Botany 9: 708720.CrossRefGoogle Scholar
Rouse, G.E., Hopkins, W.S. & Piel, K.M. 1971. Palynology of some Late Cretaceous and early tertiary deposits in British Columbia and adjacent Alberta. Geological Society of America Special Papers 127: 213–146.Google Scholar
Royer, D.L., Osborne, C.P. & Beering, D.J. 2003. Carbon loss by deciduous trees in a CO2 rich ancient polar environment. Nature 424: 6062.CrossRefGoogle Scholar
Russell, A.J., Bidartondo, M.I. & Bitterfield, B.G. 2002. The root nodules of Podocarpaceae harbour arbuscular mycorrhizal fungi. New Phytologist 156: 283295.CrossRefGoogle ScholarPubMed
Sato, S. 1963. Palynological study on Miocene sediments of Hokkaido, Japan. Journal of the Faculty of Science, Hokkaido University 4(112): 1130.Google Scholar
Sato, S. 1972. Palynological considerations on Tertiary marine sediments of Hokkaido, compared with animal faunas. Journal of the Faculty of Science, Hokkaido University 15(1–2): 217271.Google Scholar
Saxton, W.T. 1930. The root nodules of Podocarpaceae. South African Journal of Science 27: 323325.Google Scholar
Schoonraad, E. & van der Schjiff, H.P. 1975. Distribution and some interesting morphological aspects of the South African Podocarpaceae. Boissiera 24.Google Scholar
Scotese, C.R. 1998. Quicktime Computer Animations: PALEOMAP Project, Department of Geology, Arlington, Texas. www.scotese.comGoogle Scholar
Seddon, G. & Cameron, D. 1985. Temperate rainforest. Landscape Australia 2(85): 141151.Google Scholar
Silba, J. 1996. A new species of Pseudotaxus Cheng (Taxaceae) from China. Phytologia 81: 322328.Google Scholar
Sirkin, L. & Owens, J.P. 1998. Palynology of latest Neogene (middle Miocene to late Pliocene) strata in the Delmarva Peninsula of Maryland and Virginia. Northeastern Geology and Environmental Sciences 20(2): 117132.Google Scholar
Smith, S.E. & Read, D.J. 2008. Mycorrhizal Symbiosis. Cambridge: Academic Press.Google Scholar
Song, Z.-C. & Zheng, Y.-H. 2000. On Tertiary rain forest in China. Pp 151159 in Song, Z.-C. (ed.), Palynofloras and Palynomorphs of China. Nanching: 10 International Palynological Congress.Google Scholar
Spicer, R.A. & Chapman, J.L. 1990. Climate change and the evolution of high-latitude terrestrial vegetation and floras. Trends in Ecology and Evolution 5: 279284.CrossRefGoogle ScholarPubMed
Spicer, R.A. & Parrish, J.T. 1986. Paleobotanical evidence for cool north polar climates in middle Cretaceous (Albian–Cenomanian) time. Geology 14: 703706.2.0.CO;2>CrossRefGoogle Scholar
Spratt, E.R. 1912. The formation and physiological significance of root nodules in the Podocarpineae. Annals of Botany 25: 643684.Google Scholar
Sternberg, P. 1996. Simulation of the effects of shoot structure and orientation on vertical gradients in intercepted light by conifer canopies. Tree Physiology 16: 99108.CrossRefGoogle Scholar
Stevens, G.R. 1989. The nature and timing of biotic links between New Zealand and Antarctica in Mesozoic and early Cenozoic times. Pp 141166 in Crame, J.A. (ed.), Origins and Evolution of the Antarctic Biota. London: Geological Society of London.Google Scholar
Stockey, R.A. 1990. Antarctic and Gondwana conifers. Pp 179191 in Taylor, T.N. & Taylor, E.L. (eds.), Antarctic Paleobiology. New York: Springer.CrossRefGoogle Scholar
Storey, B.C., Dalziel, I.W.D. & Garrett, S.W. 1988. West Antarctica in Gondwanaland: crustal blocks, reconstruction and breakup processes. Tectonophysics 155: 381390.CrossRefGoogle Scholar
Storey, B.C., Leat, P.T., Weaver, S.D., Pankhurst, R.J. & Kelley, S. 1999. Mantle plumes and Antarctica–New Zealand rifting: evidence from mid-Cretaceous mafic dykes. Journal of the Geological Society of London 156: 659671.CrossRefGoogle Scholar
Tanai, T. 1971. Tertiary history of vegetation in Japan. Pp 225245 in Graham, A. (ed.), Floristics and Paleofloristics of Asian and Eastern North America. Amsterdam: Elsevier.Google Scholar
Tomskaya, A.I. 1981. Palinologia Kainozoya Yakutii [Palynology of Yakutia’s Coenozoic]. Novosibirsk (in Russian).Google Scholar
Torres, T. & Méon, H. 1998. Nothofagidites Erdtman ex Potoniédans le Paléogène de l’île Roi Georges, Antarctique. Geobios 31(4): 419435.CrossRefGoogle Scholar
Torres-Romero, J.H. 1988. Podocarpaceae. Pp 173 in Pinto, P. & Lozano, G. (eds.), Flora of Colombia. Bogotá: Universidad Nacional de Colombia.Google Scholar
Torrey, R.E. 1923. The comparative anatomy and phylogeny of the Coniferales. Pt. 3. Mesozoic and Tertiary coniferous woods. Memoirs of the Boston Society of Natural History 6: 41106.Google Scholar
Townrow, J.A. 1965. Notes on Tasmanian pines. I: some Lower Tertiary Podocarps. Papers and Proceedings of the Royal Society of Tasmania 99: 87108.CrossRefGoogle Scholar
Townrow, J.A. 1967a. On Voltiopsis, a southern conifer of Lower Triassic age. Papers and Proceedings of the Royal Society of Tasmania 101: 173188.CrossRefGoogle Scholar
Townrow, J.A. 1967b. On Rissikia and Mataia, podocarpaceous conifers from the Lower Mesozoic of southern lands. Papers and Proceedings of the Royal Society of Tasmania 101: 103136.CrossRefGoogle Scholar
Troedson, A.L. & Smellie, J.L. 2002. Upper Oligocene to lowermost Miocene strata of King George Island, South Shetland Islands, Antarctica: stratigraphy, facies analysis and implications for the glacial history of the Antarctic Peninsula. Journal of Sedimentary Research 72: 510523.CrossRefGoogle Scholar
Truswell, E.M. 1991. Antarctica: a history of terrestrial vegetation. Pp 499537 in Tinget, R.J. (ed.), The Geology of Antarctica. Oxford: Clarendon Press.Google Scholar
Truswell, E.M. & Macphail, M.K. 2009. Polar forests on the edge of extinction: what does the fossil spore and pollen evidence from east Antarctica say? Australian Systematic Botany 22: 57106.CrossRefGoogle Scholar
Upchurch, G.R., Otti-Bliesner, B.L. & Scotese, C.R. 1999. Terrestrial vegetation and its effects on climate during the latest Cretaceous. Pp 407426 in Barrere, E. & Johnson, C.C. (eds.), Evolution of the Cretaceous Ocean–Climate System. Boulder, CO: Geological Society of America.Google Scholar
Vakhrameev, V.A. 1991. Jurassic and Cretaceous Floras and Climates of the Earth. Cambridge: Cambridge University Press.Google Scholar
Van der Hammen, T. & Hooghiemstra, H. 2000. Neogene and Quaternary history of vegetation, climate, and plant diversity in Amazonia. Quaternary Science Review 19: 725743.CrossRefGoogle Scholar
Veblen, T.T. & Stewart, G. 1980. Comparison of forest structure and regeneration on Bench and Stewart Islands, New Zealand. New Zealand Journal of Ecology 3: 5068.Google Scholar
Veblen, T.T. & Stewart, G. 1982. On the conifer regeneration gap in New Zealand: the dynamics of Libocedrus bidwillii stands on South Island. Journal of Ecology 70: 413436.CrossRefGoogle Scholar
Veblen, T.T., Burns, B.R., Kitzberegeerr, A.L. & Villalba, R. 1995. The ecology of the conifers of southern South America. Pp 120155 in Enright, N.J. & Hill, R.S. (eds.), Ecology of the Southern Conifers. Washington, DC: Smithsonian Institution Press.Google Scholar
Veevers, J.J. 2004. Gondwanaland from 650–500 Ma assembly through 320 Ma merger in Pangaea to 185–100 Ma breakup: supercontinental tectonics via stratigraphy and radiometric dating. Earth Science Reviews 68: 1132.CrossRefGoogle Scholar
Wang, B. & Qi, Y.L. 2006. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16: 299363.CrossRefGoogle Scholar
Wardle, P. 1972. Podocarpus totara var. waihoensis var. nov.: the results of introgressive hybridisation between P. totara and P. acutifolius. New Zealand Journal of Botany 10: 195201.CrossRefGoogle Scholar
Webb, L.J. 1959. A physiognomic classification of Australian rainforests. Journal of Ecology 47: 551570.CrossRefGoogle Scholar
Webby, R.F., Makham, K.R. & Molloy, B.P.J. 1987. The characterisation of New Zealand Podocarpus hybrids using flavenoid markers. New Zealand Journal of Botany 25: 355366.CrossRefGoogle Scholar
Wells, A., Duncan, R.P. & Stewart, G.H. 2001. Forest dynamics in Westland, New Zealand: the importance of large, infrequent earthquake-induced disturbance. Journal of Ecology 89: 10061018.CrossRefGoogle Scholar
Wilcox, J.B. & Stagg, H.M.J. 1990. Australia’s southern margin: a product of oblique extension. Tectonophysics 173: 269281.CrossRefGoogle Scholar
Wilf, P. 2012. Rainforest conifers of Eocene Patagonia: attached cones and foliage of the extant Southeast Asian and Australasian genus Dacrycarpus (Podocarpaceae). American Journal of Botany 99: 562584.CrossRefGoogle Scholar
Wilf, P., Cúneo, N.R., Escapa, I.H., Pol, D. & Woodburne, M.O. 2013. Splendid and seldom isolated: the paleobiogeography of Patagonia. Annual Review of Earth and Planetary Sciences 41: 561603.CrossRefGoogle Scholar
Wilford, G.E. & Brown, P.J. 1994. Maps of late Mesozoic–Cenozoic Gondwana break-up: some palaeogeographical implications. Pp 513 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Williams, A., Ridgway, H.J. & Norton, D.A. 2011. Growth and competitiveness of the New Zealand tree species of Podocarpus cunninghamii is reduced by ex-agricultural AMF but enhanced by forest AMF. Soil Biology and Biochemistry 43: 339345.CrossRefGoogle Scholar
Williams, P.A. & Karl, B.J. 1996. Fleshy fruits of indigenous and adventive plants in the diet of birds in forest remnants, Nelson, New Zealand. New Zealand Journal of Ecology 20: 127145.Google Scholar
Wilson, V.R. & Owens, J.N. 1999. The reproductive biology of totara (Podocarpus totara) (Podocarpaceae). Annals of Botany 83(4): 401411.CrossRefGoogle Scholar
Xu, L., Zhang, X. & Zhang, D. 2019. Using morphotype attributes for the assessment of nutritional responses of Buddhist pine (Podocarpus macrophyllus) seedlings to experimental fertilisation. PLoS One 14: e0225708.CrossRefGoogle Scholar
Yamanoi, T. 1992 The palynoflora of early Middle Miocene sediments in the Pohang and Yangnam Basins, Korea. Pp 437480 in Ishizaki, K. & Saito, T. (eds.), Centenary of Japanese Micropaleontology. Tokyo: Terra Scientific Publishing Company.Google Scholar
Young, D.A., Wright, A.P., Roberts, J.L., et al. 2011. A dynamic early East Antarctic Ice Sheet suggested by ice-covered fjord landscapes. Nature 474: 7275.CrossRefGoogle ScholarPubMed
Zachos, J., Oaganini, M., Sloan, I., Thomas, E. & Billups, K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292: 686693.CrossRefGoogle Scholar
Zhou, Q.-X. & Gu, Z.-J. 2001. Kryomorphology of Podocarpus s.l. in Cinna and its systematic significance. Caryologia 54: 121127.Google Scholar

References

Barker, N.P., Muller, E.M. & Mill, R.R. 2004. A yellowwood by any other name: molecular systematics and the taxonomy of Podocarpus and the Podocarpaceae in southern Africa. South African Journal of Science 100(11): 629632.Google Scholar
Beu, A.G., Griffin, M. & Maxwell, P.A. 1997. Opening of Drake Passage gateway and Late Miocene to Pleistocene cooling reflected in Southern Ocean molluscan dispersal: evidence from New Zealand and Argentina. Tectonophysics 281: 8397.CrossRefGoogle Scholar
Bond, W.J. 1989. The tortoise and the hare: ecology of angiosperm dominance and gymnosperm persistence. Biological Journal of the Linnean Society 36: 227249.CrossRefGoogle Scholar
Brodribb, T. & Hill, R.S. 1997. Light response characteristics of a morphologically diverse group of Southern Hemisphere conifers as measured by chlorophyll fluorescence. Oecologia 110: 1017.CrossRefGoogle ScholarPubMed
Brodribb, T. & Hill, R.S. 2004. The rise and fall of the Podocarpaceae in Australia: a physiological explanation. Pp 381399 in Hemsley, A.R. & Poole, I. (eds.), The Evolution of Plant Physiology: From Whole Plants to Ecosystems. London: Academic Press.CrossRefGoogle Scholar
Chaw, S.M., Long, H., Wang, B.-S., Zharkikh, A. & Li, W.-H. 1993. The phylogenetic position of Taxaceae based on 18S rRNA sequences. Journal of Molecular Evolution 37: 624630.CrossRefGoogle Scholar
Compton, R.H. 1922. A systematic account of the plants collected in New Caledonia and Isle of Pines. Part II. Botanical Journal of the Linnean Society 45: 421434.CrossRefGoogle Scholar
Conran, J.G., Wood, G.A., Martin, P.G., et al. 2000. Generic relationships within and between the gymnosperm families Podocarpaceae and Phyllocladaceae based on an analysis of the chloroplast gene rbcL. Australian Journal of Botany 48: 715724.CrossRefGoogle Scholar
Cookson, I.C. 1952. Identification of Tertiary pollen grains with those of New Guinea and New Caledonian beeches. Nature 170: 127.CrossRefGoogle Scholar
Cranwell, I.M. 1939. Southern beech pollens. Auckland Institute Museum Records 2: 175196.Google Scholar
Crisp, M.D., Trewick, S.A. & Cook, L.G. 2011. Hypothesis testing in biogeography. Trends in Ecology and Evolution 26: 6672.CrossRefGoogle ScholarPubMed
Dengo, C.A. & Covey, M.C. 1993. Structure of the Eastern Cordillera of Columbia: implications for trap styles and regional tectonics. American Association of Petroleum Geologists Bulletin 77: 13151337.Google Scholar
DiesterHass, L. & Zahn, R. 1996. Eocene–Oligocene transition in the Southern Ocean: history of water mass circulation and biological productivity. Geology 24: 163166.2.3.CO;2>CrossRefGoogle Scholar
Dingle, R.V. & Lavelle, M. 1998. Late Cretaceous Cenozoic climatic variations of the northern Antarctic Peninsula: new geochemical evidence and review. Palaeogeography, Paleoclimatology, Palaeoecology 141: 215232.CrossRefGoogle Scholar
Fleming, C.A. 1963. Age of the New Zealand biota. Proceedings of the New Zealand Ecological Society 10.Google Scholar
Gaussen, H. 1976. Les Gymnospermes actuelles et fossiles. Genre Podocarpus. Conclusion des Podocarpnes. Pp 150 in Travaux du Laboratoire Forestal de Toulouse Tome 2, vol 1. Paris: Faculté des Sciences.Google Scholar
Gentry, A.H. 1993. A Field Guide to the Families and Genera of Woody Plants of Northwest South America (Columbia, Ecuador, Peru). Washington, DC: Conservation International.Google Scholar
Gregory-Wodzicki, K.M. 2000 Uplift history of the Central and Northern Andes: a review. Bulletin of the Geological Society of America 112: 10911105.2.0.CO;2>CrossRefGoogle Scholar
Hair, J.B. 1963. Cytogeographical relationships of the southern podocarps. Pp 401414 in Gressitt, J.L. (ed.), Pacific Basin Biogeography. Honolulu: Bishop Museum Press.Google Scholar
Hair, J.B. & Beuzenberg, E.J. 1958. Chromosomal evolution in the Podocarpaceae. Nature 181: 15841586.CrossRefGoogle Scholar
Herbert, J., Hollingsworth, P.M., Gardner, M.F., et al. 2002. Conservation genetics and phylogenetics of New Caledonian Retrophyllum (Podocarpaceae) species. New Zealand Journal of Botany 40: 175188.CrossRefGoogle Scholar
Hill, R.S. & Scriven, L.J. 1995. The angiosperm-dominated woody vegetation of Antarctica: a review. Review of Palaeobotany and Palynology 86: 175198.CrossRefGoogle Scholar
Hill, R.S. & Pole, M.S. 1992. Leaf and shoot morphology of extant Afrocarpus, Nageia and Retrophyllum (Podocarpaceae) species, and species with similar leaf arrangement, from Tertiary sediments in Australasia. Australian Systematic Botany 5: 337358.CrossRefGoogle Scholar
Hope, G. & Pask, J. 1998. Tropical vegetation change in the late Pleistocene of New Caledonia. Palaeogeography, Palaeoclimatology, Palaeoecology 142: 121.CrossRefGoogle Scholar
Jovane, L., Coccioni, R., Marsili, A. & Acton, G. 2009. Late Eocene Earth: Hothouse icehouse and impacts. Geological Society of America Special Papers 452: 149168.Google Scholar
Kelch, D.G. 1997. The phylogeny of the Podocarpaceae based on morphological evidence. Systematic Botany 22: 113131.CrossRefGoogle Scholar
Keppel, G., Tuiwana, M.V., Naikatini, A. & Rounde, I.A. 2011. Microhabitat specialization of tropical-rainforest canopy trees in the Sovi Basin, Viti Levu, Fiji Islands. Journal of Tropical Ecology 27: 491501.CrossRefGoogle Scholar
Knopf, P., Schulz, C., Little, D.P., Stützel, T. & Stevenson, D.W. 2012. Relationships within Podocarpaceae based on DNA sequence, anatomical, morphological, and biogeographical data. Cladistics 28: 271299.CrossRefGoogle ScholarPubMed
Lamb, S. & Hoke, L. 1997. Origin of the high plateau in the Central Andes, Bolivia, South America. Tectonics 16: 623649.CrossRefGoogle Scholar
Lander, E.B. 2008. Early Clarendonian (late middle Miocene) fossil land mammal assemblages from the Lake Mathews Formation, Riverside County, southern California, and a preliminary review of Merychyus (Mammalia, Artiodactyla, Oreodontidae). Geology and Vertebrate Paleontology of Western and Southern North America 41: 181212.Google Scholar
Lee, D.E., Conran, J.G., Lindquist, J.K., Bannister, J.M & Mildenhall, P.C. 2012. New Zealand Eocene, Oligocene and Miocene macrofossil and pollen records and modern plant distributions in the Southern Hemisphere. Botanical Review 78: 235260.CrossRefGoogle Scholar
Little, D.P., Knopf, P. & Schulz, C. 2013. DNA barcode identification of Podocarpaceae: the second largest conifer family. PLoS One 8: e81008.CrossRefGoogle ScholarPubMed
Luyendyk, B.P. 1995. Hypothesis for Cretaceous rifting of east Gondwana caused by subducted slab capture. Geology 23(4): 373376.2.3.CO;2>CrossRefGoogle Scholar
Mehra, P.N. & Khoshoo, T.N. 1956. Cytology of conifers I, II. Journal of Genetics 54: 165180, 181–185.CrossRefGoogle Scholar
Mill, R.R. 1999. Towards a biogeography of the Podocarpaceae. Pp 137147 in IV International Conifer Conference. Wye: Acta Horticulturae.Google Scholar
Mortimer, N., Campbell, H.J., Tulloch, A.J., et al. 2017. Zealandia: Earth’s hidden continent. GSA today 27(3): 2735.CrossRefGoogle Scholar
Page, C.N. 1988. Ferns: Their Habitats in the Landscape of Britain and Ireland. London: Collins.Google Scholar
Page, C.N. 1990a. Taxaceae. Pp 348353 in Kubitsky, K. & Green, P.S. (eds.), The Families and Genera of Vascular Plants. I. Pteridophytes and Gymnosperms. Berlin: Springer.Google Scholar
Page, C.N. 1990b. Podocarpaceae. Pp 332346 in Kubitsky, K. & Green, P.S. (eds.), The Families and Genera of Vascular Plants. I. Pteridophytes and Gymnosperms. Berlin: Springer.Google Scholar
Pole, M. 1992. Early Miocene flora of Manuherikia Group, New Zealand. 2. Conifers. Journal of the Royal Society of New Zealand 22: 287302.CrossRefGoogle Scholar
Pole, M. 1997. Miocene conifers of the Manuherikia Group, New Zealand. Journal of the Royal Society of New Zealand 27: 355370.CrossRefGoogle Scholar
Pole, M. 1998. Paleocene gymnosperms from Mount Somers, New Zealand. Journal of the Royal Society of New Zealand 28: 375403.CrossRefGoogle Scholar
Pole, M. 2007. Conifer and cycad distribution in the Miocene of southern New Zealand. Australian Journal of Botany 55: 143164.CrossRefGoogle Scholar
Pole, M. 2010. Was New Zealand a primary source for the New Caledonian flora? Alcheringa 34(1): 6174.CrossRefGoogle Scholar
Quilty, P.G. 1994. The background: 144 million years of Australian palaeoclimate and palaeogeography. Pp 1443 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Quinn, C.J. 1970. Generic boundaries in the Podocarpaceae. Proceedings of the Linnean Society N.S.W. 94: 166172.Google Scholar
Quinn, C.J., Price, R.A. & Gadek, P.A. 2002. Familial concepts and relationships in the conifer based on rbcL and matK sequence comparisons. Kew Bulletin 57: 513531.CrossRefGoogle Scholar
Rack, F.R. 1993. A geologic perspective on the Miocene evolution of the Antarctic Circumpolar Current system. Tectonophysics 222: 397415.CrossRefGoogle Scholar
Silba, J. 1983. Addendum to a revision of Cupressus L. (Cupressaceae). Phytologia 52: 349361.Google Scholar
Sinclair, W.T., Mill, R.R., Gardner, M.F., et al. 2002. Evolutionary relationships of the New Caledonian heterotrophic conifer, Parasitaxus usta (Podocarpaceae), inferred from chloroplast trn LF intron/spacer and nuclear rDNA ITS2 sequences. Plant Systematics and Evolution 233: 79104.CrossRefGoogle Scholar
Sternberg, P. 1996. Simulation of the effects of shoot structure and orientation on vertical gradients in intercepted light by conifer canopies. Tree Physiology 16: 99108.CrossRefGoogle Scholar
Torres, R. & Romero, J.H. 1988. Podocarpaceae. Pp 567 in Pinto, P. & Lozano, G. (eds.), Flora of Colombia. Bogotá: Instituto de Ciencias Naturales, Museo de Historia Natural, Faculdad de Ciencias, Universidad Nacional de Colombia.Google Scholar
White, M.E. 1993. The Greening of Gondwana. Chatswood, NSW: A. H. & A.W. Reed.Google Scholar
Wilf, P., Donovan, M.P., Cúneo, N.R. & Gandolfo, M.A. 2017. The fossil flip-leaves (Retrophyllum, Podocarpaceae) of southern South America. American Journal of Botany 104: 13441369.CrossRefGoogle ScholarPubMed
Zhou, Q.-X. & Gu, Z.-J. 2001. Kryomorphology of Podocarpus s.l. in China and its systematic significance. Caryologia 54: 121127.Google Scholar

References

Audley-Charles, M. 1983. Reconstruction of Gondwanaland. Nature 306: 4850.CrossRefGoogle Scholar
Axsmith, B.J., Taylor, T.N. & Taylor, E.L. 1998. Anatomically preserved leaves of the conifer Notophyllum brausecii (Podocarpaceae) from the Triassic of Antarctica. American Journal of Botany 85: 704713.CrossRefGoogle ScholarPubMed
Barker, N.P., Muller, E.M. & Mill, R.R. 2004. A yellowwood by any other name: molecular systematics and the taxonomy of Podocarpus and the Podocarpaceae in southern Africa. South African Journal of Science 100(11): 629632.Google Scholar
Bond, W.J. 1989. The tortoise and the hare: ecology of angiosperm dominance and gymnosperm persistence. Biological Journal of the Linnean Society 36: 227249.CrossRefGoogle Scholar
Brodribb, T. & Hill, R.S. 1997. Light response characteristics of a morphologically diverse group of Southern Hemisphere conifers as measured by chlorophyll fluorescence. Oecologia 110: 1017.CrossRefGoogle Scholar
Buchholz, J.T. 1941. Embryogeny of the Podocarpaceae. Botanical Gazette 103: 137.CrossRefGoogle Scholar
Cantrill, D.J. & Falcon-Lang, H.J. 2001. Cretaceous (Late Albian) Coniferales of Alexander Island, Antarctica. Part 2. Foliage, reproductive structures and roots. Review of Palaeobotany and Palynology 115: 119145.CrossRefGoogle Scholar
Carter, G.A. & Smith, W.K. 1985. Influence of shoot structure on light interception and photosynthesis in conifers. Plant Physiology 79(4): 10381043.CrossRefGoogle ScholarPubMed
Champion, H.G. & Seth, S.K. 1968. A Revised Survey of the Forest Types of India. Delhi: Government of India.Google Scholar
Chaw, S.M., Long, H., Wang, B.-S., Zharkikh, A. & Li, W.-H. 1993. The phylogenetic position of Taxaceae based on 18S rRNA sequences. Journal of Molecular Evolution 37: 624630.CrossRefGoogle ScholarPubMed
Chowdhury, C.R. 1962. The embryology of conifers: a review. Phytomorphology 12: 313338.Google Scholar
Conran, J.G., Wood, G.A., Martin, P.G., et al. 2000. Generic relationships within and between the gymnosperm families Podocarpaceae and Phyllocladaceae based on an analysis of the chloroplast gene rbcL. Australian Journal of Botany 48: 715724.CrossRefGoogle Scholar
De Laubenfels, D.J. 1987. Revision of the genus Nageia (Podocarpaceae). Blumea: Biodiversity, Evolution and Biogeography of Plants 32(1): 209211.Google Scholar
Farjon, A. 2010. A Handbook of the World’s Conifers. Leiden: Konninklijke Brill NV.CrossRefGoogle Scholar
FIVI (Forest Inventory and Planning Institute, Vietnam) 1996. Vietnam Forest Trees. Hanoi: Agricultural Publishing House.Google Scholar
Fu, D. 1992. Nageiaceae: a new gymnosperm family. Acta Phytotaxonomica Sinica 30: 515528.Google Scholar
Ganesh, T., Ganesan, R., Soubadra, D.M., Davidar, P. & Bawa, K.S. 1996. Assessment of plant biodiversity at a mid-elevation evergreen forest of Kalakad-Mundanthurai Tiger Reserve, Western Ghats, India. Current Science 71: 379392.Google Scholar
Greenwood, D.R. 1987. Early Tertiary Podocarpaceae megafossils from the Eocene Anglesea locality, Victoria, Australia. Australian Journal of Botany 35: 111133.CrossRefGoogle Scholar
Hair, J.B. 1963. Cytogeographical relationships of the southern podocarps. Pp 401414 in Gressitt, J.L. (ed.), Pacific Basin Biogeography. Honolulu: Bishop Museum Press.Google Scholar
Hair, J.B. & Beuzenberg, E.J. 1958. Chromosomal evolution in the Podocarpaceae. Nature 181: 15841586.CrossRefGoogle Scholar
Herbert, J., Hollingsworth, P.M., Gardner, M.F., et al. 2002. Conservation genetics and phylogenetics of New Caledonian Retrophyllum (Podocarpaceae) species. New Zealand Journal of Botany 40: 175188.CrossRefGoogle Scholar
Hill, R.S. & Pole, M.S. 1992. Leaf and shoot morphology of extant Afrocarpus, Nageia and Retrophyllum (Podocarpaceae) species, and species with similar leaf arrangement, from Tertiary sediments in Australasia. Australian Systematic Botany 5: 337358.CrossRefGoogle Scholar
Hill, R.S. & Scriven, L.J. 1995. The angiosperm-dominated woody vegetation of Antarctica: a review. Review of Palaeobotany and Palynology 86: 175198.CrossRefGoogle Scholar
Jin, J., Qui, J., Zhu, Y. & Kodrul, T.M. 2010. First fossil record of the genus Nageia (Podocarpaceae) in south China and its phytogeographic implications. Plant Systematics and Evolution 285: 159163.CrossRefGoogle Scholar
Kelch, D.G. 1997. The phylogeny of the Podocarpaceae based on morphological evidence. Systematic Botany 22: 113131.CrossRefGoogle Scholar
Kelch, D.G. 1998. Phylogeny of Podocarpaceae: a comparison of evidence from morphology and 18S rDNA. American Journal of Botany 85: 986996.CrossRefGoogle Scholar
Kimura, T., Ohana, T. & Mimoto, K. 1988. Discovery of a podocarpaceous plant from the Lower Cretaceous of Kochi Prefecture, in the outer zone of southwest Japan. Proceedings of the Japan Academy B 64: 213216.CrossRefGoogle Scholar
Knopf, P., Schulz, C., Little, D.P., Stützel, T. & Stevenson, D.W. 2012. Relationships within Podocarpaceae based on DNA sequence, anatomical, morphological, and biogeographical data. Cladistics 28: 271299.CrossRefGoogle Scholar
Krassilov, V.A. 1965. New coniferales from Lower Cretaceous of Primorye. Botanical Journal 50: 14501455.Google Scholar
Krassilov, V.A. 1974. Podocarpus from the Upper Cretaceous of eastern Asia and its bearing on the theory of conifer evolution. Palaeontology 17: 365370.Google Scholar
Krishnan, R.M. 2002. Phenology of a wet forest understorey in the Western Ghats, South India. Global Ecology and Biogeography 11: 179182.CrossRefGoogle Scholar
Kryshtofovich, A.N. & Prynada, V.D. 1932. Contribution to the Mesozoic flora of the Ussuriland. Bulletin of the Geological Prospecting Service USSR 51: 363373.Google Scholar
Kumar, P., Yuan, X., Kumar, M.R., et al. 2007. The rapid drift of the Indian tectonic plate. Nature 449(7164): 894897.CrossRefGoogle ScholarPubMed
Kurata, S. 1966. Notes on Japanese ferns. Journal of Geobotany 14: 8286.Google Scholar
Little, D.P., Knopf, P. & Schulz, C. 2013. DNA barcode identification of Podocarpaceae: the second largest conifer family. PLoS One 8: e81008.CrossRefGoogle ScholarPubMed
Mehra, P.N. & Khoshoo, T.N. 1956. Cytology of conifers I, II. Journal of Genetics 54: 165180, 181–185.CrossRefGoogle Scholar
Mehrotra, R.C. 2011. Living gymnosperms of India: past and recent. Phytotaxonomy 11: 8085.Google Scholar
Mehrotra, R.C., Liu, X.-Q. & Li, C.-S. 2005. Comparison of the Tertiary flora of southwest China and northeast India and its significance in the antiquity of the modern Himalayan flora. Review of Palaeobotany and Palynology 135: 146163.CrossRefGoogle Scholar
Mill, R.R. 1999. A new combination in Nageia (Podocarpaceae). Novon 9: 7778.CrossRefGoogle Scholar
Mill, R.R. 2001. A new sectional combination in Nageia Gaertn. (Podocarpaceae). Edinburgh Journal of Botany 58: 499501.CrossRefGoogle Scholar
Nanami, S., Kawaguchi, H. & Yakamura, T. 2011. Spatial pattern formation and relative importance of intra- and inter-specific competition in codominant tree species, Podocarpus nagi and Neolitsea aciculata. Ecological Research 26: 3746.CrossRefGoogle Scholar
Nguyễn Duc To Luu, & Thomas, P. 2004. Cay La Kim Viet Nam (Conifers of Vietnam: An Illustrated Field Guide). Hanoi: World Publishing House.Google Scholar
Noothemstra, H., Wijninga, V.M. & Cleef, A.M. 2006. The paleobotanic record of Columbia: implications for biogeography and biosciences. Annals of the Missouri Botanical Garden 93: 297324.Google Scholar
Page, C.N. 1990a. Taxaceae. Pp 348353 in Kubitsky, K. & Green, P.S. (eds.), The Families and Genera of Vascular Plants. I. Pteridophytes and Gymnosperms. Berlin: Springer.Google Scholar
Page, C.N. 1990b. Podocarpaceae. Pp 332346 in Kubitsky, K. & Green, P.S. (eds.), The Families and Genera of Vascular Plants. I. Pteridophytes and Gymnosperms. Berlin: Springer.Google Scholar
Pascal, J.P. 1991. Floristic composition and distribution of evergreen forests in the Western Ghats, India. Palaeobotanist 39: 110126.Google Scholar
Quinn, C.J. 1970. Generic boundaries in the Podocarpaceae. Proceedings of the Linnean Society NSW 94: 166172.Google Scholar
Quinn, C.J., Price, R.A. & Gadek, P.A. 2002. Familial concepts and relationships in the conifer based on rbcL and matK sequence comparisons. Kew Bulletin 57: 513531.CrossRefGoogle Scholar
Raizada, M.B. & Sahni, K.C. 1960. Living Indian gymnosperms. Part 1. (Cycadales, Ginkgoales and Coniferales). Indian Forest Records (Botany) 5(2): 73150.Google Scholar
Ramesh, B.R., Menon, S. & Bawa, K.S. 1997. A vegetation based approach to biodiversity gap analysis in the Agastyamalai Region, Western Ghats, India. Ambio 26: 529536.Google Scholar
Scotese, C.R. 2013. PALEOMAP Paleo Atlas for ArcGIS, Volume 1: Cenozoic. PALEOMAP Project.Google Scholar
Silba, J. 1990. A supplement to the International Census of the Coniferae, II. Phytologia 68: 778.Google Scholar
Sinclair, W.T., Mill, R.R., Gardner, M.F., et al. 2002. Evolutionary relationships of the New Caledonian heterotrophic conifer, Parasitaxus usta (Podocarpaceae), inferred from chloroplast trn LF intron/spacer and nuclear rDNA ITS2 sequences. Plant Systematics and Evolution 233: 79104.CrossRefGoogle Scholar
Stewart, W.N. & Rothwell, G.A. 1993. Palaeobotany and the Evolution of Plants, 2nd edn. Cambridge: Cambridge University Press.Google Scholar
Stockey, R.A. 1994. Mesozoic Araucariaceae: morphology and systematic relationships. Journal of Plant Research 107: 493502.CrossRefGoogle Scholar
Sun, T.X. & Wang, X.Y. 2005. The identification and geographic distribution of Nageia and its pharmaceutical effect. Subtropical Plant Science 34: 5355.Google Scholar
Tahara, M. 1941. Embryogeny of Podocarpus macrophyllus and Podocarpus nagi. Science Reports Tohoku University (Biology) 16: 9198.Google Scholar
Townrow, J.A. 1967. On Rissikia and Mataia podocarpaceaous conifers from the lower Mesozoic of southern lands. Papers and Proceedings of the Royal Society of Tasmania 101: 103106.CrossRefGoogle Scholar
Wang, F.H. 1950. Observations of the embryogeny of Podocarpus nagi. Botanical Bulletin Academica Sinica 3: 141145.Google Scholar
White, M.E. 1993. The Greening of Gondwana. Chatswood, NSW: A. H. & A.W. Reed.Google Scholar
Yang, J.-J., Guo-Fan, Q. & Rui-Hu, X. 1990. Studies on fossil woods excavated from the Dabie Mountains. Scientia Silvae Sinicae 26(4): 379383 (in Chinese with English abstract).Google Scholar
Zhou, Q.-X. & Gu, Z.-J. 2001. Kryomorphology of Podocarpus s.l. in China and its systematic significance. Caryologia 54: 121127.Google Scholar
Zhou, Z. 1983. Stalagma samara, a new podocarpaceaous conifer with monicolpate pollen from the Upper Triassic of Hunan, China. Palaeontographica B 185: 5672.Google Scholar

References

Barker, N.P., Muller, E.M. & Mill, R.R. 2004. A yellowwood by any other name: molecular systematics and the taxonomy of Podocarpus and the Podocarpaceae in southern Africa. South African Journal of Science 100: 629632.Google Scholar
Beentje, H.J. 1990. The forests of Kenya. Mitteilungen aus dem Institut für Allgemeine Botanik Hamburg 23: 265286.Google Scholar
Brenan, J.P.M. & Greenway, P.J. 1949. Check-lists of the Forest Trees and Shrubs of the British Empire. No. 5. Tanganyika Territory. Oxford: Imperial Forestry Institute.Google Scholar
Buchholz, J.T. 1936. Embryogeny of species of Podocarpus of the subgenus Stachycarpus. Botanical Gazette 98: 135146.CrossRefGoogle Scholar
Buchholz, J.T. 1941. Embryogeny of the Podocarpaceae. Botanical Gazette 103: 137.CrossRefGoogle Scholar
Cantrill, D.J. & Poole, I. 2012. The Vegetation of Antarctica Throughout Geological Time. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Chowdhury, C.R. 1962. The embryology of conifers: a review. Phytomorphology 12: 313338.Google Scholar
Conran, J.G., Wood, G.A., Martin, P.G., et al. 2000. Generic relationships within and between the gymnosperm families Podocarpaceae and Phyllocladaceae based on an analysis of the chloroplast gene rbcL. Australian Journal of Botany 48: 715724.CrossRefGoogle Scholar
Cunningham, W.D., Dalziel, I.W.D., Lee, T.Y., & Lawver, L.A. 1995. Southernmost South-America Antarctic peninsula relative plate motions since 84 Ma: implications for the tectonic evolution of the Scotia Arc region. Journal of Geophysical Research: Solid Earth 100: 82578266.CrossRefGoogle Scholar
De Laubenfels, D.J. 1969. A revision of the Malesian and Pacific rainforest conifers. I. Podocarpaceae, in part. Journal of the Arnold Arboretum 50: 315369.CrossRefGoogle Scholar
De Ferré, Y., Rouane, M.L. & Woltz, P. 1975. Plantales des Podocarpacees. Travaux du laboratoire forestier de Toulouse 3: 116.Google Scholar
Flory, W.S. 1936. Chromosome numbers and phylogeny in the gymnosperms. Journal of the Arnold Arboretum. 17: 8389.CrossRefGoogle Scholar
Gaussen, H. 1974. Les Gymnospermes actuelles et fossiles. Fascicule XIII. Les Podocarpines sauf les Podocarpus. Travaux du laboratoire forestier de Toulouse 2(3).Google Scholar
Geldenhuys, C.J. 1993. Reproductive biology and population structures of Podocarpus falcatus and P. latifolius in southern Cape forests. Botanical Journal of the Linnean Society 112: 5974.CrossRefGoogle Scholar
Glidewell, S.M., Möller, M., Duncan, G. et al. 2002. NMR imaging as a tool for non-invasive taxonomy: comparison of female cones of two Podocarpaceae. New Phytologist 154: 197207.CrossRefGoogle Scholar
Hair, J.B. 1963. Cytogeographical relationships of the southern podocarps. Pp 401414 in Gressitt, J.L. (ed.), Pacific Basin Biogeography. Honolulu, HI: Bishop Museum Press.Google Scholar
Hair, J.B. & Beuzenberg, E.J. 1958. Chromosomal evolution in the Podocarpaceae. Nature 181: 15841586.CrossRefGoogle Scholar
Herbert, J., Hollingsworth, P.M., Gardner, M.F., et al. 2002. Conservation genetics and phylogenetics of New Caledonian Retrophyllum (Podocarpaceae) species. New Zealand Journal of Botany 40: 175188.CrossRefGoogle Scholar
Hill, R.S. & Pole, M.S. 1992. Leaf and shoot morphology of extant Afrocarpus, Nageia and Retrophyllum (Podocarpaceae) species, and species with similar leaf arrangement, from Tertiary sediments in Australasia. Australian Systematic Botany 5: 337358.CrossRefGoogle Scholar
Kelch, D.G. 1997. The phylogeny of the Podocarpaceae based on morphological evidence. Systematic Botany 22: 113131.CrossRefGoogle Scholar
Knopf, P., Schulz, C., Little, D.P., Stützel, T. & Stevenson, D.W. 2012. Relationships within Podocarpaceae based on DNA sequence, anatomical, morphological, and biogeographical data. Cladistics 28: 271299.CrossRefGoogle ScholarPubMed
Leistner, O.A., Smith, G.F. & Glen, H.F. 1995. Notes of Podocarpus in southern Africa and Madagascar (Podocarpaceae). Bothalia 25: 233236.CrossRefGoogle Scholar
Little, D.P., Knopf, P. & Schulz, C. 2013. DNA barcode identification of Podocarpaceae: the second largest conifer family. PLoS One 8: e81008.CrossRefGoogle ScholarPubMed
Martin, A.R.H. 1959. South African palynological studies. I. Statistical and morphological variation in the pollen of the South African species of Podocarpus. Grana Palynologica 2: 4068.CrossRefGoogle Scholar
Masters, M.T. 1895. A general view of the genus Cupressus. Journal of the Linnean Society, Botany 31: 312363.CrossRefGoogle Scholar
McLoughlin, S., Tosolini, A.-M.P.N., Agalingum, N.S. & Drinnan, A.N. 2002. The Early Cretaceous (Neocomian) flora and fauna of the lower Strzelecki Group, Gippsland Basin, Victoria, Australia. Association of Australasian Palaeontologists Memoirs 26: 1144.Google Scholar
McNaughton, J. & Tyson, P.D. 1979. A preliminary assessment of Podocarpus falcatus for dendrochronological and dendroclimatic studies. South African Forestry Journal 111: 2933.CrossRefGoogle Scholar
Mehra, P.N. & Khoshoo, T.N. 1956. Cytology of conifers I, II. Journal of Genetics 54: 165180, 181–185.CrossRefGoogle Scholar
Midgley, J. & Bond, W. 1989. Leaf size and inflorescence size may be allometrically related traits. Oecologia 78(3): 427429.CrossRefGoogle ScholarPubMed
Midgley, J.J., Bond, W.J. & Geldenhuys, C.J. 1995 The ecology of southern African conifers. Pp 6480 in Enright, N.J. & Hill, R.S. (eds.), Ecology of the Southern Conifers. Melbourne: Melbourne University Press.Google Scholar
Mill, R.R. 2003. Towards a biogeography of the Podocarpaceae. Pp 137147 in Mill, R.R. (ed.), Conifers for the Future? Proceedings of the Fourth International Conifer Conference. Wye: Acta Horticulturae.Google Scholar
Mill, R.R., Moller, M., Glidewell, S.M., Masson, D. & Williamson, B. 2004. Comparative anatomy and morphology of fertile complexes of Prumnopitys and Afrocarpus species (Podocarpaceae) as revealed by histology and NMR imaging, and their relevance to systematics. Botanical Journal of the Linnean Society 145: 295316.CrossRefGoogle Scholar
Morley, R.J. 2011. Dispersal and paleoecology of tropical podocarps. Pp 2141 in Turner, B.L. & Cemusak, L. (eds.), Ecology of the Podocarpaceae in Tropical Forests. Washington, DC: Smithsonian Institution Scholarly Press.Google Scholar
Nagalingum, N.S., Drinnan, A.N. & McLoughlin, S. 2005. A new fossil conifer Bellarinea richardsii from the Early Cretaceous Strzelechi Group, southeastern Victoria. Proceedings of the Royal Society of Victoria 117: 112.Google Scholar
Page, C.N. 1990a. Taxaceae. Pp 348353 in Kubitsky, K. & Green, P.S. (eds.), The Families and Genera of Vascular Plants. I. Pteridophytes and Gymnosperms. Berlin: Springer.Google Scholar
Page, C.N. 1990b. Podocarpaceae. Pp 332346 in Kubitsky, K. & Green, P.S. (eds.), The Families and Genera of Vascular Plants. I. Pteridophytes and Gymnosperms. Berlin: Springer.Google Scholar
Quinn, C.J. 1970. Generic boundaries in the Podocarpaceae. Proceedings of the Linnean Society of New South Wales 94: 166172.Google Scholar
Quinn, C.J. & Price, R.A. 2003. Phylogeny of the Southern Hemisphere conifers. Pp 129136 in Mill, R.R. (ed.), Conifers for the Future? Proceedings of the Fourth International Conifer Conference. Wye: Acta Horticulturae.Google Scholar
Quiroga, M.P., Mathiasen, P., Iglesias, A., Mill, R.R. & Premoli, A.C. 2016. Molecular and fossil evidence disentangle the biogeographical history of Podocarpus, a key genus in plant geography. Journal of Biogeography 43(2): 372383.CrossRefGoogle Scholar
Schoonraad, E. 1977. Die Morfologie van die vroulike strobilus en embriologie van die genus Podocarpus L’Herit. ex Pers. in Suid-Afrika. Doctoral dissertation, University of Pretoria.Google Scholar
Schoonraad, E. & van der Schjiff, H.P. 1975. Distribution and some interesting morphological aspects of the South African Podocarpaceae. Boissiera 24: 135144.Google Scholar
Sinclair, W.T., Mill, R.R., Gardner, M.F., et al. 2002. Evolutionary relationships of the New Caledonian heterotrophic conifer, Parasitaxus usta (Podocarpaceae), inferred from chloroplast trn LF intron/spacer and nuclear rDNA ITS2 sequences. Plant Systematics and Evolution 233: 79104.CrossRefGoogle Scholar
Stiff, M.L. 1952. The geographical distribution and cytology of the Coniferales. PhD thesis, University of Virginia.Google Scholar
Tahara, M. 1937. Contributions to the morphology of Sciadopitys verticillata. Cytologia 1937: 1419.CrossRefGoogle Scholar
Walkom, R.B. 1919. On a collection of Jurassic plants from Bexhill, near Lismore, New South Wales. Proceedings of the Linnean Society of New South Wales 44: 180190.Google Scholar
White, M.E. 1986. The Greening of Gondwana. Frenchs Forrest, NSW: Reed Books.Google Scholar
White, M.E. 1993. The Greening of Gondwana. Chatswood, NSW: A. H. & A.W. Reed.Google Scholar
Zachos, J., Oaganini, M., Sloan, I., Thomas, E. & Billups, K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292: 686693.CrossRefGoogle Scholar

References

Achard, F., Eva, H.D., Stibig, H.J. et al. 2002. Determination of deforestation rates of the world’s humid tropical forests. Science 297: 9991002.CrossRefGoogle ScholarPubMed
Ash, J. 1987. Stunted cloud forest in Taveuni, Fiji. Pacific Science 41: 191199.Google Scholar
Ashbury, C.E., Mcdowell, W.H., Trinidad-Pizarro, R. & Beerios, S. 1994. Solute deposition from cloud water to the canopy of a Puerto Rican montane forest. Atmospheric Environment 28: 17731780.CrossRefGoogle Scholar
Austin, A.T. & Vitousek, P.M. 1998. Nutrient dynamics on a precipitation gradient in Hawaii. Oecologia 113: 519529.CrossRefGoogle Scholar
Bawa, K.S. & Ashton, P.S. 1991. Conservation of rare trees in tropical rain forests: a genetic perspective. Pp 6271 in Falk, D.A. & Holsinger, K.E. (eds.), Genetics and Conservation of Rare Plants. Oxford: Oxford University Press.CrossRefGoogle Scholar
Beadle, N.C.W. 1966. Soil phosphate and its role in molding segments of the Australian flora and vegetation with special reference to xeromorphy and sclerophylly. Ecology 47: 9921007.CrossRefGoogle Scholar
Beaman, J.H. & Beaman, R.S. 1998. The Plants of Mount Kinabalu. Kota Kinabalu: Natural History Publications.Google Scholar
Blackburn, D.T. & Sluiter, I.R. 1994. The Oligo-Miocene coal floras of southeastern Australia. Pp 328367 in Hill, R.S. (ed.), Australian Vegetation History: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Bruijnzeel, L.A. & Proctor, J. 1995. Hydrology and biogeochemistry of tropical montane cloud forests: what do we really know ? Pp 2546 in Hamilton, L. S., Juvik, J. O. & Scatena, F. N. (eds.), Tropical Montane Cloud Forests. Proceedings of an International Symposium. Honolulu, HI: East-West Center.Google Scholar
Bruijnzeel, L.A. & Veneklaas, E.J. 1998. Climatic conditions and tropical montane forest productivity: the fog has not lifted yet. Ecology 79(1): 39.CrossRefGoogle Scholar
Bruijnzeel, L.A., Waterloo, M.J., Proctor, J., Kuiters, A.T. & Kotterink, B. 1993. Hydrological observations in montane rainforests on Gunung Silam, Sabah, Malaysia, with special reference to the ‘Massenerhebung’ effect. Journal of Ecology 81: 145167.CrossRefGoogle Scholar
Buchholz, J.T. 1933. Determinate cleavage polyembryony, with special reference to Dacrydium. Botanical Gazette 94: 579588.CrossRefGoogle Scholar
Buchholz, J.T. 1941. Embryogeny of the Podocarpaceae. Botanical Gazette 103: 137.CrossRefGoogle Scholar
Cantrill, D.J. & Poole, I. 2012. The Vegetation of Antarctica Through Geological Time. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Cantrill, D.J., Wanntorp, L. & Drinnan, A.N. 2011. Mesofossil flora from the Late Cretaceous of New Zealand. Cretaceous Research 32: 164173.CrossRefGoogle Scholar
Carpenter, R.J., Hill, R.S. & Jordan, G.J. 1994. Cenozoic vegetation in Tasmania: macrofossil evidence. Pp 276298 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Chien, P.D., Zuidema, P.A. & Nghia, N.H. 2008. Conservation prospects for threatened Vietnamese tree species: results from a demographic study. Population Ecology 50: 227237.CrossRefGoogle Scholar
Chowdhury, C.R. 1962. The embryology of conifers: a review. Phytomorphology 12: 313338.Google Scholar
Clark, D.B., Clark, D.A. & Read, J.M. 1998. Edaphic variation and the mesoscale distribution of tree species in a neotropical rain forest. Journal of Ecology 86: 101112.CrossRefGoogle Scholar
Clarkson, B.D., Patel, R.N. & Clarkson, B.R. 1988. Composition and structure of forest overwhelmed at Pureora, central North Island, New Zealand, during the Taupo eruption (c. AD 130). Journal of the Royal Society of New Zealand 18: 417436.CrossRefGoogle Scholar
Compton, R.H. 1922. A systematic account of the plants collected in New Caledonia and Isle of Pines. Part II. Botanical Journal of the Linnean Society 45: 421434.CrossRefGoogle Scholar
Conran, J.G., Wood, G.A., Martin, P.G., et al. 2000. Generic relationships within and between the gymnosperm families Podocarpaceae and Phyllocladaceae based on an analysis of the chloroplast gene rbcL. Australian Journal of Botany 48: 715724.CrossRefGoogle Scholar
Cornell, S., Randell, A. & Jickells, T. 1995. Atmospheric inputs of dissolved organic nitrogen to the oceans. Nature 376(6537): 243246.CrossRefGoogle Scholar
Couper, R.A. 1960. Southern Hemisphere Mesozoic and Tertiary Podocarpaceae and Fagaceae and their palaeogeographic significance. Proceedings of the Royal Society of London B 152: 491500.Google Scholar
Davies‐Colley, R.J. & Quinn, J.M. 1998. Stream lighting in five regions of North Island, New Zealand: control by channel size and riparian vegetation. New Zealand Journal of Marine and Freshwater Research 32(4): 591605.CrossRefGoogle Scholar
Dawson, J. & Lucas, R. 2013. New Zealand’s Native Trees. Nelson: Craig Potton Publishing.Google Scholar
Dawson, T.E. 1998. Fog in the California redwood forest: ecosystem inputs and use by plants. Oecologia 117: 476485.CrossRefGoogle Scholar
De Laubenfels, D.J. 1969. A revision of the Malesian and Pacific rainforest conifers. I. Podocarpaceae, in part. Journal of the Arnold Arboretum 50: 274369.CrossRefGoogle Scholar
De Laubenfels, D.J. 1972. Gymnospermes. Pp 1167 in Aubréville, A. & Leroy, J.F. (eds.), Flore de la Nouvele-Calédonie et Dépendances. Paris: Museum National D’Histoire Naturelle, Laboratoire de Phanerogamie.Google Scholar
Dettmann, M.E. 1981. The Cretaceous flora. Pp 355375 in Keast, A. (ed.), Ecological Biogeography of Australia. The Hague: W.Junk.CrossRefGoogle Scholar
Dettmann, M.E. 1989. Antarctic: Cretaceous cradle of austral temperate rainforests? Pp 89105 in Crane, J.A. (ed.), Origins and Evolution of the Antarctic Biota. London: Geological Society of London.Google Scholar
Dettmann, M.E. 1994. Cretaceous vegetation: the microfossil record. Pp 143170 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Dettmann, M.E. & Jarzen, D.M. 1990. The Antarctic/Australasian rift valley: late Cretaceous cradle of northeastern Australasian relicts ? Review of Palaeobotany and Palynology 65: 131144.CrossRefGoogle Scholar
Dettmann, M.E. & Jarzen, D.M. 1991. Pollen evidence or Late Cretaceous differentiation of Proteaceae in southern polar forests. Canadian Journal of Botany 69: 901906.CrossRefGoogle Scholar
Dettmann, M.E. & Thomson, M.R.A. 1987. Cretaceous palymorphs from the James Ross Island areas, Antarctica: a pilot study. British Antarctic Survey Bulletin 77: 1359.Google Scholar
Di Pasquo, M. & Martin, J.E. 2013. Palyno assemblages associated with a theropod dinosaur from Snow Hill Island Formation (lower Maastrichtian) at the Naze, James Ross Island, Antarctica. Cretaceous Research 45: 135154.CrossRefGoogle Scholar
Dick, J.McP. & Longman, K.A. 1985. Techniques for injecting chemicals into trees. Arboricultural Journal 9: 211214.CrossRefGoogle Scholar
Dörken, V.M. & Parsons, R.F. 2016. Morpho-anatomical studies on the change in the foliage of two imbricate-leaved New Zealand podocarps: Dacrycarpus dacrydioides and Dacrydium cupressinum. Plant Systematics and Evolution 302: 4154.CrossRefGoogle Scholar
Douglas, J.G. 1994. Cretaceous vegetation: the macrofossil record. Pp 171188 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Druitt, D.G., Enright, N.J. & Ogden, J. 1990. Altitudinal zonation in the mountain forests of Mt. Hauhungatahi, North Island, New Zealand. Journal of Biogeography 17: 205220.CrossRefGoogle Scholar
Elliot, M.B. 1998. Late Quaternary pollen records of vegetation and climate change from Kaitaia Bog, far northern New Zealand. Review of Palaeobotany and Palynology 99: 189202.CrossRefGoogle Scholar
Ewing, H.A., Weathers, K.C., Templer, P.H., et al. 2009. Fog water and ecosystem function heterogeneity in a California redwood forest. Ecosystems 12: 417433.CrossRefGoogle Scholar
Fang, K., Wang, Y., Yu, T., et al. 2008. Isolation of de-exined pollen and cytological studies of the pollen intines of Pinus bungeana Zucc. Ex Endl and Picea wilsonii mast flora morphology distribution. Functional Ecology of Plants 203(4): 332340.CrossRefGoogle Scholar
Farjon, A. 2010. A Handbook of the World’s Conifers. Leiden: Konninklijke Brill NV.CrossRefGoogle Scholar
FIVI (Forest Inventory and Planning Institute, Vietnam). 1996. Vietnam Forest Trees. Hanoi: Agricultural Publishing House.Google Scholar
Fleming, C.A. 1963. Age of the New Zealand biota. Proceedings of the New Zealand Ecological Society 10.Google Scholar
Florin, R. 1931. Untersuchungen zur Stammesgeschichte der Coniferales und Cordaitales. I. Morphologie und Epidermisstruktur der Assimilationsorgane bei den rezenten Koniferen. Kungluska Svenska Vetenskapsakademiens Handlangar 10: 1588.Google Scholar
Gaussen, H. 1974. Les Gymnospermes actuelles et fossiles. Fascicule XIII. Les Podocarpines sauf les Podocarpus. Travaux du laboratoire forestier de Toulouse 2(3).Google Scholar
Greenwood, D.R. 1987. Early Tertiary Podocarpaceae: megafossils from the Eocene Anglesea locality, Victoria, Australia. Australian Journal of Botany 35: 111133.CrossRefGoogle Scholar
Grubb, P.J. & Whitmore, T.C. 1966. A comparison of montane and lowland rain forest in Ecuador: II. The climate and its effects on the distribution and physiognomy of the forests. The Journal of Ecology 54: 303333.CrossRefGoogle Scholar
Harrington, R.A., Fownes, J.H. & Vitousek, P.M. 2001. Production and resource use efficiencies in N- and P-limited tropical forests: a comparison of response to long-term fertilization. Ecosystems 4: 646657.CrossRefGoogle Scholar
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Hawkins, B.J. & Sweet, G.B. 1989. The growth of three podocarp species under different nutrient regimes. New Zealand Journal of Botany 27: 305310.CrossRefGoogle Scholar
Herbert, D.A. & Fownes, J.H. 1995. Phosphorous limitation of forest leaf-area and net primary productivity on a weathered tropical soil. Biogeochemistry 111: 233235.Google Scholar
Hiatt, C., Fernández, D. & Potter, C. 2012. Measurements of fog water deposition on the California Central Coast. Atmospheric and Climate Sciences 2: 525531.CrossRefGoogle Scholar
Hiep, N.T., Loc, P.K., Luu, N.D.T., et al. 2004. Vietnam Conifers Conservation Status Review. Hanoi: Labour and Society Publisher.Google Scholar
Hietz, P., Wolfgang, W., Wania, R. & Nadkarni, N. 2002. Nitrogen-15 natural abundance in a montane cloud forest canopy as an indicator of nitrogen cycling and epiphytic nutrition. Oecologia 131: 350355.CrossRefGoogle Scholar
Hill, R.S. 1994. The history of selected Australian taxa. Pp 390420 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Hill, R.S. 2004. Origins of the southeastern Australian vegetation. Philosophical Transactions of the Royal Society London B 359: 15371549.CrossRefGoogle ScholarPubMed
Hill, R.S. & Macphail, M.K. 1994. Tertiary history and origins of the flora and vegetation. In Reid, J.B., Hill, R.S. & Brown, M.J. (eds.), Vegetation of Tasmania. Hobart: Government Printer.Google Scholar
Hill, R.S., Truswell, E.M., McLoughlin, S. & Dettmann, M.E. 1999. Evolution of the Australian flora: fossil evidence. Pp 251320 in Orchard, A.E. and Thompson, H.S. (eds.), Flora of Australia, 2nd edn. Melbourne: ABRS/CSIRO.Google Scholar
Jaffré, T. 1980. Etude ecologique de peuplement vegetal des sols derives des roches ultramafiques en Nouvelle Caledonia. Coll. Trav. et Doc. ORSTOM 124: 274.Google Scholar
Jaffré, T. & Veillon, J.-M. 1990. Etudes floristique et structurale de deux forets denses humides sur roches ultrabasiques en Nouvelle-Calédonie. Adansonia 3: 243272.Google Scholar
Johns, R.J., Edwards, P.J., Utteridge, T.M.A. & Hopkins, H.C.F. 2006. Alpine and Subalpine Flora of Mount Jaya. London: Royal Botanic Gardens Kew.Google Scholar
Jordan, G.J., Carpenter, R.J., Bannister, J.M., et al. 2011. High conifer diversity in Oligo-Miocene New Zealand. Australian Systematic Botany 24(2): 121136.CrossRefGoogle Scholar
Kelch, D.G. 1997. The phylogeny of the Podocarpaceae based on morphological evidence. Systematic Botany 22: 113131.CrossRefGoogle Scholar
Kelch, D.G. 1998. Phylogeny of Podocarpaceae: a comparison of evidence from morphology and 18S rDNA. American Journal of Botany 85: 986996.CrossRefGoogle ScholarPubMed
Kershaw, A.P., McKenzie, G.M. & McMinn, A. 1993. A Quaternary vegetation history of northeastern Queensland from pollen analysis of ODP site 820. Proceedings of the Ocean Drilling Program, Scientific Results 133: 107114.Google Scholar
Kitayama, K. 1992. Comparative vegetation analysis on the wet slopes of two tropical mountains: Mt. Haleakala, Hawaii, and Mt. Kinabalu, Borneo. PhD Dissertation, University of Hawaii, Honolulu, HI.Google Scholar
Kitayama, K. & Aiba, S. 2002. Ecosystem structure and productivity of tropical rain forests along altitudinal gradients with contrasting soil phosphorus pools on Mount Kinabalu, Borneo. Journal of Ecology 90: 3751.CrossRefGoogle Scholar
Kitayama, K., Aiba, S., Majalap-Lee, N. & Ohsawa, M. 1998. Soil nitrogen mineralization rates of rainforests in a matrix of elevations and geological substrates on Mount Kinabalu, Borneo. Ecological Research 13: 301312.CrossRefGoogle Scholar
Kitayama, K., Aiba, S.-I., Ushio, M., Seino, T. & Fujiki, Y. 2011. The ecology of podocarps in tropical montane forests of Borneo: distribution, population dynamics, and soil nutrient acquisition. Smithsonian Contributions to Botany 95: 101117.CrossRefGoogle Scholar
Knopf, P., Schulz, C., Little, D.P., Stützel, T., & Stevenson, D.W. 2012. Relationships within Podocarpaceae based on DNA sequence, anatomical, morphological, and biogeographical data. Cladistics 28: 271299.CrossRefGoogle ScholarPubMed
Little, D.P., Knopf, P. & Schulz, C. 2013. DNA barcode identification of Podocarpaceae: the second largest conifer family. PLoS One 8: e81008.CrossRefGoogle ScholarPubMed
Maki, T., Ishikawa, T., Mastunaga, T., et al. 2016. Atmospheric aerosol deposition influences marine microbial communities in oligotrophic surface waters of the western Pacific Ocean. Deep Sea Research 1(118): 3745.CrossRefGoogle Scholar
Markham, K., Webby, R.F., Molloy, B.P.J. & Vilain, C. 1989. Support from flavenoid glycoside distribution for the division of Dacrydium sensu lato. New Zealand Journal of Botany 27: 111.CrossRefGoogle Scholar
Martin, H.A. 1981. The Tertiary flora. Pp 391406 in Keast, A. (ed.), Ecological Biogeography of Australia. The Hague: W.Junk.CrossRefGoogle Scholar
Martin, H.A. 1994. Australian Tertiary phytogeography: evidence from palynology. Pp 104142 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
McCoy, S., Jaffré, T., Rigault, F. & Ash, J.E. 1999. Fire and succession in the ultramafic maquis of New Caledonia. Journal of Biogeography 26: 579594.CrossRefGoogle Scholar
Mill, R.R. 2003. Towards a biogeography of the Podocarpaceae. Pp 137147 in Mill, R.R. (ed.), Conifers for the Future? Proceedings of the Fourth International Conifer Conference. Wye: Acta Horticulturae.Google Scholar
Nghia, N.H. 2000. Some Threatened Tree Species of Vietnam. Hanoi: Agriculture Publisher.Google Scholar
Nomura, N. & Kikuzawa, K. 2003. Productive phenology of tropical montane forests: fertilization experiments along a moisture gradient. Ecological Research 18: 573586.CrossRefGoogle Scholar
Page, C.N. 1979. The diversity of ferns: an ecological perspective. Pp 1056 in Dyer, A.F. (ed.), The Experimental Biology of Ferns. London: Academic Press.Google Scholar
Page, C.N. 1990. Podocarpaceae. Pp 332346 in Kubitsky, K. & Green, P.S. (eds.), The Families and Genera of Vascular Plants. I. Pteridophytes and Gymnosperms. Berlin: Springer.Google Scholar
Page, C.N. 2002. Ecological strategies in fern evolution: a neopteridological overview. Review of Palaeobotany and Palynology 119: 133.CrossRefGoogle Scholar
Page, C.N. 2004. Adaptive ancientness of vascular plants to exploitation of low-nutrient substrates: a neobotanical overview. Pp 445466 in Hemsley, A.R. & Poole, I. (eds.), The Evolution of Plant Physiology: From Whole Plants to Ecosystems. Amsterdam: Elsevier Academic Press.Google Scholar
Page, C.N. & Brownsey, P.J. 1986. Tree-fern skirts: a defence against climbers and large epiphytes. Journal of Ecology 74: 787796.CrossRefGoogle Scholar
Page, C.N., Collinson, M.E. & Van Konijnenburg-Van Cittert, J.H.A. 2014. Lygodium hians (Pteridophyta-Schizaeales): an endemic unusual ground-clothing member of a modern climbing fern genus in New Caledonia. Adansonia 36: 2643.CrossRefGoogle Scholar
Parsons, J.J. 1960. Fog drip from coastal stratus, with special reference to California. Weather (London) 15: 5862.CrossRefGoogle Scholar
Pengklai, C. 1975. Podocarpaceae. Pp 197203 in Flora of Thailand II. Bangkok: Applied Scientific Research Corporation of Thailand.Google Scholar
Pole, M. 1997. Miocene conifers from the Manuherikia Group, New Zealand. Journal of the Royal Society of New Zealand 27: 355370.CrossRefGoogle Scholar
Quinn, C.J. 1982. Taxonomy of Dacrydium Sol. Ex Lamb. Emend De Laub. (Podocarpaceae). Australian Journal of Botany 30: 311320.CrossRefGoogle Scholar
Quinn, C.J. & Gadek, P. 1981. Biflavones of Dacrydium sensu lato. Phytochemistry 20(4): 677681.CrossRefGoogle Scholar
Quiroga, M.P., Mathiasen, P., Iglesias, A., Mill, R.R. & Premoli, A.C. 2016. Molecular and fossil evidence disentangle the biogeographical history of Podocarpus, a key genus in plant geography. Journal of Biogeography 43(2): 372383.CrossRefGoogle Scholar
Reinink-Smith, L.M. & Leopold, E.B. 2005. Warm climate in the late Miocene of the south coast of Alaska and the occurrence of Podocarpaceae pollen. Palynology 29: 205262.CrossRefGoogle Scholar
Rundel, P.W., Sharfi, M.A., Kohl-Rundel, J. & Middleton, D.J. 2016. Dacrydium elatum (Podocarpaceae) in the mountain cloud forests of Bokor Mountain, Cambodia. Cambodian Journal of Natural History 2: 9097.Google Scholar
Sinclair, W.T., Mill, R.R., Gardner, M.F., et al. 2002. Evolutionary relationships of the New Caledonian heterotrophic conifer, Parasitaxus usta (Podocarpaceae), inferred from chloroplast trn LF intron/spacer and nuclear rDNA ITS2 sequences. Plant Systematics and Evolution 233: 79104.CrossRefGoogle Scholar
Smale, M.C., Burns, B.R., Smale, P.N. & Whaley, P.T. 1997. Dynamics of upland podocarp/broadleaved forest on Mamaku Plateau, Central North Island, New Zealand. Journal of the Royal Society of New Zealand 27: 513532.CrossRefGoogle Scholar
Sodhi, N.S., Koh, L.P., Brook, B.W. & Ng, P.K.L. 2004. Southeast Asian biodiversity: an impending disaster. Trends in Ecology and Evolution 19: 654660.CrossRefGoogle ScholarPubMed
Stockey, R.A. & Ko, H. 1990. Cuticle micromorphology of Dacrydium (Podocarpaceae) from new Caledonia. Botanical Gazette 151: 138149.CrossRefGoogle Scholar
Tanner, E.V., Kapos, V., Freskos, S., Healey, J.R. & Theobald, A.M. 1990. Nitrogen and phosphorus fertilization of Jamaican montane forest trees. Journal of Tropical Ecology 6(2): 231238.CrossRefGoogle Scholar
Tegner, J. 1965. Dacrydium: anatomy and taxonomy. Botaniska Notiser 118: 450452.Google Scholar
Turner, B.L., Condron, L.M., Richardson, S.J., Peltzer, D.A. & Allison, V.J. 2007. Soil organic phosphorus transformations during pedogenesis. Ecosystems 10: 11661181.CrossRefGoogle Scholar
Turner, J.M. 1994. Sclerophylly: primarily protective? Functional Ecology 8: 669675.CrossRefGoogle Scholar
Unsworth, M.H. & Crossley, A. 1987. Consequences of cloud water deposition on vegetation at high elevation. Pp 171188 in Effects of Atmospheric Pollutants on Forests, Wetlands and Agricultural Ecosystems. Berlin: Springer.CrossRefGoogle Scholar
Van Steenis, C.G.G. 1972. Nothofagus, key genus to plant geography. Blumea 19: 6598.Google Scholar
Weathers, K.C. & Likens, G.E. 1997. Clouds in southern Chile: an important source of nitrogen to nitrogen-limited ecosystems. Environmental Science and Technology 31: 210213.CrossRefGoogle Scholar
Weathers, K.C., Lovett, G.M., Likens, G.E. & Lathrop, R. 2000. The effect of landscape features on deposition to Hunter Mountain, Catskill Mountains, New York. Ecological Applications 10(2): 528540.CrossRefGoogle Scholar
Wells, P.M. & Hill, R.S 1989. Leaf morphology of the imbricate-leaved Podocarpaceae. Australian Systematic Botany 2: 369386.CrossRefGoogle Scholar
Werner, W.L. 1997. Pines and other conifers in Thailand: a Quaternary relic? Journal of Quaternary Science 12: 451454.3.0.CO;2-F>CrossRefGoogle Scholar
Whitmore, T.C. 1975. Tropical Rainforest of the Far East. Oxford: Clarendon Press.Google Scholar
Whitmore, T.C. 1997. Tropical forest disturbance, disappearance, and species loss. Pp 312 in Laurance, E.R. & Bierregaard, R.O. (eds.), Tropical Forest Remnants: Ecology, Management and Conservation of Fragmented Communities. Chicago, IL: University of Chicago Press.Google Scholar
Whitmore, T.C. 2003. Expedition to Kubunitu. Biotropical 35: 560561.CrossRefGoogle Scholar
Yamaguchi, T., Katata, G., Noguchi, I., et al. 2015. Long-term observations of fog chemistry and estimation of fog water and nitrogen input via fog water deposition at a mountainous site in Hokkaido, Japan. Atmospheric Research 151: 8292.CrossRefGoogle Scholar
Zachos, J., Oaganini, M., Sloan, I., Thomas, E. & Billups, K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292: 686693.CrossRefGoogle ScholarPubMed

References

Adam, P. 1992. Australian Rainforests. Oxford: Clarendon Press.CrossRefGoogle Scholar
Archangelsky, S. 1966. New gymnosperms from the Tico flora, Santa Cruz Province, Argentina. Bulletin of the British Museum (Natural History), Geology 13: 259295.CrossRefGoogle Scholar
Barreda, V.D. 1997. Palynomorph assemblage of the Chenque Formation, Late Oligocene?–Miocene from Golfo San Jorge basin, Patagonia, Argentina. Part 3. Polycolpate and tricolporate pollen. Ameghiniana 34(2): 131144.Google Scholar
Blackburn, D.T. & Sluiter, I.R. 1994. The Oligo-Miocene coal floras of southeastern Australia. Pp 328367 in Hill, R.S. (ed.), Australian Vegetation History: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Bobrov, A.V. & Melikjan, A.P. 1998. Species structures of seed coat in Podocarpaceae Endlicher 1847 and a possibility of using them in family systematics. Byulletin’ Moscovskogo Obschestva Ispytatelei Prirodyi. Otdel Biologicheskii 103: 5662 (in Russian, with English abstract).Google Scholar
Brodribb, T. & Hill, R.S. 1998. The photosynthetic drought physiology of a diverse group of Southern Hemisphere conifer species is correlated with minimum seasonal rainfall. Functional Ecology 12: 465471.CrossRefGoogle Scholar
Brodribb, T. & Hill, R.S. 2004. The rise and fall of the Podocarpaceae in Australia: a physiological explanation. Pp 381399 in Hemsley, A.R. & Poole, I. (eds.), The Evolution of Plant Physiology: From Whole Plants to Ecosystems. London: Academic Press.CrossRefGoogle Scholar
Buchholz, J.T. 1941. Embryogeny of the Podocarpaceae. Botanical Gazette 103: 137.CrossRefGoogle Scholar
Cantrill, D.J. & Poole, I. 2012. The Vegetation of Antarctica through Geological Time. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Cantrill, D.J., Wanntorp, L. & Drinnan, A.N. 2011. Mesofossil flora from the Late Cretaceous of New Zealand. Cretaceous Research 32: 164173.CrossRefGoogle Scholar
Carpenter, R.J., Hill, R.S. & Jordan, G.J. 1994. Cenozoic vegetation in Tasmania: macrofossil evidence. Pp 276298 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Christophel, D.C. & Greenwood, D.R. 1988. A comparison of Australian tropical rainforest and Tertiary fossil leaf beds. Proceedings of the Ecological Society of Australia 15: 139148.Google Scholar
Cookson, I.C. & Pike, K.M. 1953a. The Tertiary occurrence and distribution of Podocarpus (section Dacrycarpus) in Australia and Tasmania. Australian Journal of Botany 1: 7182.CrossRefGoogle Scholar
Cookson, I.C. & Pike, K.M. 1953b. A contribution to the Tertiary occurrence of the genus Dacrydium in the Australian region. Australian Journal of Botany 1: 474484.CrossRefGoogle Scholar
Cookson, I.C. & Pike, K.M. 1954. The fossil occurrence of Phyllocladus and two other podocarpaceous types in Australia. Australian Journal of Botany 2: 6068.CrossRefGoogle Scholar
Couper, R.A. 1960. Southern Hemisphere Mesozoic and Tertiary Podocarpaceae and Fagaceae and their palaeogeographic significance. Proceedings of the Royal Society of London B. 152: 491500.Google Scholar
Davies, B.J., O’Brien, I.E.W. & Murray, B.G. 1997. Karyotypes, chromosome bands and genome size variation in New Zealand endemic gymnosperms. Plant Systematics and Evolution 208: 169185.CrossRefGoogle Scholar
Dawson, J. & Lucas, R. 2013. New Zealand’s Native Trees. Nelson: Craig Potton Publishing.Google Scholar
De Laubenfels, D.J. 1969. A revision of the Malesian and Pacific rainforest conifers. I. Podocarpaceae, in part. Journal of the Arnold Arboretum 50: 274369.CrossRefGoogle Scholar
De Laubenfels, D.J. 1972. Gymnospermes. Pp 1167 in Aubréville, A. & Leroy, J.F. (eds.), Flore de la Nouvele-Calédonie et Dépendances. Paris: Museum National D’Histoire Naturelle, Laboratoire de Phanerogamie.Google Scholar
De Laubenfels, D.J. 1988. Coniferales. Pp 337453 in Van Steenis, C.G. & de Wilde, W.J. (eds.), Flora Malesiana: Series 1. Groningen: Noordhoff International Publishing.Google Scholar
Dettmann, M.E. 1989. Antarctic: Cretaceous Cradle of austral temperate rainforests? Pp 89105 in Crane, J.A. (ed.), Origins and Evolution of the Antarctic Biota. London: Geological Society of London.Google Scholar
Dettmann, M.E. 1994. Cretaceous vegetation: the microfossil record. Pp 143170 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Dettmann, M.E. & Jarzen, D.M. 1990. The Antarctic/Australasian rift valley: late Cretaceous cradle of northeastern Australasian relicts? Review of Palaeobotany and Palynology 65: 131144.CrossRefGoogle Scholar
Dettmann, M.E. & Jarzen, D.M. 1991. Pollen evidence or Late Cretaceous differentiation of Proteaceae in southern polar forests. Canadian Journal of Botany 69: 901906.CrossRefGoogle Scholar
Dettmann, M.E. & Thomson, M.R.A. 1987. Cretaceous palymorphs from the James Ross Island areas, Antarctica: a pilot study. British Antarctic Survey Bulletin 77: 1359.Google Scholar
Dettmann, M.E., Molnar, R.E., Douglas, J.G., et al. 1992. Australian Cretaceous terrestrial faunas and floras: biostratigraphical and biogeographic implications. Cretaceous Research 13: 207262.CrossRefGoogle Scholar
Di Pasquo, M. & Martin, J.E. 2013. Palyno assemblages associated with a theropod dinosaur from Snow Hill Island Formation (lower Maastrichtian) at the Naze, James Ross Island, Antarctica. Cretaceous Research 45: 135154.CrossRefGoogle Scholar
Doktor, M., Gazdzicki, A., Jerzmanska, A., Porebski, S.J. & Zastawniak, E. 1996. A plant-and-fish assemblage from the Eocene La Meseta Formation of Seymour Island (Antarctic Peninsula) and its environmental implications. Palaeontologia Polonica 55: 127146.Google Scholar
Dörken, V.M. & Parsons, R.F. 2016. Morpho-anatomical studies on the change in the foliage of two imbricate-leaved New Zealand podocarps: Dacrycarpus dacrydioides and Dacrydium cupressinum. Plant Systematics and Evolution 302: 4154.CrossRefGoogle Scholar
Douglas, J.G. 1994. Cretaceous vegetation: the macrofossil record. Pp 171188 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Duncan, R.P. 1993. Flood disturbance and the coexistence of species in a lowland podocarp forest, south Westland, New Zealand. Journal of Ecology 81: 403416.CrossRefGoogle Scholar
Elliot, M.B. 1998. Late Quaternary pollen records of vegetation and climate change from Kaitaia Bog, far northern New Zealand. Review of Palaeobotany and Palynology 99: 189202.CrossRefGoogle Scholar
Falaschi, P., Zamaloa, M.D.C., Caviglia, N. & Romero, E.J. 2012. Flora Gimnospérmica de la Formación Ñirihuau (Oligoceno Tardío-Mioceno Temprano), Provincia de Río Negro, Argentina. Ameghiniana 49(4): 525551.CrossRefGoogle Scholar
Ferre, M.Y., Rouane, M.L. & Woltz, M.P. 1977. Systematique et anatomie comparee des feulles de taxaceae, Podocarpaceae, Cupressaceae de Nouvelle-Calédonie. Cahier du Pacific 20: 241266.Google Scholar
FIVI (Forest Inventory and Planning Institute, Vietnam) 1996. Vietnam Forest Trees. Hanoi: Agricultural Publishing House.Google Scholar
Florin, R. 1940. The Tertiary conifers of southern Chile and their phytogeographical significance. Kungliga Svenska Vetenskapsakademiens Handlingar 19: 1107.Google Scholar
Fontes, D. & Dutra, T.L. 2010. Paleogene imbricate-leaved podocarps from King George Island (Antarctica): assessing the geological context and botanical affinities. Revista Brasileira de Paleontologia 13(3): 189204.CrossRefGoogle Scholar
Fountain, D.W., Holdsworth, J.M. & Outred, H.A. 1989. The dispersal unit of Dacrycarpus dacrydioides (A. Rich.) de Laubenfels (Podocarpaceae) and the significance of the fleshy receptacle. Botanical Journal of the Linnean Society 99(3): 197207.CrossRefGoogle Scholar
Gilmore, S. & Hill, K.D. 1997. Relationships of the Wollemi Pine (Wollemia nobilis) and a molecular phylogeny of the Araucariaceae. Telopea 7: 275291.CrossRefGoogle Scholar
Hair, J.B. & Beuzenberg, E.J. 1958. Chromosomal evolution in the Podocarpaceae. Nature 181: 15841586.CrossRefGoogle Scholar
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Hawkins, B.J. & Sweet, G.B. 1989. The growth of three podocarp species under different nutrient regimes. New Zealand Journal of Botany 27: 305310.CrossRefGoogle Scholar
Hill, R.S. 1994a. The history of selected Australian taxa. Pp 390420 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Hill, R.S. 1994b. Nothofagus smithtonensis (Nothofagaceae), a new macrofossil species from Oligocene sediments in northwest Tasmania, Australia, and its phylogenetic significance. Review of Palaeobotany and Palynology 80(1–2): 115121.CrossRefGoogle Scholar
Hill, R.S. 2004. Origins of the southeastern Australian vegetation. Philosophical Transactions of the Royal Society London B 359: 15371549.CrossRefGoogle ScholarPubMed
Hill, R.S. & Brodribb, T.J. 1999. Southern conifers in time and space. Australian Journal of Botany 47: 639696.CrossRefGoogle Scholar
Hill, R.S. & Carpenter, R. 1991a. Evolution of Acmopyle and Dacrycarpus (Podocarpaceae) foliage as inferred from macrofossils in south-eastern Australia. Australian Systematic Botany 4: 481–479.CrossRefGoogle Scholar
Hill, R.S. & Carpenter, R. 1991b. Extensive past distributions for major Gondwanic floral elements: macrofossil evidence. Papers and Proceedings of the Royal Society of Tasmania 125: 239247.CrossRefGoogle Scholar
Hill, R.S. & Macphail, M.K. 1985. A fossil flora from rafted Plio-Pleistocene mudstones at Regatta Point, western Tasmania. Australian Journal of Botany 33: 497517.CrossRefGoogle Scholar
Hill, R.S. & Macphail, M.K. 1994. Tertiary history and origins of the flora and vegetation. In Reid, J.B., Hill, R.S. & Brown, M.J. (eds.), Vegetation of Tasmania. Hobart: Government Printer.Google Scholar
Hill, R.S. & Pole, M. 1992. Leaf and shoot morphology of extant Afrocarpus, Nageia and Retrophyllum (Podocarpaceae) species and species with similar leaf arrangement from Tertiary sediments in Australasia. Australian Systematic Botany 5: 337358.CrossRefGoogle Scholar
Hill, R.S. & Scriven, L.J. 1995. The angiosperm-dominated woody vegetation of Antarctica: a review. Review of Palaeobotany and Palynology 86: 175198.CrossRefGoogle Scholar
Hill, R.S. & Whang, S.S. 2000. Dacrycarpus (Podocarpaceae) macrofossils from Miocene sediments at Elands, eastern Australia. Australian Systematic Botany 13(3): 395408.CrossRefGoogle Scholar
Johns, D.A. 2000. Analysis and Treatment of a Waterlogged Stern Cover (Z4653) from Doughboy Bay, Stewart Island, Z4653. Report to the Southland Museum and Art Gallery, Invercargill. Auckland: University of Auckland.Google Scholar
Jordan, G.J., Carpenter, R.J., Bannister, J.M., et al. 2011. High conifer diversity in Oligo-Miocene New Zealand. Australian Systematic Botany 24(2): 121136.CrossRefGoogle Scholar
Kale Sniderman, J.M., Pillans, B., O’Sullivan, P.B. & Kershaw, A.P., 2007. Climate and vegetation in southeastern Australia respond to Southern Hemisphere insolation forcing in the late Pliocene–early Pleistocene. Geology 35(1): 4144.CrossRefGoogle Scholar
Kelch, D.G. 1997. The phylogeny of the Podocarpaceae based on morphological evidence. Systematic Botany 22: 113131.CrossRefGoogle Scholar
Kelch, D.G. 1998. Phylogeny of Podocarpaceae: comparison of evidence from morphology and 18S rDNA. American Journal of Botany 85: 986996.CrossRefGoogle ScholarPubMed
Kershaw, A.P. 1985. An extended Late Quaternary vegetation record from north-east Queensland and its implications for the seasonal tropics of Australia. Journal of the Ecological Society of Australia 13: 179189.Google Scholar
Khan, A.M. 1976. Palynology of Tertiary sediments for Papua New Guinea. II. Gymnosperm pollen from Upper Tertiary sediments. Australian Journal of Botany 24: 783791.CrossRefGoogle Scholar
Knopf, P., Schulz, C., Little, D.P., Stützel, T. & Stevenson, D.W. 2012. Relationships within Podocarpaceae based on DNA sequence, anatomical, morphological, and biogeographical data. Cladistics 28: 271299.CrossRefGoogle ScholarPubMed
Little, D.P., Knopf, P. & Schulz, C. 2013. DNA barcode identification of Podocarpaceae: the second largest conifer family. PLoS One 8: e81008.CrossRefGoogle Scholar
Macphail, M.K., Alley, N. Truswell, E.M. & Sluiter, I.R.K. 1994. Early Tertiary vegetation: evidence from spores and pollen. Pp 189261 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Martin, H.A. 1978. Evolution of the Australian flora and vegetation through the Tertiary: evidence from pollen. Alcheringa 2: 181202.CrossRefGoogle Scholar
Martin, H.A. 1981. The Tertiary flora. Pp 391406 in Keast, A. (ed.), Ecological Biogeography of Australia. The Hague: W.Junk.CrossRefGoogle Scholar
Martin, H.A. 1994. Australian Tertiary phytogeography: evidence from palynology. Pp. 104142 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
McGlone, M.S. 1988. New Zealand. Pp 557602 in Huntley, B. & Webb, T. III (eds.), Vegetation History of New Zealand. Dordrecht: Kluwers.CrossRefGoogle Scholar
Mehra, P.N. & Khoshoo, T.N. 1956. Cytology of conifers I, II. Journal of Genetics 54: 165180, 181–185.CrossRefGoogle Scholar
Mill, R.R. 2003. Towards a biogeography of the Podocarpaceae. Pp 137147 in Mill, R.R. (ed.), Conifers for the Future? Proceedings of the Fourth International Conifer Conference. Wye: Acta Horticulturae.Google Scholar
Page, C.N., Collinson, M.E. & Van Konijnenburg-Van Cittert, J.H.A. 2014. Lygodium hians (Pteridophyta–Schizaeales): an endemic unusual ground-clothing member of a modern climbing fern genus in New Caledonia. Adansonia 36: 2643.CrossRefGoogle Scholar
Pole, M.S. 1992. Eocene vegetation from Hasties, north-east Tasmania. Australian Systematic Botany 5: 431475.CrossRefGoogle Scholar
Pole, M.S. 1993. Miocene broad-leaved Podocarpus from Foulden Hills, New Zealand. Alcheringa 17: 173177.CrossRefGoogle Scholar
Pole, M.S. 1997. Miocene conifers from the Manuherikia Group, New Zealand. Journal of the Royal Society of New Zealand 27: 355370.CrossRefGoogle Scholar
Pole, M.S. 2007. Early Eocene dispersed cuticles and mangrove to rainforest vegetation at Strahan-Regatte Point, Tasmania. Palaeontologica Electronica 10(3).Google Scholar
Quilty, P.G. 1994. The background: 144 million years of Australian palaeoclimate and palaeogeography. Pp 1443 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Quiroga, M.P., Mathiasen, P., Iglesias, A., Mill, R.R. & Premoli, A.C. 2016. Molecular and fossil evidence disentangle the biogeographical history of Podocarpus, a key genus in plant geography. Journal of Biogeography 43(2): 372383.CrossRefGoogle Scholar
Robertson, H.A. & Hackwell, K.R. 1995. Habitat preferences of birds in seral kahikatea Dacrycarpus dacrydioides (Podocarpaceae) forest of South Westland, New Zealand. Biological Conservation 71(3): 275280.CrossRefGoogle Scholar
Saulei, S.M. 1990. Forest research and development in Papua New Guinea. Ambio 19: 379382.Google Scholar
Sinclair, W.T., Mill, R.R., Gardner, M.F., et al. 2002. Evolutionary relationships of the New Caledonian heterotrophic conifer, Parasitaxus usta (Podocarpaceae), inferred from chloroplast trn LF intron/spacer and nuclear rDNA ITS2 sequences. Plant Systematics and Evolution 233: 79104.CrossRefGoogle Scholar
Sivak, J. 1975. Les characters de diagnose des grains de pollen a ballonets. Pollen et Spores 17: 349421.Google Scholar
Smith, A.C. 1979. Flora Vitiensis Nova: A New Flora of Fiji (Spermatophytes Only). Lawai, HI: Pacific Tropical Botanical Garden.CrossRefGoogle Scholar
Spect, R.L., Dettmann, M.E. & Jarzen, D.M. 1992. Community associations and structure in the Late Cretaceous vegetation of southeast Australasia and Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology 94: 283309.CrossRefGoogle Scholar
Sternberg, P. 1996. Simulation of the effects of shoot structure and orientation on vertical gradients in intercepted light by conifer canopies. Tree Physiology 16: 99108.CrossRefGoogle Scholar
Truswell, E.M. & Macphail, M.K. 2009. Polar forests on the edge of extinction: what does the fossil spore and pollen evidence from east Antarctica say? Australian Systematic Botany 22: 57106.CrossRefGoogle Scholar
Van Royen, P. 1979. The Alpine Flora of New Guinea. Amsterdam: J. Cramer.Google Scholar
Van Steenis, C.G.G.J. 1979. Plant geography of east Malesia. Botanical Journal of the Linnean Society 79: 97178.CrossRefGoogle Scholar
Wade, L.K. & McVean, D.N.L. 1969. Mt Wilhelm Studies. I. The Alpine and Subalpine Vegetation. Canberra: Australian National University Department of Biogeography and Geomorphology.Google Scholar
Wardle, P. 1974. The kahikatea (Dacrycarpus dacrydioides) forest of south Westland. Pp 6271 in Proceedings of the New Zealand Ecological Society. Invercargill: New Zealand Ecological Society.Google Scholar
Wells, P.M. & Hill, R.S 1989. Fossil imbricate-leaved Podocarpaceae from Tertiary sediments in Tasmania. Australian Systematic Botany 2: 387423.CrossRefGoogle Scholar
Wilf, P. 2012. Rainforest conifers of Eocene Patagonia: attached cones and foliage of the extant Southeast Asian and Australasian genus Dacrycarpus (Podocarpaceae). American Journal of Botany 99: 562584.CrossRefGoogle ScholarPubMed
Wilf, P., Johnson, K.R., Cuneo, N.R., et al. 2005. Eocene plant diversity at Laguna del Hunco and Rio Pichileufu, Patagonia, Argentina. American Naturalist 165: 634650.CrossRefGoogle ScholarPubMed
Wilf, P., Little, S.A., Iglesias, A., et al. 2009. Papuacedrus (Cupressaceae) in Eocene Patagonia, a new fossil link to Australasian rainforests. American Journal of Botany 96: 20312047.CrossRefGoogle ScholarPubMed
Zachos, J., Oaganini, M., Sloan, I., Thomas, E. & Billups, K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292: 686693.CrossRefGoogle ScholarPubMed
Zhou, Q.-Z. & Gu, Z.-J. 2001. Karyomorphology of Podocarpus s.l. in China and its systematic significance. Caryologia 54: 121127.Google Scholar

References

Adam, P. 1992. Australian Rainforests. Oxford: Clarendon Press.CrossRefGoogle Scholar
Carpenter, R.J., Hill, R.S. & Jordan, G.J. 1994. Cenozoic vegetation in Tasmania: macrofossil evidence. Pp 276298 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Christophel, D.C. & Greenwood, D.R. 1988. A comparison of Australian tropical rainforest and Tertiary fossil leaf beds. Proceedings of the Ecological Society of Australia 15: 139148.Google Scholar
Conran, J.G., Wood, G.A., Martin, P.G., et al. 2000. Generic relationships within and between the gymnosperm families Podocarpaceae and Phyllocladaceae based on an analysis of the chloroplast gene rbcL. Australian Journal of Botany 48: 715724.CrossRefGoogle Scholar
De Ferré, M.Y., Rouane, M.L. & Wolz, M.P. 1977. Systématique et anatomie comparée des feuilles de Taxaceae, Podocarpaceae, Cupressaceae de Nouvelle-Calédonie. Cahier du Pacific 20: 241266.Google Scholar
De Laubenfels, D.J. 1969. A revision of the Malesian and Pacific rainforest conifers. 1. Podocarpaceae, in part. Journal of the Arnold Arboretum 50: 274314.CrossRefGoogle Scholar
De Laubenfels, D.J. 1972. Gymnospermes. Pp 1167 in Aubréville, A. & Leroy, J.F. (eds.), Flore de la Nouvele-Calédonie et Dépendances. Paris: Museum National D’Histoire Naturelle, Laboratoire de Phanerogamie.Google Scholar
Farjon, A. 2010. A Handbook of the World’s Conifers. Leiden: Konninklijke Brill NV.CrossRefGoogle Scholar
Greenwood, D.R. 1987. Early Tertiary Podocarpaceae megafossils from the Eocene Anglesea locality, Victoria, Australia. Australian Journal of Botany 35: 111133.CrossRefGoogle Scholar
Hair, J.B. & Beuzenberg, E.J. 1958. Chromosomal evolution in the Podocarpaceae. Nature 181: 15841586.CrossRefGoogle Scholar
Hill, R.S., & Scriven, L.J. 1999. Falcatifolium (Podocarpaceae) macrofossils from Paleogene sediments in south-eastern Australia: a reassessment. Australian Systematic Botany 11: 711720.CrossRefGoogle Scholar
Kelch, D.G. 1997. The phylogeny of the Podocarpaceae based on morphological evidence. Systematic Botany 22: 113131.CrossRefGoogle Scholar
Kelch, D.G. 1998. Phylogeny of Podocarpaceae: a comparison of evidence from morphology and 18S rDNA. American Journal of Botany 85: 986996.CrossRefGoogle ScholarPubMed
Knopf, P., Schulz, C., Little, D.P., Stützel, T. & Stevenson, D.W. 2012. Relationships within Podocarpaceae based on DNA sequence, anatomical, morphological, and biogeographical data. Cladistics 28: 271299.CrossRefGoogle ScholarPubMed
Little, D.P., Knopf, P. & Schulz, C. 2013. DNA barcode identification of Podocarpaceae: the second largest conifer family. PLoS One 8: e81008.CrossRefGoogle Scholar
Mill, R.R. 2003. Towards a biogeography of the Podocarpaceae. Pp 137147 in Mill, R.R. (ed.), Conifers for the Future? Proceedings of the Fourth International Conifer Conference. Wye: Acta Horticulturae.Google Scholar
Quinn, C.J., Price, R.A. & Gadek, P.A. 2002. Familial concepts and relationships in the conifers based on rbcL and matK sequence comparisons. Kew Bulletin 57: 513531.CrossRefGoogle Scholar
Quiroga, M.P., Mathiasen, P., Iglesias, A., Mill, R.R. & Premoli, A.C. 2016. Molecular and fossil evidence disentangle the biogeographical history of Podocarpus, a key genus in plant geography. Journal of Biogeography 43(2): 372383.CrossRefGoogle Scholar
Sinclair, W.T., Mill, R.R., Gardner, M.F., et al. 2002. Evolutionary relationships of the New Caledonian heterotrophic conifer, Parasitaxus usta (Podocarpaceae), inferred from chloroplast trn LF intron/spacer and nuclear rDNA ITS2 sequences. Plant Systematics and Evolution 233: 79104.CrossRefGoogle Scholar
Truswell, E.M. 1990. Cretaceous and Tertiary vegetation of Antarctica: a palynological perspective. Pp 7188 in Taylor, T.N. & Taylor, E.L. (eds.), Antarctic Palaeobiology. New York: Springer.CrossRefGoogle Scholar
Van Steenis, C.G.G.J. 1979. Plant geography of east Malesia. Botanical Journal of the Linnean Society 79: 97178.CrossRefGoogle Scholar
Whitmore, T.C. 1984. Tropical Rainforest of the Far East, 2nd edn. Oxford: Clarendon Press.Google Scholar
Zastawniak, E. 1981. Tertiary leaf flora from the Point Henniquin Group of King George Island (South Shetland Islands), Antarctica. Preliminary report. Geologica Sudetica (Polska) 72: 97108.Google Scholar

References

Brodribb, T. & Hill, R.S. 1998. The photosynthetic drought physiology of a diverse group of Southern Hemisphere conifer species is correlated with minimum seasonal rainfall. Functional Ecology 12: 465471.CrossRefGoogle Scholar
Brodribb, T. & Hill, R.S. 2004. The rise and fall of the Podocarpaceae in Australia: a physiological explanation. Pp 381399 in Hemsley, A.R. & Poole, I. (eds.), The Evolution of Plant Physiology: From Whole Plants to Ecosystems. London: Academic Press.CrossRefGoogle Scholar
Carter, G.A. & Smith, W.K. 1985. Influence of shoot structure on light interception and photosynthesis in conifers. Plant Physiology 79: 10381043.CrossRefGoogle ScholarPubMed
Compton, R.H. 1922. A systematic account of the plants collected in New Caledonia and Isle of Pines. Part II. Botanical Journal of the Linnean Society 45: 421434.CrossRefGoogle Scholar
Conran, J.G., Wood, G.A., Martin, P.G., et al. 2000. Generic relationships within and between the gymnosperm families Podocarpaceae and Phyllocladaceae based on an analysis of the chloroplast gene rbcL. Australian Journal of Botany 48: 715724.CrossRefGoogle Scholar
Cookson, I.C. & Pike, K.M. 1954. The fossil occurrence of Phyllocladus and two other podocarpaceous types in Australia. Australian Journal of Botany 2: 6067.CrossRefGoogle Scholar
Couper, R.A. 1960. Southern Hemisphere Mesozoic and Tertiary Podocarpaceae and Fagaceae and their palaeogeographic significance. Proceedings of the Royal Society of London B 152: 491500.Google Scholar
De Ferré, M.Y., Rouane, M.I. & Wolz, M.P. 1977. Systematique et anatomie compares des feulles de Taxaceae, Podocarpaceae et Cupressaceae de Nouvele-Caledonie. Cahier du Pacific 20: 241266.Google Scholar
Florin, R. 1940. The Tertiary conifers of southern Chile and their phytogeographical significance. Kungliga Svenska Vetenskapsakademiens Handlingar 19(2): 1107.Google Scholar
Hair, J.B. 1966. Biosystematics of the New Zealand flora, 1945–1964. New Zealand Journal of Botany 4: 559595.CrossRefGoogle Scholar
Hair, J.B. & Beuzenberg, E.J. 1958. Chromosomal evolution in the Podocarpaceae. Nature 181: 15841586.CrossRefGoogle Scholar
Hill, R.S. 1991. Tertiary Nothofagus (Fagaceae) macrofossils from Tasmania and Antarctica and their bearing on the evolution of the genus. Botanical Journal of the Linnean Society 105: 73112.CrossRefGoogle Scholar
Hill, R.S. 1994. The history of selected Australian taxa. Pp 390419 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Hill, R.S. & Brodribb, T.J. 2003. The evolution of Australia’s living biota. Pp 1333 in Attiwill, P. & Wilson, B. (eds.), Ecology: An Australian Perspective. Melbourne: Oxford University Press.Google Scholar
Hill, R.S. & Carpenter, R. 1991a. Evolution of Acmopyle and Dacrycarpus (Podocarpaceae) foliage as inferred from macrofossils in south-eastern Australia. Australian Systematic Botany 4: 481–479.CrossRefGoogle Scholar
Hill, R.S. & Carpenter, R. 1991b Extensive past distributions for major Gondwanic floral elements: macrofossil evidence. Papers and Proceedings of the Royal Society of Tasmania 125: 239247.CrossRefGoogle Scholar
Hill, R.S. & Pole, M. 1992. Leaf and shoot morphology of extant Afrocarpus, Nageia and Retrophyllum (Podocarpaceae) species and species with similar leaf arrangement from Tertiary sediments in Australasia. Australian Systematic Botany 5: 337358.CrossRefGoogle Scholar
Hill, R.S. & Scriven, L.J. 1995. The angiosperm-dominated woody vegetation of Antarctica: a review. Review of Palaeobotany and Palynology 86: 175198.CrossRefGoogle Scholar
Kelch, D.G. 1997. The phylogeny of the Podocarpaceae based on morphological evidence. Systematic Botany 22: 113131.CrossRefGoogle Scholar
Kelch, D.G. 1998. Phylogeny of Podocarpaceae: a comparison of evidence from morphology and 18S rDNA. American Journal of Botany 85: 986996.CrossRefGoogle ScholarPubMed
Kemp, E.M. & Harris, W.K. 1975. The vegetation of tertiary islands on the Ninetyeast Ridge. Nature 258: 303307.CrossRefGoogle Scholar
Knopf, P., Schulz, C., Little, D.P., Stützel, T. & Stevenson, D.W. 2012. Relationships within Podocarpaceae based on DNA sequence, anatomical, morphological, and biogeographical data. Cladistics 28: 271299.CrossRefGoogle Scholar
Kröenke, L. 1996. Plate tectonic development of the western and southwestern Pacific: Mesozoic to the present. Pp 1934 in Keast, A. & Miller, S.E. (eds.), The Origin and Evolution of Pacific Island Biotas, New Guinea to Eastern Polynesia: Patterns and Processes. Amsterdam: SPB Academic Publishing.Google Scholar
Little, D.P., Knopf, P. & Schulz, C. 2013. DNA barcode identification of Podocarpaceae: the second largest conifer family. PLoS One 8: e81008.CrossRefGoogle ScholarPubMed
Luyendyk, R.P. 1995. Hypothesis for continuous rifting of east Gondwanaland caused by subducted slab capture. Geology 23: 373376.2.3.CO;2>CrossRefGoogle Scholar
Macphail, M.K., Alley, N. Truswell, E.M. & Sluiter, I.R.K. 1994. Early Tertiary vegetation: evidence from spores and pollen. Pp 189261 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Mehra, P.N. & Khoshoo, T.N. 1956. Cytology of conifers I, II. Journal of Genetics 54: 165180, 181–185.CrossRefGoogle Scholar
Mill, R.R. 2003. Towards a biogeography of the Podocarpaceae. Pp 137147 in Mill, R.R. (ed.), Conifers for the Future? Proceedings of the Fourth International Conifer Conference. Wye: Acta Horticulturae.Google Scholar
Mortimer, N., Campbell, H.J., Tulloch, A.J., et al. 2017. Zealandia: Earth’s hidden continent. GSA Today 27: 2735.CrossRefGoogle Scholar
Parham, J.W. 1972. Plants of the Fiji Islands, revised edn. Suva: Government Printer.Google Scholar
Pole, M. 1992. Early Miocene flora of the Manuherikia Group, New Zealand. 2. Conifers. Journal of the Royal Society of New Zealand 22: 287302.CrossRefGoogle Scholar
Pole, M. 1997. Miocene conifers from the Manuherikia Group, New Zealand. Journal of the Royal Society of New Zealand 27: 355370.CrossRefGoogle Scholar
Pole, M. 2007. Early Eocene dispersed cuticles and mangrove to rainforest vegetation at Strahan-Regatte Point, Tasmania. Palaeontologica Electronica 10(3).Google Scholar
Quilty, P.G. 1994, The background: 144 million years of Australian palaeoclimate and palaeogeography. Pp 1443 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Quiroga, M.P., Mathiasen, P., Iglesias, A., Mill, R.R. & Premoli, A.C. 2016. Molecular and fossil evidence disentangle the biogeographical history of Podocarpus, a key genus in plant geography. Journal of Biogeography 43(2): 372383.CrossRefGoogle Scholar
Sanhi, B. 1921. On the structure and affinities of Acmopyle pancheri Pilger. Transactions of the Royal Society of London B 210: 253310.Google Scholar
Sinclair, W.T., Mill, R.R., Gardner, M.F., et al. 2002. Evolutionary relationships of the New Caledonian heterotrophic conifer, Parasitaxus usta (Podocarpaceae), inferred from chloroplast trn LF intron/spacer and nuclear rDNA ITS2 sequences. Plant Systematics and Evolution 233: 79104.CrossRefGoogle Scholar
Sivak, J. 1975. Les characters de diagnose des grains de pollen a ballonets. Pollen et Spores 17: 349421.Google Scholar
Smith, A.C. 1979. Flora Vitiensis Nova: A New Flora of Fiji. Kauai, HI: Lawaii, Pacific Tropical Botanical Garden.Google Scholar
Sternberg, P. 1996. Simulation of the effects of shoot structure and orientation on vertical gradients in intercepted light by conifer canopies. Tree Physiology 16: 99108.CrossRefGoogle Scholar
Taylor, G., Truswell, E.M., McQueen, K.G. & Brown, M.C. 1990. Early Tertiary palaeogeography, landform evolution and palaeoclimates of the Southern Monaro, NSW, Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 78: 109134.CrossRefGoogle Scholar
Wells, P.M. & Hill, R.S. 1989. Leaf morphology of the imbricate-leaved Podocarpaceae. Australian Systematic Botany 2: 369386.CrossRefGoogle Scholar

References

Bastow Wilson, J., Lee, W.G. & Mark, A.F., 1990. Species diversity in relation to ultramafic substrate and to altitude in southwestern New Zealand. Vegetatio 86: 1520.CrossRefGoogle Scholar
Billington, H.L. 1991. Effects of population size on genetic variation in a dioecious conifer. Conservation Biology 51: 115119.CrossRefGoogle Scholar
Calder, I.W. & Wardle, P. 1969. Succession in subalpine vegetation at Arthur’s Pass, New Zealand. Proceedings of the New Zealand Ecological Society 16: 3647.Google Scholar
Conran, J.G., Wood, G.A., Martin, P.G., et al. 2000. Generic relationships within and between the gymnosperm families Podocarpaceae and Phyllocladaceae based on an analysis of the chloroplast gene rbcL. Australian Journal of Botany 48: 715724.CrossRefGoogle Scholar
Couper, R.A. 1953. Upper Mesozoic and Cainozoic spores and pollen grains from New Zealand. New Zealand Geological Survey Paleontological Survey Paleontological Bulletin 22.Google Scholar
Couper, R.A. 1960. Southern Hemisphere Mesozoic and Tertiary Podocarpaceae and Fagaceae and their palaeogeographic significance. Proceedings of the Royal Society of London B 152: 491500.Google Scholar
Davies, B.J., O’Brien, I.E.W. & Murray, B.G. 1997. Karyotypes, chromosome bands and genome size variation in New Zealand endemic gymnosperms. Plant Systematics and Evolution 208: 169185.CrossRefGoogle Scholar
Dawson, J. & Lucas, R. 2013. New Zealand’s Native Trees. Nelson: Craig Potton Publishing.Google Scholar
Dettmann, M.E. & Jarzen, D.M. 1990. The Antarctic/Australasian rift valley: late Cretaceous cradle of northeastern Australasian relicts? Review of Palaeobotany and Palynology 65: 131144.CrossRefGoogle Scholar
Druitt, D.G., Enright, N.J. & Ogden, J. 1990. Altitudinal zonation in the mountain forests of Mt. Hauhungatahi, North Island, New Zealand. Journal of Biogeography 17: 205220.CrossRefGoogle Scholar
Fleming, C.A. 1963. Age of the New Zealand biota. Proceedings of the New Zealand Ecological Society 10.Google Scholar
Hair, J.B. 1963. Cytogeographical relationships of the southern podocarps. Pp 401414 in Gressitt, J.L. (ed.), Pacific Basin Biogeography. Honolulu, HI: Bishop Museum Press.Google Scholar
Hair, J.B. & Beuzenberg, E.J. 1958. Chromosomal evolution in the Podocarpaceae. Nature 181: 15841586.CrossRefGoogle Scholar
Hill, R.S. 1994. The history of selected Australian taxa. Pp 390419 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Jordan, G.J., Carpenter, R.J., Bannister, J.M., et al. 2011. High conifer diversity in Oligo-Miocene New Zealand. Australian Systematic Botany 24(2): 121136.CrossRefGoogle Scholar
Knopf, P., Schulz, C., Little, D.P., Stützel, T. & Stevenson, D.W. 2012. Relationships within Podocarpaceae based on DNA sequence, anatomical, morphological, and biogeographical data. Cladistics 28: 271299.CrossRefGoogle Scholar
Macphail, M.K., Alley, N., Truswell, E.M. & Sluiter, I.R.K. 1994. Early Tertiary vegetation: evidence from spores and pollen. Pp 189261 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Markham, K., Webby, R.F., Molloy, B.P.J. & Vilain, C. 1989. Support from flavenoid glycoside distribution for the division of Dacrydium sensu lato. New Zealand Journal of Botany 27: 111.CrossRefGoogle Scholar
McGlone, M.S., Neall, V.C. & Clarkson, B.D. 1988. The effect of recent eruptions and climatic changes on the vegetation of Mt Egmont (Mt. Taranaki), New Zealand. New Zealand Journal of Botany 26: 123144.CrossRefGoogle Scholar
Mehra, P.N. & Khoshoo, T.N. 1956. Cytology of conifers I, II. Journal of Genetics 54: 165180, 181–185.CrossRefGoogle Scholar
Ogden, J. 1985. An introduction to plant demography with special reference to New Zealand trees. New Zealand Journal of Botany 23: 751772.CrossRefGoogle Scholar
Ogden, J., Fordham, R.A., Pilkington, S. & Serra, R.G. 1991. Forest gap formation and closure along an altitudinal gradient in Tongariro National park, New Zealand. Journal of Vegetation Science 2: 165172.CrossRefGoogle Scholar
Ogden, J., Horrocks, M., Palmer, J.G. & Fordham, R.A. 1997. Structure and composition of the sub-alpine forest on Mount Hauhungatahi, North Island, New Zealand, during the Holocene. Holocene 7: 1323.CrossRefGoogle Scholar
Quinn, C.J. 1970. Generic boundaries in the Podocarpaceae. Proceedings of the Linnean Society of New South Wales 94: 166172.Google Scholar
Quinn, C.J. 1982. Taxonomy of Dacrydium Sol. Ex Lamb. Emend De Laub. (Podocarpaceae). Australian Journal of Botany 30: 311320.CrossRefGoogle Scholar
Sinclair, W.T., Mill, R.R., Gardner, M.F., et al. 2002. Evolutionary relationships of the New Caledonian heterotrophic conifer, Parasitaxus usta (Podocarpaceae), inferred from chloroplast trn LF intron/spacer and nuclear rDNA ITS2 sequences. Plant Systematics and Evolution 233: 79104.CrossRefGoogle Scholar
Smale, M.C., Burns, B.R., Smale, P.N. & Whatley, P.T. 1997. Dynamics of upland podocarp/broadleaved forest on Mamaku Plateau, central North Island, New Zealand. Journal of the Royal Society of New Zealand 27: 513532.CrossRefGoogle Scholar
Sparks, R.J., Melhuish, W.H., Mckee, J.W.A., et al. 1995. 14C calibration in the Southern Hemisphere and the date of the last Taupo eruption: evidence from tree-ring sequences. Radiocarbon 37: 155163.CrossRefGoogle Scholar
Thorsen, M.J., Dickinson, K.J.M. & Seddon, P.J. 2009. Seed dispersal systems in the New Zealand flora. Perspectives in Plant Ecology, Evolution and Systematics 11: 285309.CrossRefGoogle Scholar
Tomlinson, P.B. 1994. Functional morphology of saccate pollen in conifers with special reference to Podocarpaceae. International Journal of Plant Sciences 155: 699715 .CrossRefGoogle Scholar
Wardle, P. 1991. The Vegetation of New Zealand. Cambridge: Cambridge University Press.Google Scholar

References

Adam, P. 1992. Australian Rainforests. Oxford: Clarendon Press.CrossRefGoogle Scholar
Archangelsky, S. & Romero, E. 1974. Pollen de Gimnospermos (Coniferas) del Cretacico superior y Paleocento de Patagonia. Ameghiniana 11: 217236.Google Scholar
Auer, V., Salmi, M. & Salminen, K. 1955. Pollen and spore types of Fuego-Patagonia. Annaes Academie Science Fennica A 3: 114.Google Scholar
Boland, D.J., Brooker, M.I.H., Chippendale, G.M., et al. 1984. Forest Trees of Australia. Melbourne: CSIRO.Google Scholar
Bowler, J.M. 1982. Aridity on the Late Tertiary and Quaternary of Australia. Pp 3545 in Barker, W.R. & Greenslade, P.J.M. (eds.), Evolution of the Flora and Fauna of Arid Australia. Adelaide: Peacock Press.Google Scholar
Brodribb, T. & Hill, R.S. 1998. The photosynthetic drought physiology of a diverse group of southern hemisphere conifer species is correlated with minimum seasonal rainfall. Functional Ecology 12: 465471.CrossRefGoogle Scholar
Brodribb, T.J. & Hill, R.S. 2003. The rise and fall of the Podocarpaceae in Australia: a physiological explanation. Pp 381399 in Hemsley, A. & Poole, I. (eds.), Evolution of Plant Physiology. London: Academic Press.Google Scholar
Cantrill, D.J. & Poole, I. 2012. The Vegetation of Antarctica through Geological Time. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Cantrill, D.J., Wanntorp, L. & Drinnan, A.N. 2011. Mesofossil flora from the Late Cretaceous of New Zealand. Cretaceous Research 32: 164173.CrossRefGoogle Scholar
Carpenter, R.J. 1991. Palaeovegetation and environment at Cethana, Tasmania. Doctoral dissertation, University of Tasmania.Google Scholar
Carpenter, R.J., Hill, R.S. & Jordan, G.J. 1994. Cenozoic vegetation in Tasmania: macrofossil evidence. Pp 276298 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Conran, J.G., Wood, G.A., Martin, P.G., et al. 2000. Generic relationships within and between the gymnosperm families Podocarpaceae and Phyllocladaceae based on an analysis of the chloroplast gene rbcL. Australian Journal of Botany 48: 715724.CrossRefGoogle Scholar
Cook, E.R., Bird, T., Peterson, M., et al. 1992. Climatic change over the last millennium in Tasmania reconstructed from tree rings. The Holocene 2(3): 205217.CrossRefGoogle Scholar
Cookson, I.C. 1947. Plant microfossils from the lignites of Kerguelen Archipelago. Report of the British, Australian and New Zealand Antarctic Expedition A 2: 127142.Google Scholar
Cookson, I.C. 1953. The identification of the sporomorph Phyllocladites with Dacrydium and its distribution in southern Tertiary deposits. Australian Journal of Botany 1: 6470.CrossRefGoogle Scholar
Couper, R.A. 1953. Upper Mesozoic and Cainozoic spores and pollen grains from New Zealand. New Zealand Geological Survey Paleontological Survey Paleontological Bulletin 22.Google Scholar
Couper, R.A. 1960. Southern Hemisphere Mesozoic and Tertiary Podocarpaceae and Fagaceae and their palaeogeographic significance. Proceedings of the Royal Society of London B 152: 491500.Google Scholar
Dettmann, M.E. 1981. The Cretaceous flora. Pp 355375 in Keast, A. (ed.), Ecological Biogeography of Australia. The Hague: W.Junk.CrossRefGoogle Scholar
Dettmann, M.E. 1989. Antarctic: Cretaceous Cradle of austral temperate rainforests? Pp 89105 in Crane, J.A. (ed.), Origins and Evolution of the Antarctic Biota. London: Geological Society of London.Google Scholar
Dettmann, M.E. 1994. Cretaceous vegetation: the microfossil record. Pp 143170 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Dettmann, M.E. & Jarzen, D.M. 1990. The Antarctic/Australasian rift valley: late Cretaceous cradle of northeastern Australasian relicts? Review of Palaeobotany and Palynology 65: 131144.CrossRefGoogle Scholar
Dettmann, M.E. & Jarzen, D.M. 1991. Pollen evidence or Late Cretaceous differentiation of Proteaceae in southern polar forests. Canadian Journal of Botany 69: 901906.CrossRefGoogle Scholar
Dettmann, M.E. & Playford, G. 1969. Palynology of the Australian Cretaceous: a review. Pp 174210 in Campbell, K.S.W. (ed.), Stratigraphy and Palaeontology: Essays in Honour of Dorothy Hill. Canberra: Australian National University Press.Google Scholar
Dettmann, M.E. & Thomson, M.R.A. 1987. Cretaceous palymorphs from the James Ross Island areas, Antarctica: a pilot study. British Antarctic Survey Bulletin 77: 1359.Google Scholar
Di Pasquo, M. & Martin, J.E. 2013. Palyno assemblages associated with a theropod dinosaur from Snow Hill Island Formation (lower Maastrichtian) at the Naze, James Ross Island, Antarctica. Cretaceous Research 45: 135154.CrossRefGoogle Scholar
Douglas, J.G. 1994. Cretaceous vegetation: the macrofossil record. Pp 171188 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Fleming, C.A. 1963. Age of the New Zealand biota. Proceedings of the New Zealand Ecological Society 10.Google Scholar
Florin, R. 1940. The Tertiary conifers of South Chile and their phyto-geographical significance. Kunglinga Svenska Vetenskapsakademiens Handlingar 19: 1107.Google Scholar
Gibson, N. 1986. Conservation and management of Huon Pine in Tasmania. Papers and Proceedings of the Royal Society of Tasmania 121: 3542.CrossRefGoogle Scholar
Gibson, N. 1988. A description of the Huon Pine (Lagarostrobos franklinii (Hook. f.) CJ Quinn) forests of the Prince of Wales and King Billy Ranges. Papers and Proceedings of the Royal Society of Tasmania 122(2): 127133.CrossRefGoogle Scholar
Gibson, N. & Brown, M.J. 1991. The ecology of Lagarostrobos franklinii (Hook. f.) Quinn (Podocarpaceae) in Tasmania. 2. Population structure and spatial pattern. Australian Journal of Ecology 16: 223229.CrossRefGoogle Scholar
Gibson, N., Davies, J. & Brown, M.J. 1991. The ecology of Lagarostrobos franklinii (Hook. f.) Quinn (Podocarpaceae) in Tasmania. 1. Distribution, floristics and environmental correlates. Australian Journal of Ecology 16: 215222.CrossRefGoogle Scholar
Hair, J.B. 1963. Cytogeographical relationships of the southern podocarps. Pp 401414 in Gressitt, J.L. (ed.), Pacific Basin Biogeography. Honolulu, HI: Bishop Museum Press.Google Scholar
Hair, J.B. & Beuzenberg, E.J. 1958. Chromosomal evolution in the Podocarpaceae. Nature 181: 15841586.CrossRefGoogle Scholar
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Hill, R.S. 1994. The history of selected Australian taxa. Pp 390420 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Hill, R.S. 2004. Origins of the southeastern Australian vegetation. Philosophical Transactions of the Royal Society London B 359: 15371549.CrossRefGoogle ScholarPubMed
Hill, R.S. & Brodribb, T.J. 1999. Southern conifers in time and space. Australian Journal of Botany 47: 639696.CrossRefGoogle Scholar
Hill, R.S. & Carpenter, R.J. 1991 Extensive past distributions for major Gondwanic floral elements: macrofossil evidence. Papers and Proceedings of the Royal Society of Tasmania 125: 239247.CrossRefGoogle Scholar
Hill, R.S. & Macphail, M.K. 1983. Reconstruction of the Oligocene vegetation at Pioneer, north-east Tasmania. Alcheringa 7: 281299.CrossRefGoogle Scholar
Hill, R.S. & Macphail, M.K. 1985. A fossil flora from rafted Plio-Pleistocene mudstones at Regatta Point, western Tasmania. Australian Journal of Botany 33: 497517.CrossRefGoogle Scholar
Hill, R.S. & Macphail, M.K. 1994. Tertiary history and origins of the flora and vegetation. In Reid, J.B., Hill, R.S. & Brown, M.J. (eds.), Vegetation of Tasmania. Hobart: Government Printer.Google Scholar
Hill, R.S. & Scriven, L.J. 1995. The angiosperm-dominated woody vegetation of Antarctica: a review. Review of Palaeobotany and Palynology 86: 175198.CrossRefGoogle Scholar
Hill, R., Truswell, E.M., McLoughlin, S. & Dettmann, M. 1999. The Evolution of the Australian Flora: Fossil Evidence. Melbourne: CSIRO.Google Scholar
Hope, G.S. 1994. Quaternary vegetation Pp 368389 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Jarman, S.J. & Kantvilas, G. 1995. A Floristic Study of Rainforest Bryophytes and Lichens in Tasmania’s Myrtle–Beech Alliance. Hobart: Forestry Tasmania.Google Scholar
Jordan, G.J., Carpenter, R.J. & Hill, R.S. 1991. Late Pleistocene vegetation and climate near Melaleuca Inlet, south-western Tasmania. Australian Journal of Botany 39(4): 315333.CrossRefGoogle Scholar
Kelch, D.G. 1997. The phylogeny of the Podocarpaceae based on morphological evidence. Systematic Botany 22: 113131.CrossRefGoogle Scholar
Kelch, D.G. 1998. Phylogeny of Podocarpaceae: comparison of evidence from morphology and 18S rDNA. American Journal of Botany 85: 986996.CrossRefGoogle ScholarPubMed
Kemp, E.M. 1978. Tertiary climatic evolution and vegetation history in the southeast Indian Ocean region. Palaeogeography, Palaeoclimatology, Palaeoecology 24: 169208.CrossRefGoogle Scholar
Kerr, G. & McDermot, H. 2000. The Huon Pine Story. Victoria: Mainsail Books.Google Scholar
Kershaw, A.P., Martin, H.A. & Mason, J.M. 1994. The Neogene: a period of transition. P 299 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Little, D.P., Knopf, P. & Schulz, C. 2013. DNA barcode identification of Podocarpaceae: the second largest conifer family. PLoS One 8: e81008.CrossRefGoogle ScholarPubMed
Lusk, C. 1996. Gradient analysis and disturbance history of temperate rainforests of the coastal range summit plateau, Valdivia, Chile. Revista Chilena de Historia Natural 69: 401411.Google Scholar
Macphail, M.K., Hill, K., Partridge, A.D., Trusswell, E.M. & Foster, C. 1995. ‘Wollemi pine’: old pollen records for a newly discovered genus of gymnosperms. Geology Today 11: 4850.Google Scholar
Markham, K., Webby, R.F., Molloy, B.P.J. & Vilain, C. 1989. Support from flavenoid glycoside distribution for the division of Dacrydium sensu lato. New Zealand Journal of Botany 27: 111.CrossRefGoogle Scholar
Martin, H.A. 1994. Australian Tertiary phytogeography: evidence from palynology. Pp 104142 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Molloy, B.J.P. 1995. Manoao (Podocarpaceae), a new monotypic conifer genus endemic to New Zealand. New Zealand Journal of Botany 33: 183201.CrossRefGoogle Scholar
Ogden, J. 2006. On the dendrological potential of Australian trees. Austral Ecology 3: 339356.CrossRefGoogle Scholar
Page, C.N., Collinson, M.E. & Van Konijnenburg-Van Cittert, J.H.A. 2014. Lygodium hians (Pteridophyta-Schizaeales): an endemic unusual ground-clothing member of a modern climbing fern genus in New Caledonia. Adansonia 36: 2643.CrossRefGoogle Scholar
Palmer, J.G. & Xiong, L. 2004. New Zealand climate over the last 500 years reconstructed from Libocedrus bidwillii Hook f, tree-ring chronologies. Holocene 14: 282289.CrossRefGoogle Scholar
Patel, R.N. 1967. Wood anatomy of Podocarpaceae indigenous to New Zealand. 2. Podocarpus. New Zealand Journal of Botany 5: 307321.CrossRefGoogle Scholar
Pocknall, D.T. 1981. Pollen morphology of the New Zealand species of Dacrydium Solander, Podocarpus L’Heritier, and Dacrycarpus Endlicher (Podocarpaceae). New Zealand Journal of Botany 19: 6795.CrossRefGoogle Scholar
Quinn, C.S. 1982. Taxonomy of Dacrydium Sol. Ex Lamb. (Podocarpaceae). Australian Journal of Botany 30: 311320.CrossRefGoogle Scholar
Read, J. & Hill, R.S. 1988. The dynamics of some rainforest associations in Tasmania. Journal of Ecology 76: 558584.CrossRefGoogle Scholar
Shapcott, A.J. 1991. Dispersal and establishment of Huon pine (Lagarostrobos franklinii) (Podocarpaceae). Australian Journal of Botany 30: 311320.Google Scholar
Shapcott, A. 1997. Population genetics of the long-lived Huon pine Lagarostrobos franklinii: an endemic Tasmanian temperate rainforest tree. Biological Conservation 80(2): 169179.CrossRefGoogle Scholar
Shapcott, A., Brown, M.J., Kirkpatrick, J.B. & Reid, J.B. 1995. Stand structure, reproductive activity and sex expression in Huon pine (Lagarostrobos franklinii (Hook L.) Quinn.). Journal of Biogeography 22: 10351045.CrossRefGoogle Scholar
Sinclair, W.T., Mill, R.R., Gardner, M.F., et al. 2002. Evolutionary relationships of the New Caledonian heterotrophic conifer, Parasitaxus usta (Podocarpaceae), inferred from chloroplast trn LF intron/spacer and nuclear rDNA ITS2 sequences. Plant Systematics and Evolution 233: 79104.CrossRefGoogle Scholar
Sluiter, I.R. & Kershaw, A.P. 1982. The nature of the Late Tertiary vegetation in Australia. Alcheringa 6: 211222.CrossRefGoogle Scholar
Stove, L.E. & Partridge, A.D. 1973. Tertiary and Late Cretaceous spores and pollen from the Gippsland Basin, southeastern Australia. Proceedings of the Royal Society of Victoria 85: 237286.Google Scholar
Truswell, E.M. 1990. Cretaceous and Tertiary vegetation of Antarctica: a palynological perspective. Pp 7188 in Taylor, T.N. & Taylor, E.L. (eds.), Antarctic Palaeobiology. New York: Springer.CrossRefGoogle Scholar
Veblen, T.T. & Ashton, D.H. 1982. The regeneration status of Fitzroya cupressoides in the Cordillera Pellada, Chile. Biological Conservation 23: 141161.CrossRefGoogle Scholar
Wells, P.M. & Hill, R.S. 1989a. Leaf morphology of the imbricate-leaved Podocarpaceae. Australian Systematic Botany 2: 369386.CrossRefGoogle Scholar
Wells, P.M. & Hill, R.S. 1989b. Fossil imbricate-leaved Podocarpaceae from Tertiary sediments in Tasmania. Australian Systematic Botany 2(4): 387423.CrossRefGoogle Scholar
Zachos, J., Oaganini, M., Sloan, I., Thomas, E. & Billups, K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292: 686693.CrossRefGoogle Scholar

References

Conran, J.G., Wood, G.A., Martin, P.G., et al. 2000. Generic relationships within and between the gymnosperm families Podocarpaceae and Phyllocladaceae based on an analysis of the chloroplast gene rbcL. Australian Journal of Botany 48: 715724.CrossRefGoogle Scholar
Davies, B.J., O’Brien, I.E.W. & Murray, B.G. 1997. Karyotypes, chromosome bands and genome size variation in New Zealand endemic gymnosperms. Plant Systematics and Evolution 208: 169185.CrossRefGoogle Scholar
Dawson, J. & Lucas, R. 2013. New Zealand’s Native Trees. Nelson: Craig Potton Publishing.Google Scholar
Dunwiddie, P. 1979. Dendrochronological studies in indigenous New Zealand trees. New Zealand Journal of Botany 17: 251266.CrossRefGoogle Scholar
Ferguson, D.K. 1967. On the phytogeography of Coniferales in the European Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology, 33: 73110.CrossRefGoogle Scholar
Hair, J.B. 1963. Cytogeographical relationships of the southern podocarps. Pp 401414 in Gressitt, J.L. (ed.), Pacific Basin Biogeography. Honolulu, HI: Bishop Museum Press.Google Scholar
Hair, J.B. & Beuzenberg, E.J. 1958. Chromosomal evolution in the Podocarpaceae. Nature 181: 15841586.CrossRefGoogle Scholar
Knopf, P., Schulz, C., Little, D.P., Stützel, T. & Stevenson, D.W. 2012. Relationships within Podocarpaceae based on DNA sequence, anatomical, morphological, and biogeographical data. Cladistics 28: 271299.CrossRefGoogle ScholarPubMed
Li, H.-M. 1992. Early Tertiary palaeoclimate of King George Island, Antarctica: evidence from the Fossil Hill flora. Pp 371375 in Yoshida, Y. (ed.), Recent Progress in Antarctic Earth Science. Tokyo: Terra Nova Publishing.Google Scholar
Little, D.P., Knopf, P. & Schulz, C. 2013. DNA barcode identification of Podocarpaceae: the second largest conifer family. PLoS One 8: e81008.CrossRefGoogle ScholarPubMed
Markham, K., Webby, R.F., Molloy, B.P.J. & Vilain, C. 1989. Support from flavenoid glycoside distribution for the division of Dacrydium sensu lato. New Zealand Journal of Botany 27: 111.CrossRefGoogle Scholar
Mehra, P.N. & Khoshoo, T.N. 1956. Cytology of conifers I, II. Journal of Genetics 54: 165180, 181–185.CrossRefGoogle Scholar
Molloy, B.P.J. 1995. Manoao (Podocapaceae), a new monotypic conifer genus endemic to New Zealand. New Zealand Journal of Botany 33: 183202.CrossRefGoogle Scholar
Quinn, C.J. 1982. Taxonomy of Dacrydium Sol. Ex Lamb. Emend de laub. (Podocarpaceae). Australian Journal of Botany 30: 311320.CrossRefGoogle Scholar
Sinclair, W.T., Mill, R.R., Gardner, M.F., et al. 2002. Evolutionary relationships of the New Caledonian heterotrophic conifer, Parasitaxus usta (Podocarpaceae), inferred from chloroplast trn LF intron/spacer and nuclear rDNA ITS2 sequences. Plant Systematics and Evolution 233: 79104.CrossRefGoogle Scholar
Tengner, J. 1965. Dacrydium: anatomy and taxonomy. Bot. Not. 118: 450452.Google Scholar

References

Bobrov, A.V.F.C. & Melikian, A.P. 1998. Sistematicheskoe polozhenie roda Parasitaxus de Laub. (Podocarpaceae s.l.) pro dannym stroeniya semyan (Systematic relationships of genus Parasitaxus de Laub. (Podocarpaceae s.l.) on the basis of seed structure). Proceedings of the Congress of the Russian Botanical Society, St Petersburg, Russian Academy of Sciences 1: 12.Google Scholar
Cherrier, J.-F. 1981. Parasitaxus ustus (Vieillard) de Laubenfels. Revue Forestière Francaise 33: 445448.CrossRefGoogle Scholar
Cherrier, J.-F., Giraud, M., Ghiglione, C. & Woltz, P. 1990. Parasitisme interspécifique chez les Gymnospermes. Étude comparative des acides amiés. Revue de Cytologie et de Biologie Végétales – Le Botaniste 13: 191197.Google Scholar
Cherrier, J.-F., Gondran, M., Woltz, P. & Vogt, G. 1992. Parasitisme interspécifique chez les Gymnospermes: Donne inédited chez deux Podocarpaceae endemiques Neo-Calédoniennes. Revue de Cytologie et de Biologie Végétales – Le Botaniste 15: 6587.Google Scholar
Conran, J.G., Wood, G.A., Martin, P.G., et al. 2000. Generic relationships within and between the gymnosperm families Podocarpaceae and Phyllocladaceae based on an analysis of the chloroplast gene rbcL. Australian Journal of Botany 48: 715724.CrossRefGoogle Scholar
de Laubenfels, D.J. 1953. The external morphology of coniferous leaves. Phytomorphology 3: 120.Google Scholar
de Laubenfels, D.J. 1959. Parasitic conifer found in New Caledonia. Science (N.Y.) 130: 97.CrossRefGoogle Scholar
de Laubenfels, D.J. 1972. Parasitaxus. Pp 4447 in Flore de la Nouvelle Calédonie et Dépendences. Fasc. 4. Gymnosperms. Paris: Muséum Nationale d’Histoire Naturelle.Google Scholar
Earle, C.J. 2015. Parasitaxus usta. The Gymnosperm database. www.conifers.org/po/Parasitaxus.php.Google Scholar
Farjon, A. 1998. World Checklist and Bibliography of Conifers. Kew: Royal Botanic Gardens.Google Scholar
Field, T.S. & Brodribb, T.J. 2005. A unique mode of parasitism in the conifer coral tree Parasitaxus ustus (Podocarpaceae). Plant, Cell and Environment 28: 13161325.CrossRefGoogle Scholar
Gaussen, H. 1976. Les Gymnospermes actuelles et fossiles. Genre Podocarpus. Conclusion des Podocarpnes. Travaux du Laboratoire Forestal de Toulouse 21: 150.Google Scholar
Gray, N.E. 1960. A taxonomic revision of Podocarpus XII. Section Microcarpus. Journal of the Arnold Arboretum 41: 3639.CrossRefGoogle Scholar
Hair, J.B. & Beuzenberg, E.J. 1958. Chromosomal evolution in the Podocarpaceae. Nature 181: 15841586.CrossRefGoogle Scholar
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Jaffré, T. & Veillon, J.-M. 1990. Etudes floristique et structurale de deux forets denses humides sur roches ultrabasiques en Nouvelle-Calédonie. Adansonia 3: 243272.Google Scholar
Jaffré, T., Morat, P.H., Veillon, J.-M. & Mackee, H.S. 1987. Changements dans la vegetation de la Nouvelle Caledonia au cours du Tertaire: la vegetation et la flore des roches ultrabasiques. Adansonia 4: 365391.Google Scholar
Jaffré, T., Munzinger, J. & Lowry, P.P. II. 2010. Threats to the conifer species found on New Caledonia’s ultramafic massifs and proposals for urgently needed measures to improve their protection. Biodiversity and Conservation 19: 14851502.CrossRefGoogle Scholar
Kelch, D.G. 1995. Sequence data from 18S nrDNA: its bearing on the phylogeny of the Podocarpaceae (Coniferales). American Journal of Botany 82(6 suppl.): 139.Google Scholar
Kelch, D.G. 1997. The phylogeny of the Podocarpaceae based on morphological evidence. Systematic Botany 22: 113131.CrossRefGoogle Scholar
Kelch, D.G. 1998. Phylogeny of Podocarpaceae: a comparison of evidence from morphology and 18S rDNA. American Journal of Botany 85: 986996.CrossRefGoogle ScholarPubMed
Köpke, E., Musselmanm, L.J. & de Laubenfels, D.J. 1983. Studies on the anatomy of Parasitaxus ustus and its root connections. Phytomorphology 31: 8592.Google Scholar
Mehra, P.N. & Khoshoo, T.N. 1956. Cytology of conifers I, II. Journal of Genetics 54: 165180, 181–185.CrossRefGoogle Scholar
Melikan, A.P. & Bobrov, A.V.F.C. 2000. Morphology of female reproductive structures and the experience of building of phylogenetic system of the orders Podocarpales, Cephalotaxales and Taxales. Botanichekij Zhurnal 85: 5068 (in Russian).Google Scholar
Morat, Ph. 1993. Our knowledge of the flora of New Caledonia; endemism and diversity in relation to vegetation types and substrates. Biodiversity Letters 1: 7281.CrossRefGoogle Scholar
Morat, Ph., Jaffré, T. Veillon, J.-M. & MacKee, H.S. 1981. Carte de la vegetation de la Nouvelle-Caledonia au 1/1.000.000. Note explicative. Atlas de la Nouvelle-Calédonie. Paris: ORSTOM.Google Scholar
Page, C.N. 2003. The conifer flora of New Caledonia: stasis, evolution and survival in an ancient group. Pp 149155 in Mill, R.R. (ed.), Conifers for the Future? Proceedings of the Fourth International Conifer Conference. Wye: Acta Horticulturae.Google Scholar
Page, C.N., Collinson, M.E. & Van Konijnenburg-Van Cittert, J.H.A. 2014. Lygodium hians (Pteridophyta-Schizaeales): an endemic unusual ground-clothing member of a modern climbing fern genus in New Caledonia. Adansonia 36: 2643.CrossRefGoogle Scholar
Pilger, E. 1903. Taxaceae. In Engler, A (ed.), Das Pflanzenreich 5. Leipzig: W. Engelmann.Google Scholar
Qu, X.-J., Fan, S.-J., Wicke, S. & Yi, T.-S. 2019. Plastosome reduction in the only parasitic gymnosperm, Parasitaxus ustus (Podocarpaceae). Genome Biology and Evolution 11: 27892796.CrossRefGoogle Scholar
Sinclair, W.T., Mill, R.R., Gardner, M.F., et al. 2002. Evolutionary relationships of the New Caledonian heterotrophic conifer Parasitaxus usta (Podocarpaceae) inferred from chloroplast trnL–F intron/spacer and nuclear rDNA ITS sequences. Plant Systematics and Evolution 233: 79104.CrossRefGoogle Scholar
Stockey, R.A. & Frevel, B.J. 1997. Cuticle micromorphology of Prumnopitys philippi (Podocarpaceae). International Journal of Plant Sciences 158: 198221.CrossRefGoogle Scholar
Stockey, R.A., Ko, H. & Woltz, P. 1992. Cuticle micromorphology of Falcatifolium de Laubenfels (Podocarpaceae). International Journal of Plant Sciences 153: 589601.CrossRefGoogle Scholar
Stockey, R.A., Ko, H. & Woltz, P. 1995. Cuticle micromorphology of Parasitaxus de Laubenfels (Podocarpaceae). International Journal of Plant Sciences 156: 723730.CrossRefGoogle Scholar
Thomas, P. 2010. Parasitaxus usta. IUCN Red List of Threatened Species 2010. http://dx.doi.org/10.2305/IUCN.UK.2010–3.RTLS.T31002A9597883.en.CrossRefGoogle Scholar
Watt, A. 1994. Two interesting conifers from New Caledonia. International Dendrology Society Yearbook 1994: 6468.Google Scholar
Wells, P.M. & Hill, R.S. 1989. Leaf morphology of the imbricate-leaved Podocarpaceae. Australian Systematic Botany 2: 369386.CrossRefGoogle Scholar
Woltz, P.R., Stockey, A., Gondran, M. & Cherrier, J.F. 1994. Interspecific parasitism in the gymnosperms: unpublished data on two endemic New Caledonian Podocarpaceae using scanning electron microscopy. Acta Botanica Gallica 141: 731746.CrossRefGoogle Scholar

References

Adam, P. 1992. Australian Rainforests. Oxford: Clarendon Press.CrossRefGoogle Scholar
Atkinson, I.A.E. & Greenwood, R.M. 1989. Relationships between moas and plants. New Zealand Journal of Ecology 12(suppl.): 6796.Google Scholar
Buchholz, J.T. 1936. Embryogeny of species of Podocarpus of the subgenus Stachycarpus. Botanical Gazette 98: 135146.CrossRefGoogle Scholar
Buchholz, J.T. 1941. Embryogeny of the Podocarpaceae. Botanical Gazette 103: 137.CrossRefGoogle Scholar
Chowdhury, C.R. 1962. The embryology of conifers: a review. Phytomorphology 12: 313338.Google Scholar
Christophel, D.C. & Greenwood, D.R. 1988. A comparison of Australian tropical rainforest and Tertiary fossil leaf beds. Proceedings of the Ecological Society of Australia 15: 139148.Google Scholar
Conran, J.G., Wood, G.A., Martin, P.G., et al. 2000. Generic relationships within and between the gymnosperm families Podocarpaceae and Phyllocladaceae based on an analysis of the chloroplast gene rbcL. Australian Journal of Botany 48: 715724.CrossRefGoogle Scholar
Davies, B.J., O’Brien, I.E.W. & Murray, B.G. 1997. Karyotypes, chromosome bands and genome size variation in New Zealand endemic gymnosperms. Plant Systematics and Evolution 208: 169185.CrossRefGoogle Scholar
Farjon, A. 2010. A Handbook of the World’s Conifers. Leiden: Konninklijke Brill NV.CrossRefGoogle Scholar
Flory, W.S. 1936. Chromosome numbers and phylogeny in the gymnosperms. Journal of the Arnold Arboretum 17: 8389.CrossRefGoogle Scholar
Gardner, M.F. 2019. Threatened Conifers of the World: https://threatenedconifers.rbge.org.uk/conifers/prumnopitys-andinaGoogle Scholar
Gardner, M.F. & Lara, A. 2003. The conifers of Chile: an overview of their distribution and ecology. Pp 165170 in Mill, R.R. (ed.), Conifers for the Future? Proceedings of the Fourth International Conifer Conference. Wye: Acta Horticulturae.Google Scholar
Gaussen, H. 1974. Les Gymnospermes actuelles et fossiles. Fascicule XIII. Les Podocarpines sauf les Podocarpus. Travaux du laboratoire forestier de Toulouse 2(3).Google Scholar
Greenwood, R.M. & Atkinson, I.A.E. 1977. Evolution of divaricating plants in New Zealand in relation to moa browsing. Proceedings of the New Zealand Ecological Society 24: 2133.Google Scholar
Hechenleitner, P., Gardner, M.F., Thomas, P., et al. 2005. Plantas Amenazadadas del Centro-Sur de Chile. Distribución, Conservatión y Propagación. Santiago: Universidad Austral de Chile y Real Jardin Botánico de Edinburgh.Google Scholar
Jokisch, B.D. & Lair, B.M. 2002. One last stand? Forests and change in Ecuador’s eastern Cordillera. Geographical Review 92: 235256.CrossRefGoogle Scholar
Kelch, D.G. 1997. The phylogeny of the Podocarpaceae based on morphological evidence. Systematic Botany 22: 113131.CrossRefGoogle Scholar
Kelch, D.G. 1998. Phylogeny of Podocarpaceae: a comparison of evidence from morphology and 18S rDNA. American Journal of Botany 85: 986996.CrossRefGoogle ScholarPubMed
Knopf, P., Schulz, C., Little, D.P., Stützel, Th. & Stevenson, D.W. 2012. Relationships within Podocarpaceae based on DNA sequence anatomical, morphological, and biogeographical data. Cladistics 1: 129.Google Scholar
Little, D.P., Knopf, P. & Schulz, C. 2013. DNA barcode identification of Podocarpaceae: the second largest conifer family. PLoS One 8: e81008.CrossRefGoogle ScholarPubMed
Lowry, J.B. 1980. Evolution of divaricating plants in New Zealand in relation to moa browsing. New Zealand Journal of Ecology 3: 165.Google Scholar
Mehra, P.N. & Khoshoo, T.N. 1956. Cytology of conifers I, II. Journal of Genetics 54: 165180, 181–185.CrossRefGoogle Scholar
Oliver, W.R.B. 1949. The Moas of New Zealand and Australia. Wellington: Dominion Museum.Google Scholar
Page, C.N. 2019. New and maintained genera in the taxonomic alliance of Prumnopitys s.l. (Podocarpaceae), and circumscription of a new genus: Pectinopitys. New Zealand Journal of Botany 57(3): 137153.CrossRefGoogle Scholar
Pole, M. 1992. Eocene vegetation from Hasties, north-east Tasmania. Australian Systematic Botany 5: 431475.CrossRefGoogle Scholar
Pole, M. 1997. Paleocene plant microfossils from Kakahu, South Canterbury, New Zealand. Journal of the Royal Society of New Zealand 27: 371400.CrossRefGoogle Scholar
Pole, M. 2007. Early Eocene dispersed cuticles and mangrove to rainforest vegetation at Strahan-Regatte Point, Tasmania. Palaeontologica Electronica 10(3).Google Scholar
Preest, D.S. 1963. A note on the dispersal characteristics of the seed of New Zealand podocarps and beeches and their biogeographical significance. Pp 415424 in Gressitt, J.L. (ed.), Pacific Basin Biogeography. Honolulu, HI: Bishop Museum Press.Google Scholar
Quiroga, M.P., Mathiasen, P., Iglesias, A., Mill, R.R. & Premoli, A.C. 2016. Molecular and fossil evidence disentangle the biogeographical history of Podocarpus, a key genus in plant geography. Journal of Biogeography 43(2): 372383.CrossRefGoogle Scholar
Sinclair, W.T., Mill, R.R., Gardner, M.F., et al. 2002. Evolutionary relationships of the New Caledonian heterotrophic conifer, Parasitaxus usta (Podocarpaceae), inferred from chloroplast trn LF intron/spacer and nuclear rDNA ITS2 sequences. Plant Systematics and Evolution 233: 79104.CrossRefGoogle Scholar
Truswell, E.M. 1990. Cretaceous and Tertiary vegetation of Antarctica: a palynological perspective. Pp 7188 in Taylor, T.N. & Taylor, E.L. (eds.), Antarctic Palaeobiology. New York: Springer.CrossRefGoogle Scholar
Worthy, T.H. 1987. Sexual dimorphism and temporal variation in the North Island moa species Euryapteryx curtisi (Owen) and Pachyornis mappini (Archey). National Museum of New Zealand Records 3: 5970.Google Scholar

References

Biffin, E., Conran, J.G. & Lowe, A.J. 2011. Podocarp evolution: a molecular phylogenetic perspective. Pp 119 in Turner, B.L. & Cernusak, L.A. (eds.), Ecology of the Podocarpaceae in Tropical Forests. Washington, DC: Smithsonian Institution Scholarly Press.Google Scholar
Bobrov, A.V.F.C. & Romanov, M.S. 1999. Seed coat structure and systematic relationships of Sundacarpus amarus (Blume) C.N.Page (Podocarpaceae (Dumort.) Endl. S.l.). 14th Symposium Biodiversisät Evolutionsbiologie, Jena.Google Scholar
Brodribb, T. & Hill, R.S. 2004. The rise and fall of the Podocarpaceae in Australia: physiological explanation. Pp 381399 in The Evolution of Plant Physiology. New York: Academic Press.CrossRefGoogle Scholar
Bruijnzeel, L.A., Waterloo, M.J., Proctor, J., Kuiters, A.T. & Kotterink, B. 1993. Hydrological observations in montane rainforests on Gunung Silam, Sabah, Malaysia, with special reference to the ‘Massenerhebung’ effect. Journal of Ecology 81: 145167.CrossRefGoogle Scholar
Buchholz, J.T. 1936. Embryogeny of species of Podocarpus of the subgenus Stachycarpus. Botanical Gazette 98: 135146.CrossRefGoogle Scholar
Buchholz, J.T. 1941. Embryogeny of the Podocarpaceae. Botanical Gazette 103: 137.CrossRefGoogle Scholar
Buchholtz, J.T. & Gray, N.E. 1948. A taxonomic revision of Podocarpus II. The American species of Podocarpus section Stachycarpus. Journal of the Arnold Arboretum 29: 6483.CrossRefGoogle Scholar
Carter, G.A. & Smith, W.K. 1985. Influence of shoot structure on light interception and photosynthesis in conifers. Plant Physiology 79(4): 10381043.CrossRefGoogle ScholarPubMed
Chowdhury, C.R. 1962. The embryology of conifers: a review. Phytomorphology 12: 313338.Google Scholar
Conn, B.J. & Damas, K.Q. 1978. Guide to trees of Papua New Guinea. www.pngplants.org/PNGtreesGoogle Scholar
Conran, J.G., Wood, G.A., Martin, P.G., et al. 2000. Generic relationships within and between the gymnosperm families Podocarpaceae and Phyllocladaceae based on an analysis of the chloroplast gene rbcL. Australian Journal of Botany 48: 715724.CrossRefGoogle Scholar
Doyle, J. 1954. Development in Podocarpus nivalis in relation to other podocarps. III. General conclusions. Scientific Proceedings of the Royal Dublin Society 26(21): 347377.Google Scholar
Farjon, A. 2010. A Handbook of the World’s Conifers. Leiden: Konninklijke Brill NV.CrossRefGoogle Scholar
Gaussen, H. 1973. Les Gymnospermes Actualles et Fossils. Les Podocarpinees. Etudes Général. Travaux Laboratoire Forestière Toulouse 12: 1108.Google Scholar
Gaussen, H. 1974. Les Gymnospermes actuelles et fossiles. Fascicule XIII. Les Podocarpines sauf les Podocarpus. Travaux du laboratoire forestier de Toulouse 2(3).Google Scholar
Gaussen, H. 1976. Les Gymnospermes actuelles et fossiles. Genre Podocarpus. Conclusion des Podocarpnes. Travaux du Laboratoire Forestal de Toulouse 14: 150.Google Scholar
Greenwood, D.R., Hill, C.R. & Conran, J.G. 2013. Prumnopitys anglica sp. nov. (Podocarpaceae) from the Eocene of England. Taxon 62(3): 565580.CrossRefGoogle Scholar
Hair, J.B. & Beuzenberg, E.J. 1958. Chromosomal evolution in the Podocarpaceae. Nature 181: 15841586.CrossRefGoogle Scholar
Hamilton, W. 1978. Tectonics of the Indonesian region. US Geological Survey Professional Paper 1078.CrossRefGoogle Scholar
Kelch, D.G. 1997. The phylogeny of the Podocarpaceae based on morphological evidence. Systematic Botany 22: 113131.CrossRefGoogle Scholar
Kelch, D.G. 1998. Phylogeny of Podocarpaceae: a comparison of evidence from morphology and 18S rDNA. American Journal of Botany 85: 986996.CrossRefGoogle Scholar
Kitayama, K. 1992. Comparative vegetation analysis on the wet slopes of two tropical mountains: Mt. Haleakala, Hawaii, and Mt. Kinabalu, Borneo. PhD dissertation, University of Hawaii, Honolulu, HI.Google Scholar
Kitayama, K. & Aiba, S. 2002. Ecosystem structure and productivity of tropical rain forests along altitudinal gradients with contrasting soil phosphorus pools on Mount Kinabalu, Borneo. Journal of Ecology 90: 3751.CrossRefGoogle Scholar
Kitayama, K. & Mueller-Dombois, D. 1995. Vegetation changes during long-term soil development in the Hawaiian montane rainforest zone. Vegetatio 111: 120.CrossRefGoogle Scholar
Kitayama, K., Aiba, S., Majalap-Lee, N. & Ohsawa, M. 1998. Soil nitrogen mineralization rates of rainforests in a matrix of elevations and geological substrates on Mount Kinabalu, Borneo. Ecological Research 13: 301312.CrossRefGoogle Scholar
Knopf, P., Schulz, C., Little, D.P., Stützel, T. & Stevenson, D.W. 2012. Relationships within Podocarpaceae based on DNA sequence, anatomical, morphological, and biogeographical data. Cladistics 28: 271299.CrossRefGoogle Scholar
Krassilov, V.A. 1974. Podocarpus from the Upper Cretaceous of eastern Asia and its bearing on the theory of conifer evolution. Paleontology 17: 365370.Google Scholar
Little, D.P., Knopf, P. & Schulz, C. 2013. DNA barcode identification of Podocarpaceae: the second largest conifer family. PLoS One 8: e81008.CrossRefGoogle ScholarPubMed
Looby, W.J. & Doyle, J. 1944. The gametophytes of Podocarpus andinus. Scientific Proceedings of the Royal Dublin Society 23: 257275.Google Scholar
Mehra, P.N. & Khoshoo, T.N. 1956. Cytology of conifers I, II. Journal of Genetics 54: 165180, 181–185.CrossRefGoogle Scholar
Melikan, A.P. & Bobrov, A.V.F.C. 2000. Morphology of female reproductive structures and the experience of building of phylogenetic system of the orders Podocarpales, Cephalotaxales and Taxales. Botanichekij Zhurnal 85: 5068 (in Russian).Google Scholar
Page, C.N. 1973. Ferns, polyploids, and their bearing on the evolution of the Canarian flora. Monographia Biologicae Canariensis 4: 8388.Google Scholar
Page, C.N. 1977. An ecological survey of the ferns of the Canary Islands. Fern Gazette 11: 297312.Google Scholar
Page, C.N. 1979. The diversity of ferns: an ecological perspective. Pp 1056 in Dyer, A.F. (ed.), The Experimental Biology of Ferns. London: Academic Press.Google Scholar
Page, C.N. 2002. Ecological strategies in fern evolution: a neopteridological overview. Review of Palaeobotany and Palynology 119: 133.CrossRefGoogle Scholar
Pilger, E. 1926. Coniferae. Pp 121407 in Engler, A. & Prantl, K. (eds.), Die Naturlichen Pflanzenfamilien, 2nd edn. Leipzig: Wilhelm Engelmann.Google Scholar
Quinn, C.J. & Price, R.A. 2003. Phylogeny of the Southern Hemisphere conifers. Pp 129133 in Mill, R.R. (ed.), Conifers for the Future? Proceedings of the Fourth International Conifer Conference. Wye: Acta Horticulturae.Google Scholar
Quinn, C.J., Price, R.A. & Gadek, P.A. 2002. Familial concepts and relationships in the conifers based on rbcL and matK sequence comparisons. Kew Bulletin 57: 513531.CrossRefGoogle Scholar
Quiroga, M.P., Mathiasen, P., Iglesias, A., Mill, R.R. & Premoli, A.C. 2016. Molecular and fossil evidence disentangle the biogeographical history of Podocarpus, a key genus in plant geography. Journal of Biogeography 43(2): 372383.CrossRefGoogle Scholar
Seifriz, W. 1923. The altitudinal distribution of plants on Mt Gedeh, Java. Bulletin of the Torrey Botanical Cub 50: 283309.CrossRefGoogle Scholar
Sinclair, W.T., Mill, R.R., Gardner, M.F., et al. 2002. Evolutionary relationships of the New Caledonian heterotrophic conifer, Parasitaxus usta (Podocarpaceae), inferred from chloroplast trn LF intron/spacer and nuclear rDNA ITS2 sequences. Plant Systematics and Evolution 233: 79104.CrossRefGoogle Scholar
Smith, J.M.B. 1970. Herbaceous plant communities in the summit zone of Mount Kinabalu. Malayan Nature Journal 24(1): 1629.Google Scholar
Webb, L.J. 1959. A physiognomic classification of Australian rain forests. Journal of Ecology 47: 551570.CrossRefGoogle Scholar
Webb, L.J. & Tracey, J.G. 1981. Australian rainforests: patterns and change. Pp 605694 in Keast, A.J. (ed.), Ecological Biogeography of Australia. The Hague: W. Junk.CrossRefGoogle Scholar
Yamada, I. 1975. Forest ecological studies on the montane forest of Mt. Pangrango, West Java. I. Stratification and floristic composition of the montane rainforest vegetation near Cibodas. South East Asian Studies 13: 402426.Google Scholar
Yamada, I. 1976. Forest ecological studies on the montane forest of Mt. Pangrango, West Java. II. Stratification and floristic composition of the forest vegetation on the higher part of Mt. Pangrango. South East Asian Studies 13: 513534.Google Scholar
Yamada, I. 1977. Forest ecological studies on the montane forest of Mt. Pangrango, West Java. III. South East Asian Studies 13.Google Scholar

References

Adam, P. 1992. Australian Rainforests. Oxford: Clarendon Press.CrossRefGoogle Scholar
Beu, A.G., Griffin, M. & Maxwell, P.A. 1997. Opening of Drake Passage gateway and Late Miocene to Pleistocene cooling reflected in Southern Ocean molluscan dispersal: evidence from New Zealand and Argentina. Tectonophysics 281: 8397.CrossRefGoogle Scholar
Brodribb, T. & Hill, R.S. 1997. Light response characteristics of a morphologically diverse group of Southern Hemisphere conifers as measured by chlorophyll fluorescence. Oecologia 110: 1017.CrossRefGoogle ScholarPubMed
Buchholz, J.T. 1936. Embryogeny of species of Podocarpus of the subgenus Stachycarpus. Botanical Gazette 98: 135146.CrossRefGoogle Scholar
Buchholz, J.T. 1941. Embryogeny of the Podocarpaceae. Botanical Gazette 103: 137.CrossRefGoogle Scholar
Buchholtz, J.T. & Gray, N.E. 1948. A taxonomic revision of Podocarpus II: the American species of Podocarpus section Stachycarpus. Journal of the Arnold Arboretum 29: 6483.CrossRefGoogle Scholar
Carter, G.A. & Smith, W.K. 1985. Influence of shoot structure on light interception and photosynthesis in conifers. Plant Physiology 79(4): 10381043.CrossRefGoogle ScholarPubMed
Chowdhury, C.R. 1962. The embryology of conifers: a review. Phytomorphology 12: 313338.Google Scholar
Christophel, D.C. & Greenwood, D.R. 1988. A comparison of Australian tropical rainforest and Tertiary fossil leaf beds. Proceedings of the Ecological Society of Australia 15: 139148.Google Scholar
Clarkson, B.D., Patel, R.N. & Clarkson, B.R. 1988. Composition and structure of forest overwhelmed at Pureora, central North Island, New Zealand, during the Taupo eruption (c. AD 130). Journal of the Royal Society of New Zealand 18: 417436.CrossRefGoogle Scholar
Clout, M.N. & Tilley, J.A.V. 1992. Germination of Miro (Prumnopitys ferruginea) seeds after consumption by New Zealand pigeons (Hemiphaga novaeseelandiae). New Zealand Journal of Botany 30: 2528.CrossRefGoogle Scholar
Conran, J.G., Wood, G.A., Martin, P.G., et al. 2000. Generic relationships within and between the gymnosperm families Podocarpaceae and Phyllocladaceae based on an analysis of the chloroplast gene rbcL. Australian Journal of Botany 48: 715724.CrossRefGoogle Scholar
Correa, V., Vara, A.M.A., Machuca, E.H. & Angel, M. 2002. Wood anatomy of Columbian Podocarpaceae (Podocarpus, Prumnopitys and Retrophyllum). Botanical Journal of the Linnean Society 164: 293302.CrossRefGoogle Scholar
Davies, B.J., O’Brien, I.E.W. & Murray, B.G. 1997. Karyotypes, chromosome bands and genome size variation in New Zealand endemic gymnosperms. Plant Systematics and Evolution 208: 169185.CrossRefGoogle Scholar
Dawson, J. & Lucas, R. 2013. New Zealand’s Native Trees. Nelson: Craig Potton Publishing.Google Scholar
de Laubenfels, D.J. 1969. A revision of the Malesian and Pacific conifers. I. Podocarpaceae. I. Journal of the Arnold Arboretum 50: 274314.CrossRefGoogle Scholar
de Laubenfels, D.J. 1972. Flore de la Nouvelle-Calédonia et Dépendences. No 4. Gymnospermes. Paris: Muséum National D’Histoire Naturelle.Google Scholar
Diester-Haass, L. & Zahn, R. 1996. Eocene–Oligocene transition in the Southern Ocean: history of water mass circulation and biological productivity. Geology 24: 163166.2.3.CO;2>CrossRefGoogle Scholar
Dilcher, D.L. 1968. Podocarpus from the Eocene of North America. Science 164: 299301.CrossRefGoogle Scholar
Dingle, R.V. & Lavelle, M. 1998. Late Cretaceous Cenozoic climatic variations of the northern Antarctic Peninsula: new geochemical evidence and review. Palaeogeography, Palaeoclimatology and Palaeoecology 141: 215232.CrossRefGoogle Scholar
Doweld, A.B. 2000. Botryopteris, a new generic name (Podocarpopsida). Turczaninowia 3(4): 3738.Google Scholar
Doweld, A.B. & Reveal, J.L. 1998. Validation of new suprageneric names in Pinophyta. Phytologia 84(5): 363367.Google Scholar
Ebbett, R.J. & Ogden, J. 1998. Comparative seedling growth of five endemic podocarp species under different light regimes. New Zealand Journal of Botany 36: 189201.CrossRefGoogle Scholar
Farjon, A. 2010. A Handbook of the World’s Conifers. Leiden: Brill.CrossRefGoogle Scholar
Florin, R. 1940. The Tertiary conifers of southern Chile and their phytogeographical significance. Kungliga Svenska Vetenskapsakademiens Handlingar 19: 1107.Google Scholar
Gardner, M.F. & Lara, A. 2003. The conifers of Chile: an overview of their distribution and ecology. Pp 165170 in Mill, R.R. (ed.), Conifers for the Future? Proceedings of the Fourth International Conifer Conference. Wye: Acta Horticulturae.Google Scholar
Gaussen, H. 1973. Les Gymnospermes Actualles et Fossils. Les Podocarpinees. Etudes Général. Travaux Laboratoire Forestière Toulouse 12: 1108.Google Scholar
Gaussen, H. 1974. Les Gymnospermes actuelles et fossiles. Les Podocarpacées. Travaux du Laboratoire Forestal de Toulouse 13.Google Scholar
Gaussen, H. 1976. Les Gymnospermes actuelles et fossiles. Genre Podocarpus. Conclusion des Podocarpnes. Travaux du Laboratoire Forestal de Toulouse 14.Google Scholar
Gentry, A.H. 1993. A Field Guide to the Families and Genera of Woody Plants of Northwest South America (Colombia, Ecuador, Peru). Washington, DC: Conservation International.Google Scholar
Greenwood, D.R. 1987. Early Tertiary Podocarpaceae megafossils from the Eocene Anglesea locality, Victoria, Australia. Australian Journal of Botany 35: 111133.CrossRefGoogle Scholar
Greenwood, D.R., Hill, C.R. & Conran, J.G. 2013. Prumnopitys anglica sp. nov. (Podocarpaceae) from the Eocene of England. Taxon 62(3): 565580.CrossRefGoogle Scholar
Hair, J.B. & Beuzenberg, E.J. 1958. Chromosomal evolution in the Podocarpaceae. Nature 181: 15841586.CrossRefGoogle Scholar
Hinojosa, L.F. 2005. Climatic and vegetational changes inferred from Cenozoic southern South American paleoflora. Revista Geologica de Chile 32: 95115.Google Scholar
Hinojosa, L.F. & Villagran, C. 1997. History of the South American forests. 1. Paleobotanical, geological and climatic background on Tertiary of southern South America. Revista Chilena de Historia Natural 70: 225239.Google Scholar
Hinojosa, L.F. & Villagran, C. 2005. Did South American mixed paleofloras evolve under thermal equability or in the absence of an effective Andean barrier during the Cenozoic? Palaeogeography, Palaeoclimatology, Palaeoecology 217: 123.CrossRefGoogle Scholar
Jovane, L., Coccioni, R., Marsili, A. & Acton, G. 2009. Late Eocene Earth: hothouse icehouse and impacts. Geological Society of America Special Papers 452: 149168.Google Scholar
Kelch, D.G. 1997. The phylogeny of the Podocarpaceae based on morphological evidence. Systematic Botany 22: 119.CrossRefGoogle Scholar
Kelch, D.G. 1998. Phylogeny of the Podocarpaceae: comparison of evidence from morphology and 18S rRNA. American Journal of Botany 85: 986996.CrossRefGoogle Scholar
Knopf, P., Schulz, C., Little, D.P., Stützel, Th. & Stevenson, D.W. 2012. Relationships within Podocarpaceae based on DNA sequence anatomical, morphological, and biogeographical data. Cladistics 1: 129.Google Scholar
Krassilov, V.A. 1974. Podocarpus from the Upper Cretaceous of eastern Asia and its bearing on the theory of conifer evolution. Palaeontology 17: 365370.Google Scholar
Little, D.P., Knopf, P. & Schulz, C. 2013. DNA barcode identification of Podocarpaceae: the second largest conifer family. PLoS One 8: e81008.CrossRefGoogle Scholar
Looby, W.J. & Doyle, J. 1944a. Fertilisation and early embryology in Podocarpus andinus. Scientific Proceedings of the Royal Dublin Society 22: 222237.Google Scholar
Looby, W.J. & Doyle, J. 1944b. The gametophytes of Podocarpus andinus. Scientific Proceedings of the Royal Dublin Society 23: 257275.Google Scholar
Lusk, C.H. & Ogden, J. 1992. Age structure and dynamics of a podocarp–broadleaf forest in Tongariro national park, New Zealand. Journal of Ecology 80: 379393.CrossRefGoogle Scholar
Lusk, C.H., Wright, I. & Reich, P.B. 2003. Photosynthetic differences contribute to competitive advantage of evergreen angiosperm trees over evergreen conifers in productive habitats. New Phytologist 160: 329336.CrossRefGoogle Scholar
Markham, K., Webby, R.F., Molloy, B.P.J. & Vilain, C. 1989. Support from flavenoid glycoside distribution for the division of Dacrydium sensu lato. New Zealand Journal of Botany 27: 111.CrossRefGoogle Scholar
Markham, K.R., Webby, R.F., Whitehouse, L.A., et al. 1985. Support from flavonoid glycoside distribution for the division of Podocarpus in New Zealand. New Zealand Journal of Botany 23: 113.CrossRefGoogle Scholar
McGlone, M.S. 1988. New Zealand. Pp 557602 in Huntley, B. & Webb, T. (eds.), Vegetation History of New Zealand. Dordrecht: Kluwer.CrossRefGoogle Scholar
Mehra, P.N. & Khoshoo, T.N. 1956. Cytology of conifers I, II. Journal of Genetics 54: 165180, 181–185.CrossRefGoogle Scholar
Melikan, A.P. & Bobrov, A.V.F.C. 2000. Morphology of female reproductive structures and the experience of building of phylogenetic system of the orders Podocarpales, Cephalotaxales and Taxales. Botanichekij Zhurnal 85: 5068 (in Russian).Google Scholar
Mill, R.R., Möller, M., Glidewell, S.M., Masson, D. & Williamson, B. 2004. Comparative anatomy and morphology of fertile complexes of Prumnopitys and Afrocarpus species (Podocarpaceae) as revealed by histology and NMR imaging, and their relevance to systematics. Botanical Journal of the Linnean Society 145: 295316.CrossRefGoogle Scholar
Page, C.N. 1990. Podocarpaceae. Pp 332346 in Kubitsky, K. & Green, P.S. (eds.), The Families and Genera of Vascular Plants. I. Pteridophytes and Gymnosperms. Berlin: Springer.Google Scholar
Page, C.N. 2019. New and maintained genera in the taxonomic alliance of Prumnopitys s.l. (Podocarpaceae), and circumscription of a new genus. New Zealand Journal of Botany 57: 137153.CrossRefGoogle Scholar
Philipson, W.R. & Molloy, B.P.J. 1990. Seedling, shoot, and adult morphology of New Zealand conifers: the genera Dacrycarpus, Podocarpus, Dacrydium and Prumnopitys. New Zealand Journal of Botany 28: 7384.CrossRefGoogle Scholar
Pole, M. 1997. Paleocene plant microfossils from Kakahu, South Canterbury, New Zealand. Journal of the Royal Society of New Zealand 27: 371400.CrossRefGoogle Scholar
Pole, M. 2007. Early Eocene dispersed cuticles and mangrove to rainforest vegetation at Strahan-Regatte Point, Tasmania. Palaeontologica Electronica 10(3).Google Scholar
Pole, M.S. 1992. Eocene vegetation from Hasties, north-east Tasmania. Australian Systematic Botany 5: 431475.CrossRefGoogle Scholar
Preest, D.S. 1963. A note on the dispersal characteristics of the seed of New Zealand podocarps and beeches and their biogeographical significance. Pp 415424 in Gressitt, J.L. (ed.), Pacific Basin Biogeography. Honolulu, HI: Bishop Museum Press.Google Scholar
Quiroga, M.P., Mathiasen, P., Iglesias, A., Mill, R.R. & Premoli, A.C. 2016. Molecular and fossil evidence disentangle the biogeographical history of Podocarpus, a key genus in plant geography. Journal of Biogeography 43(2): 372383.CrossRefGoogle Scholar
Rack, F.R. 1993. A geologic perspective on the Miocene evolution of the Antarctic Circumpolar Current system. Tectonophysics 222: 397415.CrossRefGoogle Scholar
Salter, J. 2007. Matai and miro (Prumnopitys): the inside story on the rumour of their separation. New Zealand Journal of Botany 45: 294295.Google Scholar
Sinclair, W.T., Mill, R.R., Gardner, M.F., et al. 2002. Evolutionary relationships of the New Caledonian heterotrophic conifer Parasitaxus usta (Podocarpaceae) inferred from chloroplast trnL–F intron/spacer and nuclear rDNA ITS sequences. Plant Systematics and Evolution 233: 79104.CrossRefGoogle Scholar
Stockey, R.A. & Frevel, B.J. 1997. Cuticle micromorphology of Prumnopitys philippi (Podocarpaceae). International Journal of Plant Sciences 158: 198221.CrossRefGoogle Scholar
Webby, R.F., Markam, K.R. & Molloy, B.P.J. 1987. The characterization of New Zealand Podocarpus hybrids using flavenoid markers. New Zealand Journal of Botany 25: 355366.CrossRefGoogle Scholar
Wells, P.M. & Hill, R.S. 1989. Leaf morphology of the imbricate-leaved Podocarpaceae. Australian Systematic Botany 2: 369386.CrossRefGoogle Scholar
Wilf, P. 2012. Rainforest conifers of Eocene Patagonia: attached cones and foliage of the extant Southeast Asian and Australasian genus Dacrycarpus (Podocarpaceae). American Journal of Botany 99: 562584.CrossRefGoogle ScholarPubMed

References

Archangelsky, S. 1963. A new Mesozoic flora from Tico, Santa Cruz province, Argentina. Bulletin of the British Museum Natural History Geology 8: 492.Google Scholar
Askin, R.A. 1989. Endemism and heterochronicity in the Late Cretaceous (Campanian) to Paleocene palynoflora of Seymour Island, Antarctica: implications for origins, dispersal and palaeoclimates of southern floras. Pp 107119 in Crane, J.A. (ed.), Origins and Evolution of the Antarctic Biota. London: Geological Society of London.Google Scholar
Blackburn, D.T. & Sluiter, I.R. 1994. The Oligo-Miocene coal floras of southeastern Australia. Pp 328367 in Hill, R.S. (ed.), Australian Vegetation History: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Brodribb, T. & Hill, R.S. 1999. The importance of xylem constraints in the distribution of conifer species. New Phytologist 143: 365372.CrossRefGoogle Scholar
Cantrill, D.J. 1991. Broad leaved coniferous foliage from the Lower Cretaceous of southern Victoria, Australia. Alcheringa 15: 177190.CrossRefGoogle Scholar
Cantrill, D.J. 1992. Araucarian foliage from the Lower Cretaceous of southern Victoria, Australia. International Journal of Plant Sciences 153: 622645.CrossRefGoogle Scholar
Cantrill, D.J. 2000. A Cretaceous (Aptian) flora from President Head, Snow Island, Antarctica. Palaeontographica B, 253: 153191.CrossRefGoogle Scholar
Cantrill, D.J. & Falcon-Lang, H.J. 2001. Cretaceous (Late Albian) Coniferales of Alexander Island, Antarctica. Part 2. Foliage, reproductive structures and roots. Review of Palaeobotany and Palynology 115: 119145.CrossRefGoogle Scholar
Cantrill, D.J. & Poole, I. 2002. Cretaceous patterns of floristic change in the Antarctic Peninsula. Pp 141152 in Crame, J.A. & Owen, A.W. (eds.), Palaeobiogeography and Biodiversity Change: The Ordovician and Mesozoic-Cenozoic Radiations. London: Geological Society of London.Google Scholar
Cantrill, D.J. & Poole, I. 2012. The Vegetation of Antarctica through Geological Time. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Cantrill, D.J., Wanntorp, L. & Drinnan, A.N. 2011. Mesofossil flora from the Late Cretaceous of New Zealand. Cretaceous Research 32: 164173.CrossRefGoogle Scholar
Carpenter, R.J., Bannister, J.M., Jordan, G.J. & Lee, D.E. 2010. Leaf fossils of Proteaceae tribe Persoonieae from the Late Oligocene–Early Miocene of New Zealand. Australian Systematic Botany 23: 115.CrossRefGoogle Scholar
Carpenter, R.J., Jordan, G.J., Mildenhall, D.C. & Lee, D.E. 2011. Leaf fossils of the Ancient Tasmanian relict Microcachrys (Podocarpaceae) from New Zealand. American Journal of Botany 98: 11641172.CrossRefGoogle Scholar
Conran, J.G., Wood, G.A., Martin, P.G., et al. 2000. Generic relationships within and between the gymnosperm families Podocarpaceae and Phyllocladaceae based on an analysis of the chloroplast gene rbcL. Australian Journal of Botany 48: 715724.CrossRefGoogle Scholar
Cookson, I.C. 1947. Plant microfossils from the lignites of Kerguelen Archipelago. Report of the British, Australian and New Zealand Antarctic Expedition A 2: 127142.Google Scholar
Cookson, I.C. & Pike, K.M. 1954. The fossil occurrence of Phyllocladus and two other podocarpaceous types in Australia. Australian Journal of Botany 2: 6067.CrossRefGoogle Scholar
Costin, A.B. 1981. Vegetation of high mountains in Australia. Pp 717731 in Keast, A. (ed.), Ecological Biogeography of Australia. The Hague: W.Junk.CrossRefGoogle Scholar
Couper, R.A. 1953. Upper Mesozoic and Cainozoic spores and pollen grains from New Zealand. New Zealand Geological Survey Paleontological Survey Paleontological Bulletin 22.Google Scholar
Couper, R.A. 1960. Southern Hemisphere Mesozoic and Tertiary Podocarpaceae and Fagaceae and their palaeogeographic significance. Proceedings of the Royal Society of London B. 152: 491500.Google Scholar
Dettmann, M.E. 1981. The Cretaceous flora. Pp 355375 in Keast, A. (ed.), Ecological Biogeography of Australia. The Hague: W. Junk.CrossRefGoogle Scholar
Dettmann, M.E. 1989. Antarctic: Cretaceous Cradle of austral temperate rainforests? Pp 89105 in Crane, J.A. (ed.), Origins and Evolution of the Antarctic Biota. London: Geological Society of London.Google Scholar
Dettmann, M.E. 1994. Cretaceous vegetation: the microfossil record. Pp 143170 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Dettmann, M.E. & Jarzen, D.M. 1990. The Antarctic/Australasian rift valley: late Cretaceous cradle of northeastern Australasian relicts? Review of Palaeobotany and Palynology 65: 131144.CrossRefGoogle Scholar
Dettmann, M.E. & Jarzen, D.M. 1991. Pollen evidence of Late Cretaceous differentiation of Proteaceae in southern polar forests. Canadian Journal of Botany 69: 901906.CrossRefGoogle Scholar
Dettmann, M.E. & Playford, G. 1969. Palynology of the Australian Cretaceous: a review. Pp 174210 in Campbell, K.S.W. (ed.), Stratigraphy and Palaeontology: Essays in Honour of Dorothy Hill. Canberra: Australian National University Press.Google Scholar
Dettmann, M.E. & Thomson, M.R.A. 1987. Cretaceous palymorphs from the James Ross Island areas, Antarctica: a pilot study. British Antarctic Survey Bulletin 77: 1359.Google Scholar
Dettmann, M.E., Molnar, R.E., Douglas, J.G., et al. 1992. Australian Cretaceous terrestrial faunas and floras: biostratigraphical and biogeographic implications. Cretaceous Research 13: 207262.CrossRefGoogle Scholar
Di Pasquo, M. & Martin, J.E. 2013. Palyno assemblages associated with a theropod dinosaur from Snow Hill Island Formation (lower Maastrichtian) at the Naze, James Ross Island, Antarctica. Cretaceous Research 45: 135154.CrossRefGoogle Scholar
Douglas, J.G. 1969. The Mesozoic floras of Victoria: Parts 1 & 2. Memoirs of the Geological Survey of Victoria 28: 1310.Google Scholar
Douglas, J.G. 1994. Cretaceous vegetation: the macrofossil record. Pp 171188 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Douglas, J.G. & Williams, G.E. 1982. Southern polar forests: the Early Cretaceous floras of Victoria and their palaeoclimatic significance. Palaeogeography, Palaeoclimatology, Palaeoecology 39: 171185.CrossRefGoogle Scholar
Doweld, A.B. & Reveal, J.L. 1999. Validation of new suprageneric names in Pinophyta. Phytologia 84 (5): 363367.Google Scholar
Drinnan, N. & Chambers, T.C. 1986. Flora of the Lower Cretaceous Koonwarra Fossil Bed (Korumburra Group), South Gippsland, Victoria. Pp 177 in Jell, P.A. & Roberts, J. (eds.), Plants and Invertebrates from the Koonwarra Fossil Bed, South Gippsland, Victoria. Association of Australasian Palaeontologists.Google Scholar
Falcon-Lang, H.J. & Cantrill, D.J. 2002. Terrestrial paleoecology of the Cretaceous (early Aptian) Cerro Negro Formation, South Shetland Islands, Antarctica: a record of polar vegetation in a volcanic arc environment. Palaios 17: 709725.2.0.CO;2>CrossRefGoogle Scholar
Filatoff, J. 1975. Jurassic palynology of the Perth Basin, Western Australia. Palaeontographica Abt. B. 154: 1113.Google Scholar
Fleming, C.A. 1963. Age of the New Zealand biota. Proceedings of the New Zealand Ecological Society 10.Google Scholar
Gibbs, L.S. 1920. Notes of the phytogeography and flora of the mountain summit plateaux of Tasmania. Journal of Ecology 8: 117, 89–117.CrossRefGoogle Scholar
Gould, R.E. 1975. The succession of Australian pre-Tertiary megafossil floras. Botanical Review 41: 453483.CrossRefGoogle Scholar
Hair, J.B. & Beuzenberg, E.J. 1958. Chromosomal evolution in the Podocarpaceae. Nature 181: 15841586.CrossRefGoogle Scholar
Hill, R.S. 1994. The history of selected Australian taxa. Pp 390420 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Hill, R.S. 2004. Origins of the southeastern Australian vegetation. Philosophical Transactions of the Royal Society London B 359: 15371549.CrossRefGoogle Scholar
Hill, R.S. & Brodribb, T.J. 1999. Southern conifers in time and space. Australian Journal of Botany 47: 639696.CrossRefGoogle Scholar
Jansen, R.K. & Ruhlman, T.A. 2012. Plastid genomes of seed plants. Pp 103126 in Bock, R. & Knoop, V. (eds.), Genomics of Chloroplasts and Mitochondria. Dordrecht: Springer.CrossRefGoogle Scholar
Jordan, G.J. 1995. Extinct conifers and conifer diversity in the Early Pleistocene of western Tasmania. Review of Palaeobotany and Palynology 84: 375387.CrossRefGoogle Scholar
Kelch, D.G. 1997. The phylogeny of the Podocarpaceae based on morphological evidence. Systematic Botany 22: 113131.CrossRefGoogle Scholar
Kelch, D.G. 1998. Phylogeny of Podocarpaceae: a comparison of evidence from morphology and 18S rDNA. American Journal of Botany 85: 986996.CrossRefGoogle ScholarPubMed
Khan, A.M. 1976. Palynology of Tertiary sediments for Papua New Guinea. II. Gymnosperm pollen from Upper Tertiary sediments. Australian Journal of Botany 24: 783791.CrossRefGoogle Scholar
Kirkpatrick, J.B. & Dickinson, K.J.M. 1984. The impact of fire on Tasmanian alpine vegetation and soils. Australian Journal of Botany 32: 613629.CrossRefGoogle Scholar
Knopf, P., Schulz, C., Little, D.P., Stützel, T. & Stevenson, D.W. 2012. Relationships within Podocarpaceae based on DNA sequence, anatomical, morphological, and biogeographical data. Cladistics 28: 271299.CrossRefGoogle ScholarPubMed
Lee, D.E., Lee, W.G. & Mortimer, N. 2001. Where and why have all the flowers gone? Depletion and turnover in the New Zealand Cenozoic angiosperm flora in relation to palaeogeography and climate. Australian Journal of Botany 49(3): 341356.CrossRefGoogle Scholar
Little, D.P., Knopf, P. & Schulz, C. 2013. DNA barcode identification of Podocarpaceae: the second largest conifer family. PLoS One 8: e81008.CrossRefGoogle ScholarPubMed
Macphail, M.K. 1979. Vegetation and climates in southern Tasmania since the last glaciation. Quaternary Research 11: 306341.CrossRefGoogle Scholar
Martin, H.A. 1994. Australian Tertiary phytogeography: evidence from palynology. Pp 104142 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
McLoughlin, S., Carpenter, R.J., Jordan, G.J. & Hill, R.S. 2008. Seed ferns survived the end-Cretaceous mass extinction in Tasmania. American Journal of Botany 95: 465471.CrossRefGoogle Scholar
Melikan, A.P. & Bobrov, A.V.F.C. 2000. Morphology of female reproductive structures and the experience of building of phylogenetic system of the orders Podocarpales, Cephalotaxales and Taxales. Botanichekij Zhurnal 85: 5068 (in Russian).Google Scholar
Mildenhall, D.C. 1978. Cranwellia costata n.sp. and Podosporites erugatus n.sp. from middle Pliocene (–early Pleistocene) sediments, South Island, New Zealand. Journal of the Royal Society of New Zealand 8: 253274.CrossRefGoogle Scholar
Mildenhall, D.C. & Byrami, M.L. 2003. A redescription of Podosporites parvus (Couper) Mildenhall emend. Mildenhall & Byrami from the Early Pleistocene, and late extinction of plant taxa in northern New Zealand. New Zealand Journal of Botany 41: 147160.CrossRefGoogle Scholar
Nelson, E.C. 1981. Phytogeography of southern Australia. Pp 733759 in Keast, A. (ed.), Ecological Biogeography of Australia. The Hague: W.Junk.Google Scholar
Page, C.N., Collinson, M.E. & Van Konijnenburg-Van Cittert, J.H.A. 2014. Lygodium hians (Pteridophyta-Schizaeales): an endemic unusual ground-clothing member of a modern climbing fern genus in New Caledonia. Adansonia 36: 2643.CrossRefGoogle Scholar
Parrish, J.T., Daniel, I.L., Kennedy, E.M. & Spicer, R.A. 1998. Palaeoclimatic significance of mid-Cretaceous floras from the Middle Clarence Valley, New Zealand. Palaios 13: 149159.CrossRefGoogle Scholar
Quiroga, M.P., Mathiasen, P., Iglesias, A., Mill, R.R. & Premoli, A.C. 2016. Molecular and fossil evidence disentangle the biogeographical history of Podocarpus, a key genus in plant geography. Journal of Biogeography 43(2): 372383.CrossRefGoogle Scholar
Rao, A.R. 1943. Jurassic spores and sporangia from the Rajmahal Hills, Bihar. Proceedings of the Indian National Academy of Sciences 13: 181197.Google Scholar
Reveal, J.L. & Doweld, A.B. 2002. (‘1545’) Proposal to conserve the family name Microcachrydaceae (Pinophyta). Taxon 51: 573.CrossRefGoogle Scholar
Sinclair, W.T., Mill, R.R., Gardner, M.F., et al. 2002. Evolutionary relationships of the New Caledonian heterotrophic conifer, Parasitaxus usta (Podocarpaceae), inferred from chloroplast trn LF intron/spacer and nuclear rDNA ITS2 sequences. Plant Systematics and Evolution 233: 79104.CrossRefGoogle Scholar
Spicer, R.A. & Chapman, J.L. 1990. Climate change and the evolution of high-latitude terrestrial vegetation and floras. Trends in Ecology and Evolution 5: 279284.CrossRefGoogle ScholarPubMed
Stones, M. & Curtis, W. 1967. The Endemic Flora of Tasmania Part 1. London: The Ariel Press.Google Scholar
Truswell, E.M. 1991. Antarctica: a history of terrestrial vegetation. Pp 499537 in Tinget, R.J. (ed.), The Geology of Antarctica. Oxford: Clarendon Press.Google Scholar
Vishnu-Mittre, . 1959. Studies on the fossil flora of Nipania (Rajmahal Series), Bihar: Coniferales. Palaeobotanist 6(2): 82112.Google Scholar
Wells, P.M. & Hill, R.S. 1989. Leaf morphology of the imbricate-leaved Podocarpaceae. Australian Systematic Botany 2: 369386.CrossRefGoogle Scholar
Zachos, J., Oaganini, M., Sloan, I., Thomas, E. & Billups, K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292: 686693.CrossRefGoogle ScholarPubMed

References

Bobrov, A.V.C., Melikian, A.P., Romanov, M.S. & Sorokin, A.N. 2004. Seed morphology and anatomy of Austrotaxus spicata (Taxaceae) and its systematic position. Botanical Journal of the Linnean Society 145(4): 437443.CrossRefGoogle Scholar
Brummitt, R.K., Mill, R.R. & Farjon, A. 2004. The significance of ‘it’ in the nomenclature of three Tasmanian conifers: Microcachrys tetragona and Microstrobos niphophilus (Podocarpaceae), and Diselma archeri (Cupressaceae). Taxon 53: 529539.CrossRefGoogle Scholar
Carpenter, R.J., Hill, R.S. & Jordan, G.J. 1994. Cenozoic vegetation in Tasmania: macrofossil evidence. Pp 276298 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Conran, J.G., Wood, G.A., Martin, P.G., et al. 2000. Generic relationships within and between the gymnosperm families Podocarpaceae and Phyllocladaceae based on an analysis of the chloroplast gene rbcL. Australian Journal of Botany 48: 715724.CrossRefGoogle Scholar
Dettmann, M.E., Molnar, R.E., Douglas, J.G., et al. 1992. Australian Cretaceous terrestrial faunas and floras: biostratigraphical and biogeographic implications. Cretaceous Research 13: 207262.CrossRefGoogle Scholar
Doweld, A.B. & Reveal, J.L. 1999. Validation of new suprageneric names in Pinophyta. Phytologia 84 (5): 363367.Google Scholar
Hair, J.B. & Beuzenberg, E.J. 1958. Chromosomal evolution in the Podocarpaceae. Nature 181: 15841586.CrossRefGoogle Scholar
Hill, R.S. 1989. New species of Phyllocladus (Podocarpaceae) macrofossils from southeastern Australia. Alcheringa 13: 193208.CrossRefGoogle Scholar
Hill, R.S. 1994. The history of selected Australian taxa. Pp 390420 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Hill, R.S. 2004. Origins of the southeastern Australian vegetation. Philosophical Transactions of the Royal Society London B 359: 15371549.CrossRefGoogle ScholarPubMed
Hill, R.S. & Gibson, N. 1986. Macrofossil evidence for the evolution of the alpine and sub-alpine vegetation of Tasmania. Pp 205217 in Barlow, B.A. (ed.), Flora and Fauna of Alpine Australasia: Ages and Origins. Melbourne: CSIRO.CrossRefGoogle Scholar
Jansen, R.K. & Ruhlman, T.A. 2012. Plastid genomes of seed plants. Pp 103126 in Bock, R. & Knoop, V. (eds.), Genomics of Chloroplasts and Mitochondria. Dordrecht: Springer.CrossRefGoogle Scholar
Kelch, D.G. 1997. The phylogeny of the Podocarpaceae based on morphological evidence. Systematic Botany 22: 113131.CrossRefGoogle Scholar
Kelch, D.G. 1998. Phylogeny of Podocarpaceae: a comparison of evidence from morphology and 18S rDNA. American Journal of Botany 85: 986996.CrossRefGoogle ScholarPubMed
Kirkpatrick, J.B. & Dickinson, K.J.M. 1984. The impact of fire on Tasmanian alpine vegetation and soils. Australian Journal of Botany 32: 613629.CrossRefGoogle Scholar
Knopf, P., Schulz, C., Little, D.P., Stützel, T. & Stevenson, D.W. 2012. Relationships within Podocarpaceae based on DNA sequence, anatomical, morphological, and biogeographical data. Cladistics 28: 271299.CrossRefGoogle Scholar
Little, D.P., Knopf, P. & Schulz, C. 2013. DNA barcode identification of Podocarpaceae: the second largest conifer family. PLoS One 8: e81008.CrossRefGoogle ScholarPubMed
Macphail, M.K. 1979. Vegetation and climates in southern Tasmania since the last glaciation. Quaternary Research 11: 306341.CrossRefGoogle Scholar
Macphail, M.K., Hill, R.S., Forsyth, S.M. & Wells, P.M. 1991. A Late Oligocene–Early Miocene cool climate flora from Tasmania. Alcheringa 15: 87106.CrossRefGoogle Scholar
Melikan, A.P. & Bobrov, A.V.F.C. 2000. Morphology of female reproductive structures and the experience of building of phylogenetic system of the orders Podocarpales, Cephalotaxales and Taxales. Botanichekij Zhurnal 85: 5068 (in Russian).Google Scholar
Page, C.N. 1990. Taxodiaceae. Pp 353361 in Kubitsky, K. & Green, P.S. (eds.), The Families and Genera of Vascular Plants. I. Pteridophytes and Gymnosperms. Berlin: Springer.Google Scholar
Quiroga, M.P., Mathiasen, P., Iglesias, A., Mill, R.R. & Premoli, A.C. 2016. Molecular and fossil evidence disentangle the biogeographical history of Podocarpus, a key genus in plant geography. Journal of Biogeography 43(2): 372383.CrossRefGoogle Scholar
Reveal, J.L. & Doweld, A.B. 2002. (‘1545’) Proposal to conserve the family name Microcachrydaceae (Pinophyta). Taxon 51: 573.CrossRefGoogle Scholar
Sinclair, W.T., Mill, R.R., Gardner, M.F., et al. 2002. Evolutionary relationships of the New Caledonian heterotrophic conifer, Parasitaxus usta (Podocarpaceae), inferred from chloroplast trn LF intron/spacer and nuclear rDNA ITS2 sequences. Plant Systematics and Evolution 233: 79104.CrossRefGoogle Scholar
Smith, J. 1981. The distribution and conservation status of a rare conifer, Microstrobos fitzgeraldii (Podocarpaceae). Cunninghamia 1(1): 125128.Google Scholar
Vishnu-Mittre, . 1959. Studies on the fossil flora of Nipania (Rajmahal Series), Bihar: Coniferales. Palaeobotanist 6(2): 82112.Google Scholar
Wells, P.M. & Hill, R.S. 1989. Fossil imbricate-leaved Podocarpaceae from tertiary sediments in Tasmania. Australian Systematic Botany 2: 387423.CrossRefGoogle Scholar

References

Adam, P. 1992. Australian Rainforests. Oxford: Clarendon Press.CrossRefGoogle Scholar
Aiba, S.I., Kitayama, K. & Repin, R. 2002. Species composition and species–area relationships of trees in nine permanent plots in altitudinal sequences on different geological substrates of Mount Kinabalu. Sabah Parks National Journal 5: 769.Google Scholar
Allan, H.H. 1961. Flora of New Zealand, Vol 1. Wellington: Government Printer.Google Scholar
Andruchow-Colombo, A., Escapa, I.H., Carpenter, R.J., et al. 2019. Oldest record of the scale-leaved clade of Podocarpaceae, early Paleocene of Patagonia, Argentina. Alcheringa 43, 127145.CrossRefGoogle Scholar
Baker, H.G. 1955. Self-compatibility and establishment after ‘long-distance’ dispersal. Evolution 9: 347348.Google Scholar
Barker, P.C.J. & Kirkpatrick, J.B. 1994. Phyllocladus aspleniifolius: variability in the population structure, the regeneration niche and dispersion patterns in Tasmanian forests. Australian Journal of Botany 42(2): 163190.CrossRefGoogle Scholar
Biffen, E., Brodribb, T.J., Will, R.C., Thomson, P. & Lara, A.J. 2012. Leaf evolution in Southern Hemisphere conifers tracks the angiosperm ecological radiation. Proceedings of the Royal Society B: Biological Sciences 279: 341348.CrossRefGoogle Scholar
Blackburn, D.T. & Sluiter, I.R. 1994. The Oligo-Miocene coal floras of southeastern Australia. Pp 328367 in Hill, R.S. (ed.), Australian Vegetation History: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Blint, A.N. 1981. An early Pliocene pollen assemblage from Lake Tay, south-western Australia, and its phytogeographic implications. Australian Journal of Botany 29: 277291.Google Scholar
Bobrov, A.V.F.C. 1996. Bitegmic seeds of representatives of orders Podocarpales, Cephalotaxales and Taxales. Pp. 23–26 in Proceedings of the IX International Congress on Plant Phylogeny, Moscow (in Russian).Google Scholar
Bobrov, A.V.F.C., Melikian, A.P. & Yembaturova, E.Y. 1999. Seed morphology, anatomy and ultrastructure of seeds of representatives of Phyllocladus L.C. & A. Rich (Phyllocladaceae (Pilg.) Bessy) in connection with generic system and phylogeny. Annals of Botany 83: 601618.CrossRefGoogle Scholar
Bobrov, A.V.F.C., Melikian, A.P., Romanov, M.S. & Sorokin, A.N. 2004. Seed morphology and anatomy of Austrotaxus spicata (Taxaceae) and its systematic position. Botanical Journal of the Linnean Society 145: 437443.CrossRefGoogle Scholar
Boland, D.J., Brooker, M.I.H., Chippendale, G.M., et al. 1984. Forest Trees of Australia. Melbourne: CSIRO.Google Scholar
Bowe, L.M., Coat, G. & DePamphilis, C.W. 2000. Phylogeny of seed plants based on all three genomic compartments: extant gymnosperms are monophyletic and Gnetales’ closest relatives are conifers. Proceedings of the National Academy of Sciences, USA 97(8): 40924097.CrossRefGoogle ScholarPubMed
Brodribb, T. & Hill, R.S. 2004. The rise and fall of the Podocarpaceae in Australia: a physiological explanation. Pp 381399 in Hemsley, A.R. & Poole, I. (eds.), The Evolution of Plant Physiology: From Whole Plants to Ecosystems. London: Academic Press.CrossRefGoogle Scholar
Brookfield, H.C. & Hart, D. 1966. Rainfall in the Tropical Southwest Pacific. Canberra: Australian National University.Google Scholar
Buchholz, J.T. 1941. Embryogeny of the Podocarpaceae. Botanical Gazette 103: 137.CrossRefGoogle Scholar
Calais, S. S. & Kirkpatrick, J.B. 1983. Tree species regeneration after logging in temperate rainforest, Tasmania. Papers and Proceedings of the Royal Society of Tasmania 117: 7783.CrossRefGoogle Scholar
Carpenter, R.J., Hill, R.S. & Jordan, G.J. 1994. Cenozoic vegetation in Tasmania: macrofossil evidence. Pp 276298 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Chavchavadze, E.S. 1979. Wood of Conifers. Leningrad: Nauka (in Russian).Google Scholar
Chaw, S.-M., Sung, H.-M., Long, H., Zharkikh, A. & Li, W.-H. 1995. The phylogenetic positions of the conifer genera Amentotaxus, Phyllocladus, and Nageia inferred from 18S rRNA sequences. Journal of Molecular Evolution 41: 224230.CrossRefGoogle ScholarPubMed
Chaw, S.-M, Zharkikh, A., Sung, H.-M., Lau, T.-C. & Li, W.-H 1997. Molecular phylogeny of extant gymnosperms and seed plant evolution: analysis of nuclear 18S rDNA sequences. Molecular Biology and Evolution 14: 5668.CrossRefGoogle Scholar
Chowdhury, C.R. 1962. The embryology of conifers: a review. Phytomorphology 12: 313338.Google Scholar
Clarkson, B.D., Patel, R.N. & Clarkson, B.R. 1988. Composition and structure of forest overwhelmed at Pureora, central North Island, New Zealand, during the Taupo eruption (c. AD 130). Journal of the Royal Society of New Zealand 18: 417436.CrossRefGoogle Scholar
Clifford, H.T. & Constantine, J. 1980. Ferns, Fern-Allies and Conifers of Australia. Brisbane: Queensland University Press.Google Scholar
Compton, R.H. 1922. A systematic account of the plants collected in New Caledonia and Isle of Pines. Part II. Botanical Journal of the Linnean Society 45: 421434.CrossRefGoogle Scholar
Conran, J.G., Wood, G.A., Martin, P.G., et al. 2000. Generic relationships within and between the gymnosperm families Podocarpaceae and Phyllocladaceae based on an analysis of chloroplast gene rbcL. Australian Journal of Botany 48: 715724.CrossRefGoogle Scholar
Cookson, I.C. & Pike, K.M. 1953. The Tertiary occurrence and distribution of Podocarpus (section Dacrycarpus) in Australia and Tasmania. Australian Journal of Botany 1: 7182.CrossRefGoogle Scholar
Cookson, I.C. & Pike, K.M. 1954. The fossil occurrence of Phyllocladus and two other podocarpaceous types in Australia. Australian Journal of Botany 2: 6068.CrossRefGoogle Scholar
Copeland, E.B. 1907. Comparative ecology of the San Ramon Polypodiaceae. Philippine Journal of Science 2c: 176.Google Scholar
Couper, R.A. 1953. Upper Mesozoic and Cainozoic spores and pollen grains from New Zealand. New Zealand Geological Survey Paleontological Survey Paleontological Bulletin 22.Google Scholar
Couper, R.A. 1960. Southern Hemisphere Mesozoic and Tertiary Podocarpaceae and Fagaceae and their palaeogeographical significance. Proceedings of the Royal Society of London B 152: 491500.Google Scholar
Cox, R.E., Yamamoto, S. & Otto, A. 2007. Oxygenated di- and tri-cyclic diterpenoids of southern hemisphere conifers. Biochemical Systematics and Ecology 35: 342362.CrossRefGoogle Scholar
Cranwell, L.M. 1959. Fossil pollen from Seymour Island, Antarctica. Nature, London 184: 17821785.CrossRefGoogle Scholar
Culmsee, H., Pitopang, R. & Mangopo, H. 2011. Tree diversity and phytogeographical patterns of tropical high mountain rainforests in Central Sulawesi, Indonesia. Biodiversity and Conservation 20: 11031123.CrossRefGoogle Scholar
Davies, B.J., O’Brien, I.E.W. & Murray, B.G. 1997. Karyotypes, chromosome bands and genome size variation in New Zealand endemic gymnosperms. Plant Systematics and Evolution 208: 169185.CrossRefGoogle Scholar
Dawson, J. & Lucas, R. 2013. New Zealand’s Native Trees. Nelson: Craig Potton Publishing.Google Scholar
Dettmann, M.E. 1981. The Cretaceous flora. Pp 355375 in Keast, A. (ed.), Ecological Biogeography of Australia. The Hague: W.Junk.CrossRefGoogle Scholar
Dettmann, M.E. 1994. Cretaceous vegetation: the microfossil record. Pp 143170 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Dickie, I.A. & Holdaway, R.J. 2010. Podocarp roots, mycorrhizas, and nodules. Pp 175187 in Turner, B.L. & Cernusak, L. (eds.), Ecology of Podocarpaceae in Tropical Forests. Washington, DC: Smithsonian Institution Scholarly Press.Google Scholar
Douglas, J.G. 1994. Cretaceous vegetation: the macrofossil record. Pp 171188 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Doyle, J. 1957. Aspects and problems of conifer embryology. Advancements in Science (London) 54: 111.Google Scholar
Doyle, J.A. 1996. Seed plant phylogeny and the relationships of Gnetales. International Journal of Plant Sciences 157 (6 Suppl.): S3S39.CrossRefGoogle Scholar
Doyle, J. & Looby, W. 1939. Embryology in Saxegothaea and its relation to other podocarps. Scientific Proceedings of the Royal Dublin Society 22: 127147.Google Scholar
Druitt, D.G., Enright, N.J. & Ogden, J. 1990. Altitudinal zonation in the mountain forests of Mt. Hauhungatahi, North Island, New Zealand. Journal of Biogeography 17: 205220.CrossRefGoogle Scholar
Ettingshausen, C. von 1888. Contributions to the tertiary flora of Australia. Palaeontology 2: 1189.Google Scholar
Farjon, A. 2010. A Handbook of the World’s Conifers. Leiden: Konninklijke Brill NV.CrossRefGoogle Scholar
Ferguson, D.K. 1967. On the phytogeography of Coniferales in the European Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology, 33: 73110.CrossRefGoogle Scholar
Finet, C., Timme, R.E., Delwiche, C.F. & Marlétaz, F. 2010. Multigene phylogeny of the green lineage reveals the origin and diversification of land plants. Current Biology, 20(24): 22172222.CrossRefGoogle ScholarPubMed
Fleming, C.A. 1963. Age of the New Zealand biota. Proceedings of the New Zealand Ecological Society 10.Google Scholar
Florin, R. 1963. The distribution of conifer and taxad genera in time and space. Acta Horti Bergiani 20: 121319.Google Scholar
Flower, B.P. & Kennett, J.P. 1994. The middle Miocene climatic transition: East Antarctic ice sheet development, deep ocean circulation and global carbon cycling. Palaeogeography, Palaeoclimatology, Palaeoecology 108: 537555.CrossRefGoogle Scholar
Gaussen, H. 1974. Les Gymnospermes actuelles et fossiles. Fascicule XIII. Les Podocarpines sauf les Podocarpus. Travaux du Laboratoire Forestier de Toulouse 2(3).Google Scholar
Gaussen, H. 1979. Les Gymnosperms actuelles et fossils. Les Taxines. Travaux du Laboratoire Forestier de Toulouse 1: 124.Google Scholar
Gibbs, L.S. 1920. Notes of the phytogeography and flora of the mountain summit plateaux of Tasmania. Journal of Ecology 8: 117, 89–117.CrossRefGoogle Scholar
Greguss, P. 1955. Identification of Living Gymnosperms on the Basis of Xylotomy. Budapest: Akademia Kiado.Google Scholar
Gugerli, F., Sperisen, C., Büchler, U., et al. 2001. The evolutionary split of Pinaceae from other conifers: evidence from an intron loss and a multigene phylogeny. Molecular Phylogenetics and Evolution 21(2): 167175.CrossRefGoogle Scholar
Hair, J.B. 1963. Cytogeographical relationships of the southern podocarps. Pp 401414 in Gressitt, J.B. (ed.), Pacific Basin Biogeography. Honolulu, HI: Bishop Museum.Google Scholar
Hair, J.B. & Beuzenberg, E.J. 1958. Chromosomal evolution in the Podocarpaceae. Nature 181: 15841586.CrossRefGoogle Scholar
Hanson, L. 2001. Chromosome number, karyotype and DNA C-value of the Wollemi pine (Wollemia nobilis, Araucariaceae). Botanical Journal of the Linnean Society 135(3): 271274.CrossRefGoogle Scholar
Hill, R.S. 1989. New species of Phyllocladus (Podocarpaceae) macrofossils from southeastern Australia. Alcheringa 13: 193208.CrossRefGoogle Scholar
Hill, R.S. 2004. Origins of the southeastern Australian vegetation. Philosophical Transactions of the Royal Society London B 359: 15371549.CrossRefGoogle Scholar
Hill, R.S. & Brodribb, T.J. 1999. Southern conifers in time and space. Australian Journal of Botany 47: 639696.CrossRefGoogle Scholar
Hill, R.S. & Pole, M. 1992. Leaf and shoot morphology of extant Afrocarpus, Nageia and Retrophyllum (Podocarpaceae) species and species with similar leaf arrangement from Tertiary sediments in Australasia. Australian Systematic Botany 5: 337358.CrossRefGoogle Scholar
Holloway, G.T. 1937. Ovule anatomy and development and embryogeny in Phyllocladus alpinus (Hook.) and in P. glaucus (Carr.). Transactions of the Royal Society of New Zealand 67: 149165.Google Scholar
Holloway, G.T. 1938. The significance of the diterpenes of the Phyllocladeae and Podocarpeae. New Zealand Journal of Science and Technology 20B: 1620.Google Scholar
Hope, G.S. 1986. Development of present day biotic distributions in the New Guinea mountains. Pp 129145 in Barlow, B. (ed.). Flora and Fauna of Alpine Australasia. Melbourne: CSIRO.CrossRefGoogle Scholar
Hope, G.S. & Tulip, J. 1994. A long vegetation history from lowland Irian Jaya, Indonesia. Palaeogeography, Palaeoclimatology, Palaeoecology 109: 385398.CrossRefGoogle Scholar
Jackson, W.D. 1968. Fire, air, water and earth: an elemental ecology of Tasmania. Proceedings of the Ecological Society of Tasmania 3: 916.Google Scholar
Jackson, W.D. 1983. Tasmanian rainforest ecology. Pp 939 in Blackers, R & Robertson, P. (eds.), Tasmania’s Rainforest: What Future. Hobart: Conservation Foundation.Google Scholar
Jarman, S.J., Brown, M.J., & Kantvilas, G. 1987. The classification, distribution and conservation status of Tasmanian rainforests. Pp 922 in Davis, B. (ed.), The Rainforest Legacy, Vol 1. Canberra: Australian Government Publishing Service.Google Scholar
John, R., Dalling, J.W., Harms, K.E., et al. 2007. Soil nutrients influence spatial distribution of tropical tree species. Proceedings of the National Academy of Sciences, USA 104: 864869.CrossRefGoogle ScholarPubMed
Johns, R.J. 1995. Endemism in the Malesian flora. Curtis’s Botanical Magazine 12(2): 95110.CrossRefGoogle Scholar
Jordan, G.J., Carpenter, R.J., Bannister, J.M., et al. 2011. High conifer diversity in Oligo-Miocene New Zealand. Australian Systematic Botany 24(2): 121136.CrossRefGoogle Scholar
Keng, H. 1963. Taxonomic position of Phyllocladus and the classification of conifers. Gardens Bulletin Singapore 20: 127130.Google Scholar
Keng, H. 1973. On the family Phyllocladaceae. Taiwania 18: 142145.Google Scholar
Keng, H. 1974. The phylloclade of Phyllocladus and its possible bearing on the branch systems of progymnosperms. Annals of Botany 38: 757764.CrossRefGoogle Scholar
Keng, H. 1975. A new scheme of classification of the conifers. Taxon 24: 289292.CrossRefGoogle Scholar
Keng, H. 1977. Phyllocladus and its bearing on the systematics of conifers. Pp 235251 in Kubitsky, K. (ed.), Flowering Plants: Evolution and Classification of the Higher Categories. New York: Springer.CrossRefGoogle Scholar
Keng, H. 1978. The genus Phyllocladus (Phyllocladaceae). Journal of the Arnold Arboretum 59: 249273.CrossRefGoogle Scholar
Kershaw, A.P. 1984. Late Cenozoic plant extinctions in Australia. Pp 691707 in Martin, P.S. & Llein, R.G. (eds.), Quaternary Extinctions: A Prehistoric Revolution. Tucson, AZ: University of Arizona Press.Google Scholar
Kershaw, A.P. 1994. Pleistocene vegetation of the humid tropics of northeastern Queensland, Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 109: 39412.CrossRefGoogle Scholar
Kildahl, N.J. 1908. The morphology of Phyllocladus. Botanical Gazette 46: 339348.CrossRefGoogle Scholar
Koidzumi, G. 1942. Further notes on Amentotaxaceae Kudo. Acta Phytotaxonomica Geobotanica 11: 227229 (in Japanese).Google Scholar
Kucera, L.J. & Butterfield, S.G. 1977. Resin canals in the bark of Phyllocladus species indigenous to New Zealand. New Zealand Journal of Botany 15: 657–633.CrossRefGoogle Scholar
Lee, D.E., Conran, J.G., Lindqvist, J.K., Bannister, J.M. & Mildenhall, D.C. 2012. New Zealand Eocene, Oligocene and Miocene macrofossil and pollen records and modern plant distributions in the Southern Hemisphere. The Botanical Review 78: 235260.CrossRefGoogle Scholar
Looby, W.J. & Doyle, J. 1939. The ovule, gametophyte and pro-embryo in Saxegothaea. The Scientific Proceedings of the Royal Dublin Society 22: 95117.Google Scholar
Macphail, M.K. 1979. Vegetation and climates in southern Tasmania since the last glaciation. Quaternary Research 11: 306341.CrossRefGoogle Scholar
Macphail, M.K., Alley, N. Truswell, E.M. & Sluiter, I.R.K. 1994. Early Tertiary vegetation: evidence from spores and pollen. Pp 189261 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Markgraf, V., Bradbury, J. & Busby, J.R. 1986. Palaeoclimates in southwestern Tasmania during the last 13,000 years. Palaeos 1: 368380.CrossRefGoogle Scholar
Markham, K.R., Webby, R.F., Whitehouse, L.A., et al. 1985. Support from flavonoid glycoside distribution for the division of Podocarpus in New Zealand. New Zealand Journal of Botany 23(1): 113.CrossRefGoogle Scholar
Martin, H.A. 1973. The palynology of some Tertiary and Pleistocene deposits, Lachlan River Valley, New South Wales. Australian Journal of Botany 6: 157.Google Scholar
Martin, H.A. 1994. Australian Tertiary phytogeography: evidence from palynology. Pp 104142 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Mehra, P.N. & Khoshoo, T.N. 1956. Cytology of conifers I, II. Journal of Genetics 54: 165180, 181–185.CrossRefGoogle Scholar
Melikan, A.P. & Bobrov, A.V.F.C. 1997. De Abstammung von supraintegumnetalen Samendecken – des Epimatiums und Samenmantels (‘arillus’) 0 bei den Vertretern der Ordnungen Taxales und Podocarpales. Scripta Botanica Belgica 15: 111.Google Scholar
Melikan, A.P. & Bobrov, A.V.F.C. 2000. Morphology of female reproductive structures and the experience of building of phylogenetic system of the orders Podocarpales, Cephalotaxales and Taxales. Botanichekij Zhurnal 85: 5068 (in Russian).Google Scholar
Molloy, B.J.P. 1996. A new species name in Phyllocladus (Phyllocladaceae) from New Zealand. New Zealand Journal of Botany 34: 287297.CrossRefGoogle Scholar
Moore, P.R. & Wallace, R. 2000. Petrified wood from the Miocene volcanic sequence of Coromandel Peninsula, northern New Zealand. Journal of the Royal Society of New Zealand 30: 115130.CrossRefGoogle Scholar
Muller, J. 1966. Montane pollen from the Tertiary of northwest Borneo. Blumea 14: 231235.Google Scholar
Nakai, T. 1938. Indigenous species of conifers and taxads of Korea and Manchuria and their distribution. I. Tyosen San-rin Kayho 158: 129 (in Japanese).Google Scholar
Ogden, J. 2006. On the dendrological potential of Australian trees. Austral Ecology 3: 339356.CrossRefGoogle Scholar
Page, C.N. 1973. Ferns, polyploids, and their bearing on the evolution of the Canarian flora. Monographia Biologicae Canariensis 4: 8388.Google Scholar
Page, C.N. 1979. Macaronesian heathlands. Pp 117123 in Specht, R.L. (ed.), Ecosystems of the World No 9A: Heathlands and Related Shrublands. Amsterdam: Elsevier.Google Scholar
Page, C.N. 1990. Phyllocladaceae. Pp 317319 in Kubitsky, K. & Green, P.S. (eds.), The Families and Genera of Vascular Plants. I. Pteridophytes and Gymnosperms. Berlin: Springer.Google Scholar
Page, C.N. & Clifford, H.T. 1981. Ecological biogeography of Australian conifers and ferns. Pp 473498 in Keast, A. (ed.), Ecological Biogeography of Australia. The Hague: W. Junk.Google Scholar
Page, C.N., Collinson, M.E. & Van Konijnenburg-Van Cittert, J.H.A. 2014. Lygodium hians (Pteridophyta-Schizaeales): an endemic unusual ground-clothing member of a modern climbing fern genus in New Caledonia. Adansonia 36: 2643.CrossRefGoogle Scholar
Patel, R.N. 1967. Wood anatomy of Podocarpaceae indigenous to New Zealand. 3. Phyllocladus. New Zealand Journal of Botany 6: 38.CrossRefGoogle Scholar
Patel, R.N. 1968. Wood anatomy of the Podocarpaceae indigenous to New Zealand. New Zealand Journal of Botany 6: 38.CrossRefGoogle Scholar
Pilger, E. 1903. Taxaceae. In Engler, A. (ed.), Das Pflanzenreich IV. 5. Leipzig: W. Engelmann.Google Scholar
Pocknall, D.T. 1981. Pollen morphology of Phyllocladus L.C. et A. Rich. New Zealand Journal of Botany 19: 259266.CrossRefGoogle Scholar
Pole, M. 1992 Early Miocene flora of the Manuherikia Group, New Zealand. 2. Conifer. Journal of the Royal Society of New Zealand 22: 287302.CrossRefGoogle Scholar
Pole, M. 2007. Conifer and cycad distribution in the Miocene of southern New Zealand. Australian Journal of Botany 55: 143164.CrossRefGoogle Scholar
Preest, D.S. 1963. A note on the dispersal characteristics of the seed of New Zealand podocarps and beeches and their biogeographical significance. Pp 415424 in Gressitt, J.L. (ed.), Pacific Basin Biogeography. Honolulu, HI: Bishop Museum Press.Google Scholar
Proctor, J. 2003. Vegetation and soil and plant chemistry on ultramafic rocks in the tropical Far East. Perspectives in Plant Ecology, Evolution and Systematics, 6(1–2): 105124.CrossRefGoogle Scholar
Quilty, P.G. 1994. The background: 144 million years of Australian palaeoclimate and palaeogeography. Pp 1443 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Quinn, C.J. 1970. Generic boundaries in the Podocarpaceae. Proceedings of the Linnean Society of New South Wales 94: 166172.Google Scholar
Quinn, C.J. 1986. Embryology of Phyllocladus. New Zealand Journal of Botany 24: 575579.CrossRefGoogle Scholar
Quinn, C.J. 1987. The Phyllocladaceae Keng: a critique. Taxon 36: 559565.CrossRefGoogle Scholar
Quinn, C.J. & Price, R.A. 2003. Phylogeny of the Southern Hemisphere conifers. Acta Horticulturae 615: 129136.CrossRefGoogle Scholar
Quinn, C.J., Price, R.A. & Gadek, P.A. 2002. Familial concepts and relationships in the conifers based on rbcL and matK sequence comparisons. Kew Bulletin 57: 513531.CrossRefGoogle Scholar
Read, J. 1995. The importance of comparative growth rates in determining the canopy composition of Tasmanian rainforest. Australian Journal of Botany 43: 243271.CrossRefGoogle Scholar
Robertson, A. 1906. Some points in the morphology of Phyllocladus alpinus, Hook. Annals of Botany 20(79): 259265.CrossRefGoogle Scholar
Sato, S. 1961. Pollen analysis of carbonaceous matter from the Hakobuchi Group in the Enbetsu District, Northern Hokkaido, Japan: palynological study on Cretaceous sediment (I). Journal of the Faculty of Science, Hokkaido University. Series 4, Geology and Mineralogy 11(1): 7793.Google Scholar
Saulei, S.M. 1990. Forest research and development in Papua New Guinea. Ambio 19: 379382.Google Scholar
Saxton, W.T. 1934. The morphology of Austrotaxus spicata Compton. Annals of Botany 38: 411427.CrossRefGoogle Scholar
Shimada, M. 1967. The pollen flora from the Tertiary and Cretaceous of Japan in correlation with the palaeobotanical records. Review of Palaeobotany and Palynology 5: 235241.CrossRefGoogle Scholar
Sluiter, I.R. & Kershaw, A.P. 1982. The nature of the Late Tertiary vegetation in Australia. Alcheringa 6: 211222.CrossRefGoogle Scholar
Sternberg, P. 1996. Simulation of the effects of shoot structure and orientation on vertical gradients in intercepted light by conifer canopies. Tree Physiology 16: 99108.CrossRefGoogle Scholar
Stojanovic, K. & Zivotic, D. 2013. Comparative study of Serbian Miocene coals: insights from biomarker composition. International Journal of Coal Geology 107(S1): 323.CrossRefGoogle Scholar
Stojanovic, K., Zivotic, D. & Sanjnovic, A. 2012. Drmo lignite field (Kostolac Basin, Serbia): origin and palaeoenvironmental implications from petrological and organic geochemical studies. Journal of the Serbian Chemical Society 77: 11091127 (seen only as an abstract).CrossRefGoogle Scholar
Takhtajan, A. 1986. Floristic Regions of the World. Berkley, CA: University of California Press.Google Scholar
Tomlinson, P.B., Takaso, T. & Rattenbury, J.A. 1989. Cone and ovule ontogeny in Phyllocladus (Podocarpaceae). Botanical Journal of the Linnean Society 99: 209221.CrossRefGoogle Scholar
Van Royen, P. 1965. An outline of the flora and vegetation of the Cyclops Mountains. Nova Guinea n.s. 21: 451469.Google Scholar
Wade, L.K. & McVean, D.N.L. 1969. Mt Wilhelm Studies. I. The Alpine and Subalpine Vegetation. Canberra: Australian National University.Google Scholar
Wagstaff, S.J. 2004. Evolution and biogeography of the austral genus Phyllocladus (Podocarpaceae). Journal of Biogeography 31: 15691577.CrossRefGoogle Scholar
Wagstaff, S.J. & Wege, J. 2002. Patterns of diversification in New Zealand Stylidiaceae. American Journal of Botany 89: 865874.CrossRefGoogle ScholarPubMed
Wardle, P. 1969. Biological flora of New Zealand. 4. Phyllocladus alpinus Hook. f. (Podocarpaceae) Mountain toatoa, Celery pine. New Zealand Journal of Botany 7: 7695.CrossRefGoogle Scholar
Wardle, P. 1978. Regeneration status of some New Zealand conifers, with particular reference to Libocedrus bidwillii in Westland National Park. New Zealand Journal of Botany 16: 471477.CrossRefGoogle Scholar
Wardle, P. 2008. New Zealand forest to alpine transitions in global context. Arctic, Antarctic, and Alpine Research 40(1): 240249.CrossRefGoogle Scholar
Webb, P.N. & Harwood, D.M. 1993. Pliocene fossil Nothofagus (southern beech) from Antarctica: phytogeography, dispersal strategies, and survival in high-latitude glacial–deglacial environments. Pp 135166 in Alden, J., Mastrantonia, J.L. & Odum, S. (eds.), Forest Development in Cold Climates. New York: Plenum Press.CrossRefGoogle Scholar
Wells, P.M. & Hill, R.S. 1989. Fossil imbricate-leaved Podocarpaceae from tertiary sediments in Tasmania. Australian Systematic Botany 2: 387423.CrossRefGoogle Scholar
Whitmore, T. C. 1982. Wallace’s Line: a result of plate tectonics. Annals of the Missouri Botanical Garden 69(3): 668675.CrossRefGoogle Scholar
Winkworth, R.C., Wagstaff, S.J., Glenny, D. & Lockhart, P.J. 2005. Evolution of the New Zealand mountain flora: origins, diversification and dispersal. Organisms Diversity & Evolution 5(3): 237247.CrossRefGoogle Scholar
Young, M.S. 1910. The morphology of the Podocarpineae. Botanical Gazette 50: 81100.CrossRefGoogle Scholar

References

Aravena, J.C., Carmona, M.R., Pérez, C.A. & Armesto, J.J. 2002. Changes in tree species richness, stand structure and soil properties in a successional chronosequence in northern Chiloé Island, Chile. Revista Chilena de Historia Natural 75: 339360.CrossRefGoogle Scholar
Archangelsky, S. & de la Sota, R.E. 1962. Estudio anatómico de un estípite petrifacado de ‘Osmundites’ de edad Jurásica, procedente del Gran Bajo de San Julián, provincia de Santa Cruz. Ameghiniana 2: 153164.Google Scholar
Armesto, J.J. & Figueroa, J. 1987. Stand structure and dynamics in the temperate rain forests of Chiloé Archipelago, Chile. Journal of Biogeography 14: 367376.CrossRefGoogle Scholar
Armesto, J.J., Villagran, C., Aravena, C., et al. 1995. Conifer forests of the Chilean Coastal Range. Pp 156170 in Enright, N.J. & Hill, R.S. (eds.), Ecology of the Southern Conifers. Carlton, VIC: Melbourne University Press.Google Scholar
Armesto, J.J., Villagran, C. & Arroyo, M.K. 1996. Ecologia de los bosques nativos de Chile. Santiago: Editorial Universitaria.Google Scholar
Armesto, J.J., Rozzi, R. & Caspersen, J. 2001. Temperate forests of North and South America. Pp 223249 in Chapin, F.S., Sala, O.E. & Huber-Sannwald, E. (eds.), Global Biodiversity in a Changing Environment: Scenarios for the 21st Century. New York: Springer.CrossRefGoogle Scholar
Axsmith, B.J. & Taylor, T.N. 1997. The Triassic conifer seed cone Glyptolepis. Review of Palaeobotany and Palynology 96: 7179.CrossRefGoogle Scholar
Axsmith, B.J., Taylor, T.N. & Taylor, E.L. 1998. Anatomically preserved leaves of the conifer Notophyllum krauselii (Podocarpaceae) from the Triassic of Antarctica. American Journal of Botany 85: 704713.CrossRefGoogle ScholarPubMed
Berry, E.W. 1938. Tertiary flora from the Rio Pichileufu, Argentina. Geological Society of America Special Papers 12: 1149.CrossRefGoogle Scholar
Biffin, E., Conran, J.G. & Lowe, A.J. 2011. Podocarp evolution: a molecular phylogenetic perspective. Ecology of the Podocarpaceae in tropical forests. Pp 120 in Turner, B. & Cemusak, L. (eds.), Smithsonian Contributions to Botany. Washington, DC: Smithsonian Institution.Google Scholar
Brodribb, T. & Hill, R.S. 2004. The rise and fall of the Podocarpaceae in Australia: a physiological explanation. Pp 381399 in Hemsley, A.R. & Poole, I. (eds.), The Evolution of Plant Physiology: From Whole Plants to Ecosystems. London: Academic Press.CrossRefGoogle Scholar
Brunsfeld, S.J., Soltis, P.S., Soltis, D.E., Gadek, P.A. & Quinn, C.J. 1994. Phylogenetic relationships amongst the genera of the Taxodicaeae and Cupressaceae: evidence from rbcL sequences. Systematic Botany 19: 253262.CrossRefGoogle Scholar
Buchholz, J.T. 1941. Embryogeny of the Podocarpaceae. Botanical Gazette 103: 137.CrossRefGoogle Scholar
Cantrill, D.J. & Poole, I. 2012. The Vegetation of Antarctica through Geological Time. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Carpenter, R.J. 1991. Palaeovegetation and environment at Cethana, Tasmania. PhD Thesis, University of Tasmania.Google Scholar
Castillo, C.G., Rubio, R., Rouanet, J.L. & Borie, F. 2006. Early effects of tillage and crop rotation on arbuscular mycorrhizal fungal propagules in an Ultisol. Biology and Fertility of Soils 43: 8392.CrossRefGoogle Scholar
Chowdhury, C.R. 1962. The embryology of conifers: a review. Phytomorphology 12: 313338.Google Scholar
Conran, J.G., Wood, G.A., Martin, P.G., et al. 2000. Generic relationships within and between the gymnosperm families Podocarpaceae and Phyllocladaceae based on an analysis of the chloroplast gene rbcL. Australian Journal of Botany 48: 715724.CrossRefGoogle Scholar
Dickie, I.A. & Holdaway, R.J. 2010. Podocarp roots, mycorrhizas, and nodules. Pp 175187 in Turner, B.L. & Cernusak, L. (eds), Ecology of Podocarpaceae in Tropical Forests. Washington, DC: Smithsonian Institution Scholarly Press.Google Scholar
Dilcher, D.L. 1969. Podocarpus from the Eocene of North America. Science 164: 299301.CrossRefGoogle ScholarPubMed
Donoso, C.R. 1993. Bosques Templados de Chile y Argentina: Variacion, Estructura y Dinamica. Santiago del Chile: Editorial Universitaria, Santiago.Google Scholar
Donoso, C., Grez, R., Escobar, B. & Real, P. 1984. Estructura y dinámica de bosques del tipo forestal siempreverde en un sector de Chiloé Insular. Bosque 5: 82104.CrossRefGoogle Scholar
Donoso, C.R., Deus, J.C., Cockbaine, J.C. & Castillo, H. 1986. Variaciones estructurales del tipo forestall Coigue-Rauli-Tepa. Bosque 7: 1735.CrossRefGoogle Scholar
Donoso, P.J. & Lusk, C.H. 2007. Differential effects of emergent Nothofagus dombeyi on growth and basal area of canopy species in an old‐growth temperate rainforest. Journal of Vegetation Science 18(5): 675684.Google Scholar
Doweld, A.B. & Reveal, J.L. 1998. Validation of new suprageneric names in Pinophyta. Phytologia 84: 363367.Google Scholar
Doyle, J. & Looby, W.J. 1939. Embryology in Saxegothaea and its relation to other podocarps. Scientific Proceedings of the Royal Dublin Society 22: 127147.Google Scholar
Erdtman, G. 1965. Pollen and Spore Morphology/Plant Taxonomy. III. Gymnospermae, Bryophyta. Stockholm: Almqvist & Wiksell.Google Scholar
Farjon, A. 2010. A Handbook of the World’s Conifers. Leiden: Konninklijke Brill NV.CrossRefGoogle Scholar
Florin, R. 1940. The Tertiary conifers of southern Chile and their phytogeographica significance. Kungliga Svenska Vetenskapsakademiens Handlingar 19: 1107.Google Scholar
Gajardo, R., Woltz, P., Gondran, M. & Marguerier, J. 1996. Xylogie des conifères endémiques des Andes méredionales au MEB. I. Saxegotheaceae. Revue de Cytologie et de Biologie Végétales – Le Botaniste 19: 3145.Google Scholar
Gamerro, J.C. 1995. Morphología del pollen de Saxegothaea conspicua (Podocarpaceae). Darwiniana 33: 295300.Google Scholar
Gardner, M.F. & Lara, A. 2003. The conifers of Chile: an overview of their distribution and ecology. Pp 165170 in Mill, R.R. (ed.), Conifers for the Future? Proceedings of the Fourth International Conifer Conference. Wye: Acta Horticulturae.Google Scholar
Gaussen, H. 1973. Les Gymnospermes Actualles et Fossils. Les Podocarpinees. Etudes Général. Travaux Laboratoire Forestière Toulouse 12: 1108.Google Scholar
Gaussen, H. 1974. Les Gymnospermes Actualles et Fossils. Les Podocarpinees sauf Podocarpus. Travaux Laboratoire Forestière Toulouse 13: 1174.Google Scholar
Gaussen, H. 1976. Les Gymnospermes actuelles et fossiles. Genre Podocarpus. Conclusion des Podocarpnes. Travaux du Laboratoire Forestal de Toulouse 14: 150.Google Scholar
Gayoso, A.J. & Guerra, C.J. 2005. Contenido de carbono en la biomasa aérea de bosques nativos en Chile. Bosque (Valdivia) 26(2): 3338.CrossRefGoogle Scholar
Gnaedinger, S. 2007. Podocarpaceae woods (Coniferales) from middle Jurassic La Matilde formation, Santa Cruz province, Argentina. Review of Palaeobotany and Palynology, 147(1–4): 7793.CrossRefGoogle Scholar
Gutiérrez, A.G., Armest, J.J. & Aravena, J.C. 2004. Disturbance and regeneration dynamics of an old-growth North Patagonian rain forest in Chiloé Island, Chile. Journal of Ecology 92: 598608.CrossRefGoogle Scholar
Hair, J.B. 1963. Cytogeographical relationships of the southern podocarps. Pp 401414 in Gressitt, J.L. (ed.), Pacific Basin Biogeography. Honolulu, HI: Bishop Museum Press.Google Scholar
Hair, J.B. & Beuzenberg, E.J. 1958. Chromosomal evolution in the Podocarpaceae. Nature 181: 15841586.CrossRefGoogle Scholar
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Herbst, R. 2003. Osmundicaulis tehuelchense nov. sp. (Osmundaceae, Filices) from the Middle Jurassic of Santa Cruz province (Patagonia, Argentina). CFS Courier Forschungsinstitut Senckenberg 241: 8595.Google Scholar
Hervé, F., Moreno, H. & Parada, M.A. 1974. Granitoids of the Andean Range, Valdivia Province, Chile. Pacific Geology 8: 3945.Google Scholar
Hill, R.S. & Brodribb, T.J. 1999. Southern conifers in time and space. Australian Journal of Botany 47: 639696.CrossRefGoogle Scholar
Hill, R.S. & Carpenter, R.J. 1989. Tertiary gymnosperms from Tasmania: Cupressaceae. Alcheringa 13: 89102.CrossRefGoogle Scholar
Kelch, D.G. 1997. The phylogeny of the Podocarpaceae based on morphological evidence. Systematic Botany 22: 113131.CrossRefGoogle Scholar
Kelch, D.G. 1998. Phylogeny of Podocarpaceae: a comparison of evidence from morphology and 18S rDNA. American Journal of Botany 85: 986996.CrossRefGoogle ScholarPubMed
Kildahl, N.J. 1908. The morphology of Phyllocladus. Botanical Gazette 46: 339348.CrossRefGoogle Scholar
Kimura, T., Ohana, T. & Mimoto, K. 1988. Discovery of a podocarpaceous plant from the Lower Cetaceous of Kohi Prefecture, in the outer zone of southwest Japan. Proceedings of the Japan Academy B 64: 213216.CrossRefGoogle Scholar
Krassilov, V.A. 1974. Podocarpus from the Upper Cretaceous of eastern Asia and its bearing on the theory of conifer evolution. Paleontology 17: 365370.Google Scholar
Lara, A., Altamirano, A., Thiers, O. & Tacón, A. 2002. Plan de Manejo, Proyecto CIPMA FMAM, Unidad demonstrativa Piloto, Predio San Pablo de Tregua. Valdivia: Facultad de Ciencias Forestales, Unversidad Austral de Chile.Google Scholar
Lawver, L.A. & Gahagan, L.M. 2003. Evolution of Cenozoic seaways in the circum-Antarctic region. Palaeogeography, Palaeoclimatology, Palaeoecology 198: 1137.CrossRefGoogle Scholar
Lindley, J. 1851. Notices of certain ornamental plants lately introduced into England. Journal of the Horticultural Society, London 6: 258273.Google Scholar
Little, D.P., Knopf, P. & Schulz, C. 2013. DNA barcode identification of Podocarpaceae: the second largest conifer family. PLoS One 8: e81008.CrossRefGoogle Scholar
Looby, W.J. & Doyle, J. 1939. The ovule, gametophyte and pro-embryo in Saxegothaea. Scientific Proceedings of the Royal Dublin Society 22: 95117.Google Scholar
Lusk, C.H. 1995. Seed size, establishment sites and species coexistence in Chilean rain forest. Journal of Vegetation Science 6: 249256.CrossRefGoogle Scholar
Lusk, C.H. 1996. Stand dynamics of the shade-tolerant conifers Podocarpus nubigenus and Saxegothaea conspicua in Chilean temperate rain forest. Journal of Vegetation Science 7: 549558.CrossRefGoogle Scholar
Medus, J., Gajardo, R. & Woltz, P. 1989. Exine structure of Dacrydium fonkii, Saxegothaea conspicua and Syachycarpus andinus (Podocarpaceae) from South America. Grana 28: 1923.CrossRefGoogle Scholar
Mehra, P.N. & Khoshoo, T.N. 1956. Cytology of conifers I, II. Journal of Genetics 54: 165180, 181–185.CrossRefGoogle Scholar
Melikan, A.P. & Bobrov, A.V.F.C. 2000. Morphology of female reproductive structures and the experience of building of phylogenetic system of the orders Podocarpales, Cephalotaxales and Taxales. Botanichekij Zhurnal 85: 5068 (in Russian).Google Scholar
Mill, R.R. 2003. Towards a biogeography of the Podocarpaceae. Pp 137147 in Mill, R.R. (ed.), Conifers for the Future? Proceedings of the Fourth International Conifer Conference. Wye: Acta Horticulturae.Google Scholar
Mill, R.R. & Stark Schilling, D.M. 2009. Cuticle micromorphology of Saxegothaea (Podoacarpaceae). Botanical Journal of the Linnean Society 159: 5867.CrossRefGoogle Scholar
Miller, C.N. 1988. The origin of modern conifer families. Pp 448486 in Beck, C.B. (ed.), Origin and Evolution of Gymnosperms. New York: Columbia University Press.Google Scholar
Miller, C.N. 1999. Implications of fossil conifers for the phylogenetic relationships of living families. The Botanical Review 65: 239277.CrossRefGoogle Scholar
Molino, J.F. & Sabatier, D. 2001. Tree diversity in tropical rain forests: a validation of the intermediate disturbance hypothesis. Science 294(5547): 17021704.CrossRefGoogle ScholarPubMed
Morvan, J. 1990. Ontogenèse et phylogénie comparées du cône femelle chex Saxegothaea conspicua Lindl. Saxegotheaeacées et Microcachrys tetragonal Hook. Podocarpacées. Comtes Rendys de l’Académie des Sciences, Série III, Sciences de la Vie 310: 651656.Google Scholar
Niklitschek, M.J.C. 2008. Caracterizatión de estructura de crecimiento vegetativo que desarrolla Saxegothaea conspicua en su etapa de senesencia. Valdivia: Facultad de Ciencias Forestales, Unversidad Austral de Chile.Google Scholar
Paull, R. & Hill, R.S. 2008. Oligocene Austrocedrus from Tasmania (Australia): comparisons with Austrocedrus chilensis. International Journal of Plant Sciences 169: 315330.CrossRefGoogle Scholar
Pérez, C.A., Carmona, M.R., Aravena, J.C., Farina, J.M. & Armesto, J.J. 2009. Environmental controls and patterns of cumulative radial increment of evergreen tree species in montane, temperate rainforests of Chiloé Island, southern Chile. Austral Ecology 34: 259271.CrossRefGoogle Scholar
Price, R.A. & Lowenstein, J.M. 1989. An immunological comparison of the Sciadopityaceae, Taxodiaceae, and Cupressaceae. Systematic Botany 14: 141149.CrossRefGoogle Scholar
Quinn, C.J. 1970. Generic boundaries in the Podocarpaceae. Proceedings of the Linnean Society of New South Wales 94: 166172.Google Scholar
Reymanówna, M. 1987. A Jurassic podocarp from Poland. Review of Palaeobotany and Palynology 51: 133143.CrossRefGoogle Scholar
Sinclair, W.T., Mill, R.R., Gardner, M.F., et al. 2002. Evolutionary relationships of the New Caledonian heterotrophic conifer, Parasitaxus usta (Podocarpaceae), inferred from chloroplast trn LF intron/spacer and nuclear rDNA ITS2 sequences. Plant Systematics and Evolution 233: 79104.CrossRefGoogle Scholar
Stiles, W. 1908. The anatomy of Saxegothaea conspicua Lindl. New Phytologist 7: 207220.CrossRefGoogle Scholar
Thomson, R.B. 1909. The megasporophyll of Saxegothaea and Microcachrys. Botanical Gazette 47: 345354.CrossRefGoogle Scholar
Townrow, J.A. 1967. On Rissikia and Mataia podocarpaceous conifers from the Lower Mesozoic of southern lands. Papers and Proceedings of the Royal Society of Tasmania 101: 103136.CrossRefGoogle Scholar
Veblen, T.T. 1985. Stand dynamics in Chilean Nothofagus forests. Pp 3551 in Pickett, S.T.A. and White, P.S. (eds.), The Ecology of Natural Disturbance and Patch Dynamics. New York: Academic Press.Google Scholar
Veblen, T.T. & Ashton, D.H. 1978. Catastrophic influences on the vegetation of the Valdivian Andes, Chile. Vegetatio 36: 149167.CrossRefGoogle Scholar
Veblen, T.T. & Ashton, D.H. 1982. The regeneration status of Fitzroya cupressoides in the Cordillera Pelada, Chile. Biological Conservation 23: 141161.CrossRefGoogle Scholar
Veblen, T.T., Schlegel, F.M.B. & Escobar, R. 1980. Structure and dynamics of old-growth Nothofagus forests in the Valdivian Andes, Chile. Journal of Ecology 68: 131.CrossRefGoogle Scholar
Veblen, T.T., Donoso, C., Schlegel, F.M. & Escobar, B. 1981. Forest dynamics in south-central Chile. Journal of Biogeography 8: 211247.CrossRefGoogle Scholar
Veblen, T., Kitzberger, T. & Lara, A. 1992. Disturbance and forest dynamics along a transect from Andean rain-forest to Patagonian shrubland. Journal of Vegetation Science 3: 507520.CrossRefGoogle Scholar
Veblen, T.T., Burns, B.R., Kitzberegeerr, A.L. & Villalba, R. 1995. The ecology of the conifers of southern South America. Pp 120155 in Enright, N.J. & Hill, R.S. (eds.), Ecology of the Southern Conifers. Washington, DC: Smithsonian Institution Press.Google Scholar
Veblen, T.T., Donoso, C., Kitzberger, T. & Rebertus, A.J. 1996. Ecology of southern Chilean and Argentinean Nothofagus forests. Pp 293353 in Veblen, T.T., Hill, R.S. & Read, J. (eds.), The Ecology and Biogeography of Nothofagus Forests. New Haven, CT: Yale University Press.Google Scholar
Villagran, C., Leon, A. & Roig, F.A. 2004. Paleodistribution of the alerce and cypress of the Guaitecas during the interstadial stages of the Llanquihue Glaciation, Llanquihue and Chiloé Provinces, Los Lagos region, Chile. Revista Geología de Chile 31: 133151.Google Scholar
Wilf, P. 2012. Rainforest conifers of Eocene Patagonia: attached cones and foliage of the extant Southeast Asian and Australasian genus Dacrycarpus (Podocarpaceae). American Journal of Botany 99: 562584.CrossRefGoogle ScholarPubMed
Wilf, P., Little, S.A., Iglesias, A., et al. 2009. Papuacedrus (Cupressaceae) in Eocene Patagonia, a new fossil link to Australasian rainforests. American Journal of Botany 96: 20312047.CrossRefGoogle Scholar
Wilf, P., Escapa, I.H., Cúneo, N.R., et al. 2014. First South American Agathis (Araucariaceae), Eocene of Patagonia. American Journal of Botany 101: 156179.CrossRefGoogle ScholarPubMed

References

Bobrov, A.V.F.C. & Romanov, M.S. 1999. Seed coat structure and systematic relationships of Sundacarpus amarus (Blume) C.N.Page (Podocarpaceae (Dumort.) Endl. S.l.). 14th Symposium Biodiversisät Evolutionsbiologie Jena.Google Scholar
Conran, J.G., Wood, G.A., Martin, P.G., et al. 2000. Generic relationships within and between the gymnosperm families Podocarpaceae and Phyllocladaceae based on an analysis of the chloroplast gene rbcL. Australian Journal of Botany 48: 715724.CrossRefGoogle Scholar
Davies, B.J., O’Brien, I.E.W. & Murray, B.G. 1997. Karyotypes, chromosome bands and genome size variation in New Zealand endemic gymnosperms. Plant Systematics and Evolution 208: 169185.CrossRefGoogle Scholar
Dawson, J. & Lucas, R. 2013. New Zealand’s Native Trees. Nelson: Craig Potton Publishing.Google Scholar
Earle, C.J. 2017. Lepidothamnus. The Gymnosperm Database. www.conifers.orgGoogle Scholar
Farjon, A. 2010. A Handbook of the World’s Conifers. Leiden: Konninklijke Brill NV.CrossRefGoogle Scholar
Gardner, M. & Hechenleitner, P. 2013. Lepidothamnus fonkii. IUCN Red List of Threatened Species (v. 2013.1). http://www.iucnredlist.org.Google Scholar
Hair, J.B. 1963. Cytogeographical relationships of the southern podocarps. Pp 401414 in Gressitt, J.L. (ed.), Pacific Basin Biogeography. Honolulu, HI: Bishop Museum Press.Google Scholar
Hair, J.B. & Beuzenberg, E.J. 1958. Chromosomal evolution in the Podocarpaceae. Nature 181: 15841586.CrossRefGoogle Scholar
Kelch, D.G. 2002. Phylogenetic assessment of the monotypic genera Sundacarpus and Manoao (Conferales: Podocarpaceae) utilising evidence from 18S rDNA sequences. Australian Systematic Botany 15: 2955.CrossRefGoogle Scholar
Keng, H. 1973. On the family Phyllocladaceae. Taiwania 18: 142145.Google Scholar
Keng, H. 1978. The genus Phyllocladus (Phyllocladaceae). Journal of the Arnold Arboretum 59: 249273.CrossRefGoogle Scholar
Knopf, P., Schulz, C., Little, D.P., Stützel, T. & Stevenson, D.W. 2012. Relationships within Podocarpaceae based on DNA sequence, anatomical, morphological, and biogeographical data. Cladistics 28: 271299.CrossRefGoogle Scholar
Little, D.P., Knopf, P. & Schulz, C. 2013. DNA barcode identification of Podocarpaceae: the second largest conifer family. PLoS One 8: e81008.CrossRefGoogle ScholarPubMed
Mancini, M.V. 1998. Vegetational changes during the Holocene in extra-Andean Patagonia, Santa Cruz Province, Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology 138: 207219.CrossRefGoogle Scholar
Mancini, M.V., Prieto, A.R., Paez, M.M. & Schabitz, F. 2008. Late Quaternary vegetation and climate of Patagonia. Developments in Quaternary Sciences 11: 351367.CrossRefGoogle Scholar
Markgraf, V. 1993. Paleoenvironments and paleoclimates in Tierra del Fuego and southernmost Patagonia, South America. Palaeogeography, Palaeoclimatology, Palaeoecology 102: 5368.CrossRefGoogle Scholar
Markham, K., Webby, R.F., Molloy, B.P.J. & Vilain, C. 1989. Support from flavenoid glycoside distribution for the division of Dacrydium sensu lato. New Zealand Journal of Botany 27: 111.CrossRefGoogle Scholar
Medan, P.D. & Tortosa, R.D. 1981. Trevoa (Rhamnaceae) y Coriaria (Coriariaceae). Boletín de la Sociedad Argentina de Botánica, 20(1–2): 7181.Google Scholar
Mehra, P.N. & Khoshoo, T.N. 1956. Cytology of conifers I, II. Journal of Genetics 54: 165180, 181–185.CrossRefGoogle Scholar
Melikan, A.P. & Bobrov, A.V.F.C. 2000. Morphology of female reproductive structures and the experience of building of phylogenetic system of the orders Podocarpales, Cephalotaxales and Taxales. Botanichekij Zhurnal 85: 5068 (in Russian).Google Scholar
Molloy, B.J.P. & Markham, K.R. 1999. A contribution to the taxonomy of Phyllocladus (Phyllocladaceae) from the distribution of key flavenoids. New Zealand Journal of Botany 37: 375382.CrossRefGoogle Scholar
Moore, D.M. 1983. Flora of Tierra del Fuego. London: Anthony Nelson.Google Scholar
Ogden, J., Horrocks, M., Palmer, J.G. & Fordham, R.A. 1997. Structure and composition of the sub-alpine forest on Mount Hauhungatahi, North Island, New Zealand, during the Holocene. Holocene 7: 1323.CrossRefGoogle Scholar
Page, C.N. 1990. Key to families of Coniferophytina. P 283 in Kubitsky, K. & Green, P.S. (eds.), The Families and Genera of Vascular Plants. I. Pteridophytes and Gymnosperms. Berlin: Springer.Google Scholar
Pisano, E. 1983. The Magellanic Tundra complex. Pp 295329 in Gore, A.J.P. (ed.), Ecosystems of the World, Vol 4B. Amsterdam: Elsevier.Google Scholar
Pocknall, D.T. 1981. Pollen morphology of the New Zealand species of Dacrydium Solander, Podocarpus L’Heritier, and Dacrycarpus Endlicher (Podocarpaceae). New Zealand Journal of Botany 19: 6795.CrossRefGoogle Scholar
Pole, M. 1997. Miocene conifers from the Manuherikia Group, New Zealand. Journal of the Royal Society of New Zealand 27: 355370.CrossRefGoogle Scholar
Pole, M.S. 1992. Eocene vegetation from Hasties, north-east Tasmania. Australian Systematic Botany 5: 431475.CrossRefGoogle Scholar
Pugh, P.J.A. & Convey, P. 2008. Surviving out in the cold: Antarctic endemic invertebrates and their refugia. Journal of Biogeography 35: 21762186.CrossRefGoogle Scholar
Quinn, C.J. 1970. Generic boundaries in the Podocarpaceae. Proceedings of the Linnean Society of New South Wales 94: 166172.Google Scholar
Quinn, C.J. 1982. Taxonomy of Dacrydium Sol. Ex Lamb. Emend de Laub. (Podocarpaceae). Australian Journal of Botany 30: 311320.CrossRefGoogle Scholar
Quinn, C.J. 1987. The Phyllocladaceae Keng: a critique. Taxon 36: 559565.CrossRefGoogle Scholar
Quinn, C.J. & Gadek, P. 1981. Biflavones of Dacrydium sensu lato. Phytochemistry 20(4): 677681.CrossRefGoogle Scholar
Quinn, C.J. & Price, R.A. 2003. Phylogeny of the Southern Hemisphere conifers. Pp 129133 Mill, R.R. (ed.), Conifers for the Future? Proceedings of the Fourth International Conifer Conference. Wye: Acta Horticulturae.Google Scholar
Quinn, C.J. & Rattenbury, J.A. 1972. Structural hybridity in New Zealand Dacrydium. New Zealand Journal of Botany 10: 427436.CrossRefGoogle Scholar
Quinn, C.J., Price, R.A. & Gadek, P.A. 2002. Familial concepts and relationships in the conifers based on rbcL and matK sequence comparisons. Kew Bulletin 57: 513531.CrossRefGoogle Scholar
Quiroga, M.P., Mathiasen, P., Iglesias, A., Mill, R.R. & Premoli, A.C. 2016. Molecular and fossil evidence disentangle the biogeographical history of Podocarpus, a key genus in plant geography. Journal of Biogeography 43(2): 372383.CrossRefGoogle Scholar
Sinclair, W.T., Mill, R.R., Gardner, M.F., et al. 2002. Evolutionary relationships of the New Caledonian heterotrophic conifer, Parasitaxus usta (Podocarpaceae), inferred from chloroplast trn LF intron/spacer and nuclear rDNA ITS2 sequences. Plant Systematics and Evolution 233: 79104.CrossRefGoogle Scholar
Tomlinson, P.B. 1994. Functional morphology of saccate pollen in conifers with special reference to Podocarpaceae. International Journal of Plant Sciences 155: 699715.CrossRefGoogle Scholar
Veblen, T.T. & Schlegel, F.M. 1982. Reseña Ecológica de los bosques del sur de Chile. Bosque 2: 73115.CrossRefGoogle Scholar
Veblen, T.T., Burns, B.R., Kitzberger, T., Lara, A. & Villalba, R. 1995. The ecology of the conifers of southern South America. Pp 120155 in Enright, N.J. & Hill, R.S. (eds.), Ecology of the Southern Conifers. Carlton, VIC: Melbourne University Press.Google Scholar
Villagran, C. 1988. Expansion of Magellanic moorland during the late Pleistocene: palynological evidence from northern Isla de Chiloé, Chile. Quaternary Research 29: 294306.CrossRefGoogle Scholar
Villagran, C. 1990. Glacial climates and their effects on the history of vegetation of Chile: a synthesis based on palynological evidence from Isla de Chiloé. Review of Palaeobotany and Palynology 65: 1724.CrossRefGoogle Scholar
Villagran, C. 1991. Historia de los bosques templados del sur de Chile durante el Tardiglacial y Postglacial. Revista Chilena de Historia Natural 64: 447460.Google Scholar
Wagstaff, S.J. 2004. Evolution and biogeography of the austral genus Phyllocladus (Podocarpaceae). Journal of Biogeography 31: 15691577.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×