Skip to main content Accessibility help
×
Hostname: page-component-599cfd5f84-jhfc5 Total loading time: 0 Render date: 2025-01-07T06:07:48.189Z Has data issue: false hasContentIssue false

Chapter 27 - Juniperus

Cupressales: Cupressaceae S.S.

from Part III - Living Arborescent Gymnosperm Genetic Presentations

Published online by Cambridge University Press:  11 November 2024

Christopher N. Page
Affiliation:
University of Exeter
Get access

Summary

Dioecious, more rarely monoecious, evergreen shrubs or small to large trees of very varying individual form, with leaves spreading when young, but adult individuals often with predominantly acicular or cupressoid foliage persisting for many years. The seed-bearing organs are multi-scaled cones whose cone scales become concrescent and fleshy at maturity. Shoots and fruits have a characteristic, often slightly pungent resinous, terpenoid or aromatic smell.

Type
Chapter
Information
Evolution of the Arborescent Gymnosperms
Pattern, Process and Diversity
, pp. 481 - 509
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, R.P. 1982. A comparison of multivariate methods for the detection of hybridisation. Taxon 31: 649661.CrossRefGoogle Scholar
Adams, R.P. 1983. Interspecific terpenoid variation in Juniperus scopulorum: evidence for Pleistocene refugia and recolonization in western North America. Taxon 32: 3046.CrossRefGoogle Scholar
Adams, R.P. 1990. Juniperus procera of East Africa: volatile leaf oil composition and putative relationship to Juniperus excelsa. Biochemical Systematics and Ecology 18: 207210.CrossRefGoogle Scholar
Adams, R.P. 2000. Systematics of Juniperus section Juniperus based on leaf essential oils and random amplified polymorphic DNAs (RAPDs). Biochemical Systematics and Ecology 28(6): 515528.CrossRefGoogle ScholarPubMed
Adams, R.P. 2001. Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectroscopy. Carol Stream, IL: Allured Publishing.Google Scholar
Adams, R.P. 2006. DNA fingerprinting and terpenoid analysis of Juniperus blancoi var huehuentensis (Cupressaceae), a new subalpine variety from Durango, Mexico. Biochemical Systematics and Ecology 34: 205211.CrossRefGoogle Scholar
Adams, R.P. 2008. The Junipers of the World: The Genus Juniperus, 2nd edn. Victoria, BC: Trafford Publishing.Google Scholar
Adams, R.P. 2011. Junipers of the World: The Genus Juniperus, 3rd edn. Bloomington, IN: Trafford Publishing.Google Scholar
Adams, R.P. & Demeke, T. 1993. Systematic relationships in Juniperus based on random amplified polymorphic DNAs (RAPDs). Taxon 42: 553571.CrossRefGoogle Scholar
Adams, R.P. & Kistler, J.R. 1991. Hybridisation between Juniperus erythrocarpa Coru and Juniperus pinchotii Sudworth in the Chisos Mountains, Texas. Southwestern Naturalist 36: 295301.CrossRefGoogle Scholar
Adams, R.P., Hsieh, C.F., Murata, J. & Pandey, R.N. 2002. Systematics of Juniperus from eastern Asia based on random amplified polymorphic DNAs (RAPDs). Biochemical Systematics and Ecology 30(3): 231241.CrossRefGoogle Scholar
Adams, R.P., Ruiz, B.R., Fontinha, S.S. & Nogales, M. 2010. Geographic variation in the leaf essential oils of Juniperus cedrus Webb & Berthel: from Madeira and the Canary Islands. Phytologia 92: 3143.Google Scholar
Ahuja, M.R. 2005. Polyploidy in gymnosperms: revisited. Silvae Genetica 54(1–6): 5969.CrossRefGoogle Scholar
Anderson, R.S. & Feiler, E. 2009. Holocene vegetation and climate change on the Colorado Great Plains, USA, and the invasion of Colorado piñon (Pinus edulis). Journal of Biogeography 36(12): 22792289.CrossRefGoogle Scholar
Broome, A.C. 2003. Growing Juniper: Propagation and Establishment Practices. Edinburgh: Forestry Commission.Google Scholar
Brunsfeld, S.J., Soltis, P.S., Soltis, D.E., Gadek, P.A. & Quinn, C.J. 1994. Phylogenetic relationships amongst the genera of the Taxodicaeae and Cupressaceae: Evidence from rbcL sequences. Systematic Botany 19: 253262.CrossRefGoogle Scholar
Buzek, F. & S̆rámek, J. 1985. Sulfur isotopes in the study of stone monument conservation. Studies in Conservation 30: 171.CrossRefGoogle Scholar
Chavez-Ramirez, F. & Slack, R.D. 1993. Carnivore fruit-use and seed dispersal of two selected plant species of the Edwards Plateau, Texas. The Southwestern Naturalist 38: 141145.CrossRefGoogle Scholar
Dar, G.H. & Christensen, K.I. 2003. Gymnosperms of the Western Himalayas. I. The genus Juniperus (Cupressaceae). Pakistan Journal of Botany 35: 283311.Google Scholar
De Nascimento, L., Willis, K.J., Fernández‐Palacios, J.M., Criado, C. & Whittaker, R.J. 2009. The long‐term ecology of the lost forests of La Laguna, Tenerife (Canary Islands). Journal of Biogeography 36(3): 499514.CrossRefGoogle Scholar
Dias, E. & Melo, C. 2010. Factors influencing the distribution of Azorean mountain vegetation: implications for nature conservation. Biodiversity and Conservation 19: 33113326.CrossRefGoogle Scholar
Dogra, P.D. 1986. Conifers of India and their natural gene resources in relation to forestry and the Himalayan environment. Glimpses in Plant Research 7: 129194.Google Scholar
Dzialuk, A., Mazur, M., Boratynska, K., et al. 2011. Population genetic structure of Juniperus phoenicea (Cupressaceae) in the western Mediterranean Basin: gradient of diversity on a broad geographical scale. Annals of Forest Science 68: 13411350.CrossRefGoogle Scholar
Eckenwalder, J.F. 2009. Conifers of the World: The Complete Reference. Portland, OR: Timber Press.Google Scholar
Elias, R.B. & Dias, E. 2009. Gap dynamics and regeneration strategies in JuniperusLaurus forests of the Azores Islands. Plant Ecology 200: 179189.CrossRefGoogle Scholar
Elias, R.B., Dias, E. & Pereira, F. 2011. Disturbance, regeneration and the spatial pattern of tree species in Azorean mountain forests. Community Ecology 12: 2330.CrossRefGoogle Scholar
Farjon, A. 1992. The taxonomy of multiseed junipers (Juniperus sect. Sabina) in southwest Asia and east Africa. Edinburgh Journal of Botany 49: 251283.CrossRefGoogle Scholar
Farjon, A. 2005. A Monograph of Cupressaceae and Sciadopitys. Kew: Royal Botanic Gardens.Google Scholar
Farjon, A. & Ortiz Garcia, S. 2002. Towards the minimal conifer cone: ontogeny and trends in Cupressus, Juniperus and Microbiota (Cupressaceae s. str.). Botanische Jahrbucher fur Systematik, Pflanzengeschichte und Planzengeographie 124: 129147.CrossRefGoogle Scholar
Ferreira, R.E.C. & Wormell, P. 1971. Fertiliser response of vegetation on ultrabasic terraces on Rhum. Transactions of the Botanical Society of Edinburgh 41(2): 149154.CrossRefGoogle Scholar
Flake, R.H., Urbaysch, L. & Turner, B.L. 1978. Chemical documentation of allopatric introgression in Juniperus. Systematic Botany 3: 129144.CrossRefGoogle Scholar
Fleishmann, E. & Dobkin, D.S. 2009. Current and potential future elevation distributions of birds associated with pinyon–juniper woodlands in the central Great Basin, USA. Restoration Ecology 17: 731739.CrossRefGoogle Scholar
Frenzel, B., Bräuning, A. & Adamczyk, S. 2003. Possible last-glacial forest-refuge areas within the deep valleys of eastern Tibet. Erdkunde 57: 182198.CrossRefGoogle Scholar
Gadek, P.A., Alpers, D.L., Heslewood, M.M. & Quinn, C.J. 2000. Relationships within Cupressaceae sensu lato: a combined morphological and molecular approach. American Journal of Botany 87: 10441057.CrossRefGoogle Scholar
Garcia, D. 2001. Effects of seed dispersal on Juniperus communis recruitment on a Mediterranean mountain. Journal of Vegetation Science 12: 839848.CrossRefGoogle Scholar
Gómez‐Aparicio, L. 2008. Spatial patterns of recruitment in Mediterranean plant species: linking the fate of seeds, seedlings and saplings in heterogeneous landscapes at different scales. Journal of Ecology 96(6): 11281140.CrossRefGoogle Scholar
Gómez-Aparicio, L., Zamora, R., Gómez, J.M., et al. 2004. Applying plant facilitation to forest restoration: a meta‐analysis of the use of shrubs as nurse plants. Ecological Applications 14(4): 11281138.CrossRefGoogle Scholar
Grubb, P.J., Lee, W.G., Lollman, J. & Wilson, J.B. 1996. Interaction of irradiance and soil nutrient supply on growth of seedlings of ten European tall shrub species and Fagus sylvatica. Journal of Ecology 84: 827840.CrossRefGoogle Scholar
Gupta, S.K. & Sharma, P. 1992. On the nature of the ice cap on the Tibetan Plateau during the late Quaternary. Palaeogeography, Palaeoclimatology, Palaeoecology 97(4): 339343.CrossRefGoogle Scholar
Hall, J.B. 1984. Juniperus excelsa in Africa: a biogeographical study of an Afromontane tree. Journal of Biogeography 11: 4761.CrossRefGoogle Scholar
Hall, M.T. 1952. A hybrid swarm in Juniperus. Evolution 6: 374–366.CrossRefGoogle Scholar
Hojjati, F., Zarre, S. & Assadi, M. 2009. Isoenzyme diversity and cryptic speciation in Juniperus excelsa (Cupressaceae) complex in Iran. Biochemical Systematic and Ecology 37: 193200.CrossRefGoogle Scholar
Holthuijzen, A.M. & Adkisson, C.S. 1984. Passage rate, energetics, and utilization efficiency of the Cedar Waxwing. The Wilson Bulletin 96: 680684.Google Scholar
Holthuijzen, A.M. & Sharik, T.L. 1985. The avian seed dispersal system of eastern red cedar (Juniperus virginiana). Canadian Journal of Botany 63(9): 15081515.CrossRefGoogle Scholar
Holthuijzen, A.M., Sharik, T.L. & Fraser, J.D. 1987. Dispersal of eastern red cedar (Juniperus virginiana) into pastures: an overview. Canadian Journal of Botany 65(6): 10921095.CrossRefGoogle Scholar
Imkhanitskaya, N.N. 1990. Taxonomic note on Juniperus excelsa (Cupressaceae). Botanicheskii Zhurnal 75: 402409 (in Russian).Google Scholar
Islebe, G.A., Velázquez, A. & Cleef, A.M. 1995. High elevation coniferous vegetation of Guatemala: a phytosociological approach. Vegetatio 116: 723.CrossRefGoogle Scholar
Jensen, H. & Levan, A. 1941. Colchicine‐induced tetraploidy in Sequoia gigantea. Hereditas 27(3–4): 220224.CrossRefGoogle Scholar
Jiminez, J.F., Werner, O., Sanchez-Gomez, P. & Fernandez, S. 2003. Genetic variations and migration pathway of Juniperus thurifera L. (Cupressaceae) in the western Mediterranean region. Israel Journal of Plant Sciences 51: 1122.Google Scholar
Jordano, P. 1993. Geographical ecology and variation of plant-seed disperser interactions: southern Spanish junipers and frugivorous thrushes. Vegetatio 107: 85104.CrossRefGoogle Scholar
Karlioğlu, N., Akkemik, U. & Caner, H. 2009. Detection of some woody plants in Late Oligocene forests of Istanbul. Turkish Journal of Agriculture and Forestry 33(6): 577584.Google Scholar
Kasaian, J., Behravan, J., Hasany, M., et al. 2011. Molecular characterisation and RAPD analysis of Juniperus species from Iran. Genetics and Molecular Research 10: 10691074.CrossRefGoogle ScholarPubMed
Kerfoot, O. 1975. Origin and speciation of the Cupressaceae in Sub-Saharan Africa. Boissiera 24a: 145150.Google Scholar
Khoshoo, T.N. 1959. Polyploidy in the gymnosperms. Evolution 13: 2439.CrossRefGoogle Scholar
Khoshoo, T.N. 1961. Chromosome numbers in gymnosperms. Silvae Genetica 10: 19.Google Scholar
Knyazeva, S.G. 2010. Intraspecific variability of common juniper in Siberia and in the Far East. Lesovedenie 5: 3644.Google Scholar
Kong, W.S. 1995. The distribution of conifers and taxads in time and space in the Korean Peninsula. Journal of the Korean Geographical Society 30(1): 113.Google Scholar
Kong, W.S. 2000. Vegetational history of the Korean Peninsula. Global Ecology and Biogeography 9(5): 391402.CrossRefGoogle Scholar
Lancucka-Srodoniowa, M. & Zastawniak, E. 1997. The Middle-Miocene flora of Wieliczka revision of Jan Zablocki’s collection. Acta Palaeobotanica 37(1): 1749.Google Scholar
Leuschner, C. 1996. Timberline and alpine vegetation on the tropical and warm-temperate oceanic islands of the world: elevation, structure and floristics. Vegetatio 123: 193206.CrossRefGoogle Scholar
Little, D.P. 2006. Evolution and circumscription of the true cypresses (Cupressaceae: Cupressus). Systematic Botany 31: 461480.CrossRefGoogle Scholar
Little, D.P., Schwarzbach, A.E., Adams, A.E., & Hsieh, C.-F. 2004. The circumscription and phylogenetic relationships of Callitropsis and the newly described genus Xanthocyparis (Cupressaceae). American Journal of Botany 91: 18721881.CrossRefGoogle ScholarPubMed
Liu, B., Liang, E.Y. & Zhu, L.P. 2011. Microclimatic conditions for Juniperus saltuaria treeline in the Sygera Mountains, southeastern Tibet Plateau. Mountain Research and Development 31: 4553.CrossRefGoogle Scholar
Livingstone, R.B. 1972. Influence of birds, stones and soil on the establishment of Juniperus communis and J. virginiana in New England pastures. Ecology 53: 11411147.Google Scholar
Longman, A., Dick, J. & Page, C.N. 1982. Cone induction with gibberellin for taxonomic studies in Cupressaceae and Taxodiaceae. Biologia Plantarum 24: 195201.CrossRefGoogle Scholar
Mao, K.S., Hao, G., Liu, J.Q. & Adams, R.P. 2010. Diversification and biogeography of Juniperus (Cupressaceae): variable diversification rates and multiple intercontinental dispersals. New Phytologist 188: 254272.CrossRefGoogle ScholarPubMed
Martinez, M. 1947. Los Cupressus de Mexico. Annals of the Institute of Biology [Mexico] 18: 71149.Google Scholar
Martinez, M. 1963. Las Pinaceas Mexicanas. Mexico City: Cindad Univesidad de Mexico.Google Scholar
Massini, J.G. & Jacobs, B.F. 2011. The effects of volcanism on Oligocene-age plant communities from the Ethiopian Plateau, and implications for vegetational resilience in a heterogeneous landscape. Review of Palaeobotany and Palynology 164(3–4): 211222.CrossRefGoogle Scholar
Mathews, A.C. 1919. The morphological and cytological development of the sporophyll and seed of Juniperus virginiana L. Journal of the Elisha Mitchell Science Society 55: 762.Google Scholar
Meulenkamp, J.E. & Sissingh, W. 2003. Tertiary palaeogeography and tectonostratigraphic evolution of the Northern and Southern Peri-Tethys platforms and the intermediate domains of the African–Eurasian convergent plate boundary zone. Palaeogeography, Palaeoclimatology, Palaeoecology 196(1–2): 209228.CrossRefGoogle Scholar
Miehe, G., Miehe, S., Vogel, J. & La, D. 2007. Highest treeline in the northern hemisphere found in southern Tibet. Mountain Research and Development 27(2): 169173.CrossRefGoogle Scholar
Miki, S. 1957. Pinaceae of Japan, with special reference to its remains. Journal of the Institute of Polytechnics Osaka City University Japan Series D 8: 221272.Google Scholar
Miki, S. 1958. Gymnosperms in Japan, with special reference to the remains. Journal of the Institute of Polytechnics Osaka City University Series D 9: 125152.Google Scholar
Muratova, E.N., Sedel’nikova, T.S., Karpyuk, T.V., et al. 2008. Karyological and cytogenetic studies of conifers from West Siberia and Far East. Contemporary Problems of Ecology 1: 263271.CrossRefGoogle Scholar
Narama, C. 2002. Late Holocene variation of the Raigorodskogo Glacier and climate change in the Pamir–Alai, central Asia. Catena 48(1–2): 2137.CrossRefGoogle Scholar
Nichols, G.E. 1910. A morphological study of Juniperus communis ver depressa. Beih. Bot. Zbl. 25: 201241.Google Scholar
Ohsawa, M. 1990. An interpretation of latitudinal patterns of forest limits in south and east Asian mountains. Journal of Ecology 78: 326339.CrossRefGoogle Scholar
Ohsawa, M., Nainggolan, P.H.J., Tanaka, N. & Anwar, C. 1985. Altitudinal zonation of forest vegetation on Mount Kerinci, Sumatra: with comparisons to zonation in the temperate region of east Asia. Journal of Tropical Ecology 1: 193216.CrossRefGoogle Scholar
Opgenoorth, L., Vendramin, G.G., Mao, K., et al. 2010. Tree endurance on the Tibetan Plateau marks the world’s highest known tree line of the Last Glacial Maximum. New Phytologist 185(1): 332342.CrossRefGoogle ScholarPubMed
Otto, R., Krusi, B.O., Delgado, J.D., et al. 2010. Regeneration niche of the Canarian juniper: the role of adults, shrubs and environmental conditions. Annals of Forest Science 67: 19.CrossRefGoogle Scholar
Owens, J.N., Catalano, G.L., Morris, S.J. & Aitken-Christie, J. 1995. The reproductive biology of kauri (Agathis australis). I. Pollination and prefertilisation development. International Journal of Plant Sciences 156: 257269.CrossRefGoogle Scholar
Ozkan, K., Gulsoy, S., Aerts, R. & Muys, B. 2010. Site properties for Crimean juniper (Juniperus excelsa) in semi-natural forests of south-western Anatolia, Turkey. Journal of Environmental Biology 31: 97100.Google ScholarPubMed
Padien, D.J. & Lajtha, K. 1992. Plant spatial pattern and nutrient distribution in pinyon–juniper woodlands along an elevational gradient in northern New Mexico. International Journal of Plant Science 153: 425433.CrossRefGoogle Scholar
Page, C.N. 1973. Ferns, polyploids, and their bearing on the evolution of the Canarian flora. Monographia Biologicae Canariensis 4: 8388.Google Scholar
Page, C.N. 1977. An ecological survey of the ferns of the Canary Islands. Fern Gazette 11: 297312.Google Scholar
Page, C.N. 1979. Macaronesian heathlands. Pp 117123 in Specht, R.L. (ed.), Ecosystems of the World No 9A: Heathlands and Related Shrublands. Amsterdam: Elsevier.Google Scholar
Palmaotal, M., Mooore, W.S., Adams, R.P. & Joswiak, G.R. 1983. Morphological, chemical and biogeographical analyses of a hybrid zone involving Juniperus virginiana and J. horizontalis in Wisconsin. Canadian Journal of Botany 61: 27332746.CrossRefGoogle Scholar
Peng, J.-F., Gou, X.-H., Chen, F.-H., et al. 2008. Difference in tree growth response to climate at the upper tree line: Quilian juniper in the Anyemaquen Mountains. Journal of Integrative Plant Biology 50: 982990.CrossRefGoogle Scholar
Phillips, F.J. 1910. The dissemination of junipers by birds. Forest Quarterly 8: 6073.Google Scholar
Poddar, S. & Lederer, R.J. 1982. Juniper berries as an exclusive winter forage for Townsend’s Solitaires. American Midland Naturalist 108: 3440.CrossRefGoogle Scholar
Poulos, H.M., Gatewood, R.G., and Camp, A.E. 2009. Fire regimes of the piñon―juniper woodlands of Big Bend National Park and the Davis Mountains, west Texas, USA. Canadian Journal of Forest Research 39(6): 12361246.CrossRefGoogle Scholar
Raspopov, O.M., Dergachev, V.A., Esperc, J., et al. 2008. The influence of the de Vries (similar to 200-year) solar cycle on climate variations: results from the Central Asian Mountains and their global link [Juniperus turkestanica, J. przewalskii]. Palaeogeography, Palaeoclimatology, Palaeoecology 259: 616.CrossRefGoogle Scholar
Ribera, I. & Blasco-Zumeta, J. 1998. Biogeographical links between steppe insects in the Monegros region (Aragon, NE Spain), the eastern Mediterranean, and Central Asia. Journal of Biogeography 25: 969986.CrossRefGoogle Scholar
Rumeu, B. 2011. Differential seed dispersal systems of endemic junipers in two oceanic Macaronesian archipelagos: the influence of biogeographic and biological characteristics. Plant Ecology 212: 911921.CrossRefGoogle Scholar
Santos, T. & Telleria, J.L. 1994. Influence of forest fragmentation on seed consumption and dispersal of Spanish juniper, Juniperus thurifera. Biological Conservation 70: 129134.CrossRefGoogle Scholar
Santos, T., Telleria, J.L. & Virgos, E. 1999. Dispersal of Spanish juniper, Juniperus thurifera, by birds and mammals in a fragmented landscape. Ecography 22: 193204.CrossRefGoogle Scholar
Sax, K. & Sax, H.J. 1933. Chromosome number and morphology in the conifers. Journal of the Arnold Arboretum 14: 356375.CrossRefGoogle Scholar
Schulz, C., Jagel, C. & Stutzel, T. 2003. Cone morphology in Juniperus in the light of cone evolution in the Cupressaceae s.l. Flora 198: 161177.CrossRefGoogle Scholar
Shao, X.-M., Wang, S.-Z., Zhu, H.-F., et al. 2009. A 3585-year ring-width dating chronology of Quilian juniper from the northeastern Quinghai-Tibetan Plateau [Juniperus przewalskii]. Iawa Journal 30: 379394.CrossRefGoogle Scholar
Sharew, H., Legg, C.J. & Grace, J. 1997. Effects of ground preparation and microenvironment on germination and natural regeneration of Juniperus procera and Afrocarpus gracilior in Ethiopia. Forest Ecology and Management 93: 215225.CrossRefGoogle Scholar
Shukla, M.K., Lal, R., Ebinger, M. & Meyer, C. 2006. Physical and chemical properties of soils under some piñon–juniper–oak canopies in a semi-arid ecosystem in New Mexico. Journal of Arid Environments 66(4): 673685.CrossRefGoogle Scholar
Shumilov, O.I., Kassatkina, E.A., Kirtsidefi, I.Y. & Kanat’ev, A.G. 2008. The use of juniper in dendrochronological analysis. Lesovedenie 1: 5259.Google Scholar
Silba, J. 1986. Encyclopaedia Coniferae. Phytologia Memoirs 8: 1217.Google Scholar
Stiff, M.L. 1951. A naturally occurring triploid juniper. Virginia Journal of Science 2: 317.Google Scholar
Takhtajan, A. 1986. Floristic Regions of the World. Los Angeles, CA: University of California at Berkeley.Google Scholar
Terrab, A., Schonswetter, P., Talavera, S., Vela, E. & Stuessy, T.F. 2008. Range-wide phylogeography of Juniperus thurifera L., a presumptive keystone species of western Mediterranean vegetation during cold stages of the Pleistocene. Molecular Phylogenetics and Evolution 48: 94102.CrossRefGoogle Scholar
Terry, R.G. 2010. Re-evaluation of morphological and chloroplast DNA variation in Juniperus osteosperma Hook and Juniperus occidantalis Torr. Little (Cupressaceae) and their putative hybrids. Biochemical Systematics and Ecology 38: 349360.CrossRefGoogle Scholar
Tseplyaev, V.P. 1961. The Forests of the U.S.S.R. Moscow: LESA SSSR (in Russian).Google Scholar
Vidakovic, M. 1991. Conifers, Morphology and Variation. Zavod: Graficki Zavod Hrvatske.Google Scholar
Walter, H. 1973. Vegetation of the Earth. New York: Springer.Google Scholar
Wangda, P. & Ohsawa, M. 2006. Structure and regeneration dynamics of dominant tree species along altitudinal gradient in a dry valley slopes of the Bhutan Himalaya. Forest Ecology and Management 230(1–3): 136150.CrossRefGoogle Scholar
Wesche, K., Ronnenberg, K. & Hensen, I. 2005. Lack of sexual reproduction within mountain steppe populations of the clonal shrub Juniperus sabina L. in semi-arid southern Mongolia. Journal of Arid Environments 63: 390405.CrossRefGoogle Scholar
Wils, T.H.G., Robertso, I., Eshetu, Z., Sass-Klassen, U.G.W. & Koprowski, M. 2009. Periodicity of growth rings in Juniperus procera from Ethiopia inferred from crossdating and radiocarbon dating. Dendrochronologia 27: 4558.CrossRefGoogle Scholar
Wonkka, C.L., Lafon, C.W., Hutton, C.M. & Joslin, A.J. 2013. A CSR classification of tree life history strategies and implications for ice storm damage. Oikos 122(2): 209222.CrossRefGoogle Scholar
Xiang, Q.P. & Li, J.H. 2005. Derivation of Xanthocyparis and Juniperus from within Cupressus: evidence from sequences of nrDNA internal transcribed spacer region. Harvard Papers in Botany 9: 375382.Google Scholar
Yang, B., Qin, C., Huang, K., Fan, Z.-X. & Liu, J.-J. 2010. Spatial and temporal patterns of variations in tree growth over the northeastern Tibetan Plateau during the period AD 1450–2001 [Juniperus przewalskii]. Holocene 20: 12351245.CrossRefGoogle Scholar
Yang, B., Qin, C., Braeuning, A., Birchardt, I. & Liu, J.-J. 2011. Rainfall history of the Hexi Corridor in the arid northwest China during the past 620 years derived from tree rings [Juniperus przewalskii]. International Journal of Climatology 31: 11661176.CrossRefGoogle Scholar
Zanoni, T.A. 1978. Los Juniperus de Jalisco. Bol. Inform. Inst. Biol. Univ. Guadalajara Epoca IV 4: 1117.Google Scholar
Zanoni, T.A. 1982. Cupressus. Flora Veracruz 23: 27.Google Scholar
Zanoni, T.A., Rudolff, E. & Charzaro, B.M. 1981. The south-western USA and northern Mexico one-seeded junipers: their volatile oils and evolution. Biochemical Systematics and Ecology 9: 9396.Google Scholar
Zhao, L.-Q. & Yang, J. 2011. Characteristics of Juniperus rigida open forest in Junger Loess Hill-gully Region. Xibei Zhiwu Xuebao 31: 595601 (in Chinese).Google Scholar
Zhaoguang, C.A.I. (ed.). 1986. An Atlas of Rangeland and its Main Plant Resources on the Qinghai-Tibet Plateau. Qinghai: Agricultural Publishing House.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Juniperus
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009262965.031
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Juniperus
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009262965.031
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Juniperus
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009262965.031
Available formats
×