Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-18T19:31:06.378Z Has data issue: false hasContentIssue false

Chapter 59 - Dacrycarpus

Podocarpales: Dacrydiaceae

from Part III - Living Arborescent Gymnosperm Genetic Presentations

Published online by Cambridge University Press:  11 November 2024

Christopher N. Page
Affiliation:
University of Exeter
Get access

Summary

Monopodial evergreen, mostly tall, long-lived forest trees with pillar-like trunks and canopy-emergent crowns. The foliage is bright green, of two types with few intermediates mixed together on the same shoot or mostly of one type predominant on different shoots. Leaves are small, symmetric, triangular, basally adpressed, spreading scale-like to awl-shaped, or larger, non-scale-like and bilaterally flattened, obliquely spreading into two opposite comb-like pectinate rows forming frond-like branchlet sprays. Foliage develops a billowing appearance en-masse.

Type
Chapter
Information
Evolution of the Arborescent Gymnosperms
Pattern, Process and Diversity
, pp. 422 - 439
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, P. 1992. Australian Rainforests. Oxford: Clarendon Press.CrossRefGoogle Scholar
Archangelsky, S. 1966. New gymnosperms from the Tico flora, Santa Cruz Province, Argentina. Bulletin of the British Museum (Natural History), Geology 13: 259295.CrossRefGoogle Scholar
Barreda, V.D. 1997. Palynomorph assemblage of the Chenque Formation, Late Oligocene?–Miocene from Golfo San Jorge basin, Patagonia, Argentina. Part 3. Polycolpate and tricolporate pollen. Ameghiniana 34(2): 131144.Google Scholar
Blackburn, D.T. & Sluiter, I.R. 1994. The Oligo-Miocene coal floras of southeastern Australia. Pp 328367 in Hill, R.S. (ed.), Australian Vegetation History: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Bobrov, A.V. & Melikjan, A.P. 1998. Species structures of seed coat in Podocarpaceae Endlicher 1847 and a possibility of using them in family systematics. Byulletin’ Moscovskogo Obschestva Ispytatelei Prirodyi. Otdel Biologicheskii 103: 5662 (in Russian, with English abstract).Google Scholar
Brodribb, T. & Hill, R.S. 1998. The photosynthetic drought physiology of a diverse group of Southern Hemisphere conifer species is correlated with minimum seasonal rainfall. Functional Ecology 12: 465471.CrossRefGoogle Scholar
Brodribb, T. & Hill, R.S. 2004. The rise and fall of the Podocarpaceae in Australia: a physiological explanation. Pp 381399 in Hemsley, A.R. & Poole, I. (eds.), The Evolution of Plant Physiology: From Whole Plants to Ecosystems. London: Academic Press.CrossRefGoogle Scholar
Buchholz, J.T. 1941. Embryogeny of the Podocarpaceae. Botanical Gazette 103: 137.CrossRefGoogle Scholar
Cantrill, D.J. & Poole, I. 2012. The Vegetation of Antarctica through Geological Time. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Cantrill, D.J., Wanntorp, L. & Drinnan, A.N. 2011. Mesofossil flora from the Late Cretaceous of New Zealand. Cretaceous Research 32: 164173.CrossRefGoogle Scholar
Carpenter, R.J., Hill, R.S. & Jordan, G.J. 1994. Cenozoic vegetation in Tasmania: macrofossil evidence. Pp 276298 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Christophel, D.C. & Greenwood, D.R. 1988. A comparison of Australian tropical rainforest and Tertiary fossil leaf beds. Proceedings of the Ecological Society of Australia 15: 139148.Google Scholar
Cookson, I.C. & Pike, K.M. 1953a. The Tertiary occurrence and distribution of Podocarpus (section Dacrycarpus) in Australia and Tasmania. Australian Journal of Botany 1: 7182.CrossRefGoogle Scholar
Cookson, I.C. & Pike, K.M. 1953b. A contribution to the Tertiary occurrence of the genus Dacrydium in the Australian region. Australian Journal of Botany 1: 474484.CrossRefGoogle Scholar
Cookson, I.C. & Pike, K.M. 1954. The fossil occurrence of Phyllocladus and two other podocarpaceous types in Australia. Australian Journal of Botany 2: 6068.CrossRefGoogle Scholar
Couper, R.A. 1960. Southern Hemisphere Mesozoic and Tertiary Podocarpaceae and Fagaceae and their palaeogeographic significance. Proceedings of the Royal Society of London B. 152: 491500.Google Scholar
Davies, B.J., O’Brien, I.E.W. & Murray, B.G. 1997. Karyotypes, chromosome bands and genome size variation in New Zealand endemic gymnosperms. Plant Systematics and Evolution 208: 169185.CrossRefGoogle Scholar
Dawson, J. & Lucas, R. 2013. New Zealand’s Native Trees. Nelson: Craig Potton Publishing.Google Scholar
De Laubenfels, D.J. 1969. A revision of the Malesian and Pacific rainforest conifers. I. Podocarpaceae, in part. Journal of the Arnold Arboretum 50: 274369.CrossRefGoogle Scholar
De Laubenfels, D.J. 1972. Gymnospermes. Pp 1167 in Aubréville, A. & Leroy, J.F. (eds.), Flore de la Nouvele-Calédonie et Dépendances. Paris: Museum National D’Histoire Naturelle, Laboratoire de Phanerogamie.Google Scholar
De Laubenfels, D.J. 1988. Coniferales. Pp 337453 in Van Steenis, C.G. & de Wilde, W.J. (eds.), Flora Malesiana: Series 1. Groningen: Noordhoff International Publishing.Google Scholar
Dettmann, M.E. 1989. Antarctic: Cretaceous Cradle of austral temperate rainforests? Pp 89105 in Crane, J.A. (ed.), Origins and Evolution of the Antarctic Biota. London: Geological Society of London.Google Scholar
Dettmann, M.E. 1994. Cretaceous vegetation: the microfossil record. Pp 143170 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Dettmann, M.E. & Jarzen, D.M. 1990. The Antarctic/Australasian rift valley: late Cretaceous cradle of northeastern Australasian relicts? Review of Palaeobotany and Palynology 65: 131144.CrossRefGoogle Scholar
Dettmann, M.E. & Jarzen, D.M. 1991. Pollen evidence or Late Cretaceous differentiation of Proteaceae in southern polar forests. Canadian Journal of Botany 69: 901906.CrossRefGoogle Scholar
Dettmann, M.E. & Thomson, M.R.A. 1987. Cretaceous palymorphs from the James Ross Island areas, Antarctica: a pilot study. British Antarctic Survey Bulletin 77: 1359.Google Scholar
Dettmann, M.E., Molnar, R.E., Douglas, J.G., et al. 1992. Australian Cretaceous terrestrial faunas and floras: biostratigraphical and biogeographic implications. Cretaceous Research 13: 207262.CrossRefGoogle Scholar
Di Pasquo, M. & Martin, J.E. 2013. Palyno assemblages associated with a theropod dinosaur from Snow Hill Island Formation (lower Maastrichtian) at the Naze, James Ross Island, Antarctica. Cretaceous Research 45: 135154.CrossRefGoogle Scholar
Doktor, M., Gazdzicki, A., Jerzmanska, A., Porebski, S.J. & Zastawniak, E. 1996. A plant-and-fish assemblage from the Eocene La Meseta Formation of Seymour Island (Antarctic Peninsula) and its environmental implications. Palaeontologia Polonica 55: 127146.Google Scholar
Dörken, V.M. & Parsons, R.F. 2016. Morpho-anatomical studies on the change in the foliage of two imbricate-leaved New Zealand podocarps: Dacrycarpus dacrydioides and Dacrydium cupressinum. Plant Systematics and Evolution 302: 4154.CrossRefGoogle Scholar
Douglas, J.G. 1994. Cretaceous vegetation: the macrofossil record. Pp 171188 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Duncan, R.P. 1993. Flood disturbance and the coexistence of species in a lowland podocarp forest, south Westland, New Zealand. Journal of Ecology 81: 403416.CrossRefGoogle Scholar
Elliot, M.B. 1998. Late Quaternary pollen records of vegetation and climate change from Kaitaia Bog, far northern New Zealand. Review of Palaeobotany and Palynology 99: 189202.CrossRefGoogle Scholar
Falaschi, P., Zamaloa, M.D.C., Caviglia, N. & Romero, E.J. 2012. Flora Gimnospérmica de la Formación Ñirihuau (Oligoceno Tardío-Mioceno Temprano), Provincia de Río Negro, Argentina. Ameghiniana 49(4): 525551.CrossRefGoogle Scholar
Ferre, M.Y., Rouane, M.L. & Woltz, M.P. 1977. Systematique et anatomie comparee des feulles de taxaceae, Podocarpaceae, Cupressaceae de Nouvelle-Calédonie. Cahier du Pacific 20: 241266.Google Scholar
FIVI (Forest Inventory and Planning Institute, Vietnam) 1996. Vietnam Forest Trees. Hanoi: Agricultural Publishing House.Google Scholar
Florin, R. 1940. The Tertiary conifers of southern Chile and their phytogeographical significance. Kungliga Svenska Vetenskapsakademiens Handlingar 19: 1107.Google Scholar
Fontes, D. & Dutra, T.L. 2010. Paleogene imbricate-leaved podocarps from King George Island (Antarctica): assessing the geological context and botanical affinities. Revista Brasileira de Paleontologia 13(3): 189204.CrossRefGoogle Scholar
Fountain, D.W., Holdsworth, J.M. & Outred, H.A. 1989. The dispersal unit of Dacrycarpus dacrydioides (A. Rich.) de Laubenfels (Podocarpaceae) and the significance of the fleshy receptacle. Botanical Journal of the Linnean Society 99(3): 197207.CrossRefGoogle Scholar
Gilmore, S. & Hill, K.D. 1997. Relationships of the Wollemi Pine (Wollemia nobilis) and a molecular phylogeny of the Araucariaceae. Telopea 7: 275291.CrossRefGoogle Scholar
Hair, J.B. & Beuzenberg, E.J. 1958. Chromosomal evolution in the Podocarpaceae. Nature 181: 15841586.CrossRefGoogle Scholar
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Hawkins, B.J. & Sweet, G.B. 1989. The growth of three podocarp species under different nutrient regimes. New Zealand Journal of Botany 27: 305310.CrossRefGoogle Scholar
Hill, R.S. 1994a. The history of selected Australian taxa. Pp 390420 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Hill, R.S. 1994b. Nothofagus smithtonensis (Nothofagaceae), a new macrofossil species from Oligocene sediments in northwest Tasmania, Australia, and its phylogenetic significance. Review of Palaeobotany and Palynology 80(1–2): 115121.CrossRefGoogle Scholar
Hill, R.S. 2004. Origins of the southeastern Australian vegetation. Philosophical Transactions of the Royal Society London B 359: 15371549.CrossRefGoogle ScholarPubMed
Hill, R.S. & Brodribb, T.J. 1999. Southern conifers in time and space. Australian Journal of Botany 47: 639696.CrossRefGoogle Scholar
Hill, R.S. & Carpenter, R. 1991a. Evolution of Acmopyle and Dacrycarpus (Podocarpaceae) foliage as inferred from macrofossils in south-eastern Australia. Australian Systematic Botany 4: 481–479.CrossRefGoogle Scholar
Hill, R.S. & Carpenter, R. 1991b. Extensive past distributions for major Gondwanic floral elements: macrofossil evidence. Papers and Proceedings of the Royal Society of Tasmania 125: 239247.CrossRefGoogle Scholar
Hill, R.S. & Macphail, M.K. 1985. A fossil flora from rafted Plio-Pleistocene mudstones at Regatta Point, western Tasmania. Australian Journal of Botany 33: 497517.CrossRefGoogle Scholar
Hill, R.S. & Macphail, M.K. 1994. Tertiary history and origins of the flora and vegetation. In Reid, J.B., Hill, R.S. & Brown, M.J. (eds.), Vegetation of Tasmania. Hobart: Government Printer.Google Scholar
Hill, R.S. & Pole, M. 1992. Leaf and shoot morphology of extant Afrocarpus, Nageia and Retrophyllum (Podocarpaceae) species and species with similar leaf arrangement from Tertiary sediments in Australasia. Australian Systematic Botany 5: 337358.CrossRefGoogle Scholar
Hill, R.S. & Scriven, L.J. 1995. The angiosperm-dominated woody vegetation of Antarctica: a review. Review of Palaeobotany and Palynology 86: 175198.CrossRefGoogle Scholar
Hill, R.S. & Whang, S.S. 2000. Dacrycarpus (Podocarpaceae) macrofossils from Miocene sediments at Elands, eastern Australia. Australian Systematic Botany 13(3): 395408.CrossRefGoogle Scholar
Johns, D.A. 2000. Analysis and Treatment of a Waterlogged Stern Cover (Z4653) from Doughboy Bay, Stewart Island, Z4653. Report to the Southland Museum and Art Gallery, Invercargill. Auckland: University of Auckland.Google Scholar
Jordan, G.J., Carpenter, R.J., Bannister, J.M., et al. 2011. High conifer diversity in Oligo-Miocene New Zealand. Australian Systematic Botany 24(2): 121136.CrossRefGoogle Scholar
Kale Sniderman, J.M., Pillans, B., O’Sullivan, P.B. & Kershaw, A.P., 2007. Climate and vegetation in southeastern Australia respond to Southern Hemisphere insolation forcing in the late Pliocene–early Pleistocene. Geology 35(1): 4144.CrossRefGoogle Scholar
Kelch, D.G. 1997. The phylogeny of the Podocarpaceae based on morphological evidence. Systematic Botany 22: 113131.CrossRefGoogle Scholar
Kelch, D.G. 1998. Phylogeny of Podocarpaceae: comparison of evidence from morphology and 18S rDNA. American Journal of Botany 85: 986996.CrossRefGoogle Scholar
Kershaw, A.P. 1985. An extended Late Quaternary vegetation record from north-east Queensland and its implications for the seasonal tropics of Australia. Journal of the Ecological Society of Australia 13: 179189.Google Scholar
Khan, A.M. 1976. Palynology of Tertiary sediments for Papua New Guinea. II. Gymnosperm pollen from Upper Tertiary sediments. Australian Journal of Botany 24: 783791.CrossRefGoogle Scholar
Knopf, P., Schulz, C., Little, D.P., Stützel, T. & Stevenson, D.W. 2012. Relationships within Podocarpaceae based on DNA sequence, anatomical, morphological, and biogeographical data. Cladistics 28: 271299.CrossRefGoogle ScholarPubMed
Little, D.P., Knopf, P. & Schulz, C. 2013. DNA barcode identification of Podocarpaceae: the second largest conifer family. PLoS One 8: e81008.CrossRefGoogle ScholarPubMed
Macphail, M.K., Alley, N. Truswell, E.M. & Sluiter, I.R.K. 1994. Early Tertiary vegetation: evidence from spores and pollen. Pp 189261 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Martin, H.A. 1978. Evolution of the Australian flora and vegetation through the Tertiary: evidence from pollen. Alcheringa 2: 181202.CrossRefGoogle Scholar
Martin, H.A. 1981. The Tertiary flora. Pp 391406 in Keast, A. (ed.), Ecological Biogeography of Australia. The Hague: W.Junk.CrossRefGoogle Scholar
Martin, H.A. 1994. Australian Tertiary phytogeography: evidence from palynology. Pp. 104142 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
McGlone, M.S. 1988. New Zealand. Pp 557602 in Huntley, B. & Webb, T. III (eds.), Vegetation History of New Zealand. Dordrecht: Kluwers.CrossRefGoogle Scholar
Mehra, P.N. & Khoshoo, T.N. 1956. Cytology of conifers I, II. Journal of Genetics 54: 165180, 181–185.CrossRefGoogle Scholar
Mill, R.R. 2003. Towards a biogeography of the Podocarpaceae. Pp 137147 in Mill, R.R. (ed.), Conifers for the Future? Proceedings of the Fourth International Conifer Conference. Wye: Acta Horticulturae.Google Scholar
Page, C.N., Collinson, M.E. & Van Konijnenburg-Van Cittert, J.H.A. 2014. Lygodium hians (Pteridophyta–Schizaeales): an endemic unusual ground-clothing member of a modern climbing fern genus in New Caledonia. Adansonia 36: 2643.CrossRefGoogle Scholar
Pole, M.S. 1992. Eocene vegetation from Hasties, north-east Tasmania. Australian Systematic Botany 5: 431475.CrossRefGoogle Scholar
Pole, M.S. 1993. Miocene broad-leaved Podocarpus from Foulden Hills, New Zealand. Alcheringa 17: 173177.CrossRefGoogle Scholar
Pole, M.S. 1997. Miocene conifers from the Manuherikia Group, New Zealand. Journal of the Royal Society of New Zealand 27: 355370.CrossRefGoogle Scholar
Pole, M.S. 2007. Early Eocene dispersed cuticles and mangrove to rainforest vegetation at Strahan-Regatte Point, Tasmania. Palaeontologica Electronica 10(3).Google Scholar
Quilty, P.G. 1994. The background: 144 million years of Australian palaeoclimate and palaeogeography. Pp 1443 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Quiroga, M.P., Mathiasen, P., Iglesias, A., Mill, R.R. & Premoli, A.C. 2016. Molecular and fossil evidence disentangle the biogeographical history of Podocarpus, a key genus in plant geography. Journal of Biogeography 43(2): 372383.CrossRefGoogle Scholar
Robertson, H.A. & Hackwell, K.R. 1995. Habitat preferences of birds in seral kahikatea Dacrycarpus dacrydioides (Podocarpaceae) forest of South Westland, New Zealand. Biological Conservation 71(3): 275280.CrossRefGoogle Scholar
Saulei, S.M. 1990. Forest research and development in Papua New Guinea. Ambio 19: 379382.Google Scholar
Sinclair, W.T., Mill, R.R., Gardner, M.F., et al. 2002. Evolutionary relationships of the New Caledonian heterotrophic conifer, Parasitaxus usta (Podocarpaceae), inferred from chloroplast trn LF intron/spacer and nuclear rDNA ITS2 sequences. Plant Systematics and Evolution 233: 79104.CrossRefGoogle Scholar
Sivak, J. 1975. Les characters de diagnose des grains de pollen a ballonets. Pollen et Spores 17: 349421.Google Scholar
Smith, A.C. 1979. Flora Vitiensis Nova: A New Flora of Fiji (Spermatophytes Only). Lawai, HI: Pacific Tropical Botanical Garden.CrossRefGoogle Scholar
Spect, R.L., Dettmann, M.E. & Jarzen, D.M. 1992. Community associations and structure in the Late Cretaceous vegetation of southeast Australasia and Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology 94: 283309.CrossRefGoogle Scholar
Sternberg, P. 1996. Simulation of the effects of shoot structure and orientation on vertical gradients in intercepted light by conifer canopies. Tree Physiology 16: 99108.CrossRefGoogle Scholar
Truswell, E.M. & Macphail, M.K. 2009. Polar forests on the edge of extinction: what does the fossil spore and pollen evidence from east Antarctica say? Australian Systematic Botany 22: 57106.CrossRefGoogle Scholar
Van Royen, P. 1979. The Alpine Flora of New Guinea. Amsterdam: J. Cramer.Google Scholar
Van Steenis, C.G.G.J. 1979. Plant geography of east Malesia. Botanical Journal of the Linnean Society 79: 97178.CrossRefGoogle Scholar
Wade, L.K. & McVean, D.N.L. 1969. Mt Wilhelm Studies. I. The Alpine and Subalpine Vegetation. Canberra: Australian National University Department of Biogeography and Geomorphology.Google Scholar
Wardle, P. 1974. The kahikatea (Dacrycarpus dacrydioides) forest of south Westland. Pp 6271 in Proceedings of the New Zealand Ecological Society. Invercargill: New Zealand Ecological Society.Google Scholar
Wells, P.M. & Hill, R.S 1989. Fossil imbricate-leaved Podocarpaceae from Tertiary sediments in Tasmania. Australian Systematic Botany 2: 387423.CrossRefGoogle Scholar
Wilf, P. 2012. Rainforest conifers of Eocene Patagonia: attached cones and foliage of the extant Southeast Asian and Australasian genus Dacrycarpus (Podocarpaceae). American Journal of Botany 99: 562584.CrossRefGoogle ScholarPubMed
Wilf, P., Johnson, K.R., Cuneo, N.R., et al. 2005. Eocene plant diversity at Laguna del Hunco and Rio Pichileufu, Patagonia, Argentina. American Naturalist 165: 634650.CrossRefGoogle ScholarPubMed
Wilf, P., Little, S.A., Iglesias, A., et al. 2009. Papuacedrus (Cupressaceae) in Eocene Patagonia, a new fossil link to Australasian rainforests. American Journal of Botany 96: 20312047.CrossRefGoogle ScholarPubMed
Zachos, J., Oaganini, M., Sloan, I., Thomas, E. & Billups, K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292: 686693.CrossRefGoogle ScholarPubMed
Zhou, Q.-Z. & Gu, Z.-J. 2001. Karyomorphology of Podocarpus s.l. in China and its systematic significance. Caryologia 54: 121127.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Dacrycarpus
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.023
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Dacrycarpus
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.023
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Dacrycarpus
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.023
Available formats
×