Skip to main content Accessibility help
×
Hostname: page-component-599cfd5f84-wh4qq Total loading time: 0 Render date: 2025-01-07T05:40:08.007Z Has data issue: false hasContentIssue false

Chapter 22 - Chamaecyparis

Cupressales: Cupressaceae S.S.

from Part III - Living Arborescent Gymnosperm Genetic Presentations

Published online by Cambridge University Press:  11 November 2024

Christopher N. Page
Affiliation:
University of Exeter
Get access

Summary

Medium-sized to tall evergreen trees, with a conical, tapering crown, the foliage predominantly of small-sized scale leaves cladding flattened fern-like foliar sprays, often freely bearing crops of small, spherical cones, the foliage with only a faint, never acrid smell when crushed, sometimes described as slightly grass- or parsley-like.

Type
Chapter
Information
Evolution of the Arborescent Gymnosperms
Pattern, Process and Diversity
, pp. 422 - 436
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akashi, N. 1996. The spatial pattern and canopy-understorey association of trees in a cool temperate, mixed forest in western Japan. Ecological Research 11: 311319.CrossRefGoogle Scholar
Allison, S.K. & Ehrenfeld, J.G. 1999. The influence of microhabitat variation on seedling recruitment of Chamaecyparis thyoides and Acer rubrum. Wetlands 19: 383393.CrossRefGoogle Scholar
Al-Sheriff, K.A. 1952. Histological studies on the shoot apices and leaves of certain Cupressaceae. PhD dissertation, University of California at Berkeley.Google Scholar
Aoki, H., Wada, H. & Niitsuma, N. 1995. Stable carbon isotope composition of tree rings of Japanese cypress from the Old-Fuji mudflow, of the last glacial period. Geoscience Reports, Shizuoka University 22: 3746.Google Scholar
Briles, C.E., Whitlock, C., Skinner, C.N. & Mohr, J. 2011. Holocene forest development and maintenance on different substrates in the Klamath Mountains, northern California, USA. Ecology 92: 590601.CrossRefGoogle ScholarPubMed
Brunsfeld, S.J., Soltis, P.S., Soltis, D.E., Gadek, P.A. & Quinn, C.J. 1994. Phylogenetic relationships amongst the genera of the Taxodicaeae and Cupressaceae: Evidence from rbcL sequences. Systematic Botany 19: 253262.CrossRefGoogle Scholar
Carter, F.L. & Smythe, R.V. 1974. Feeding and survival responses of Reticulitermes flavipes (Kollar) to extractives of wood from 11 coniferous genera.Wood Research and Technology 28(2).Google Scholar
Chang, S.C., Lai, I.L. & Wu, J.T. 2002. Estimation of fog deposition on epiphytic bryophytes in a subtropical montane forest ecosystem in northeastern Taiwan. Atmospheric Research 64(1–4): 159167.CrossRefGoogle Scholar
Chen, S.H. & Wu, J.T. 1999. Paleolimnological environment indicated by the diatom and pollen assemblages in an alpine lake in Taiwan. Journal of Paleolimnology 22: 149158.CrossRefGoogle Scholar
Chen, Y.-J., Lin, C.-Y., Cheng, S.-S. & Chang, S.-T. 2011. Phylogenetic relationships of the genus Chamaecyparis inferred from leaf essential oil. Chemistry and Biodiversity 8: 10831097.CrossRefGoogle ScholarPubMed
Cheng, S.S., Chang, H.T., Wu, C.L. & Chang, S.T. 2007. Anti-termitic activities of essential oils from coniferous trees against Coptotermes formosanus. Bioresource Technology 98(2): 456459.CrossRefGoogle ScholarPubMed
Dorofeev, P.I. 1970. Treticnye flory Urala. Leningrad: Nauka (in Russian).Google Scholar
Ehrenfeld, J.G. 1995. Microtopography and vegetation in Atlantic white cedar swamps: the effects of natural disturbance. Canadian Journal of Botany 73: 474484.CrossRefGoogle Scholar
Erspamer, J.L. 1952. Ontogeny and morphology of the microsporangia in certain genera of the Coniferales. PhD dissertation, University of California at Berkeley.Google Scholar
Erwin, D.M. & Schorn, H.E. 2005. Revision of the conifers from the Eocene Thunder Mountain flora, Idaho, USA. Review of Palaeobotany and Palynology 137(3–4): 125145.CrossRefGoogle Scholar
Franklin, J.F. & Dyrness, C.T. 1973. Natural Vegetation of Oregon and Washington. Washington, DC: US Government Printing Office.Google Scholar
Gadek, P.A. & Quinn, C.J. 1987. Biflavones and the affinities of Cupressus funebris. Phytochemistry 26: 25512552.CrossRefGoogle Scholar
Gengarelly, L.M. & Lee, T.D. 2005. The role of microtopography and substrate in survival and growth of Atlantic white cedar seedlings. Forest Ecology and Management 212: 135144.CrossRefGoogle Scholar
Gengarelly, L.M. & Lee, T.D. 2006. Dynamics of Atlantic white-cedar populations at a northern New England coastal wetland. Natural Areas Journal 26: 516.CrossRefGoogle Scholar
Guan, B.T. & Cheng, Y.-J. 2003. Ground level diameter as an indicator of sapling structural root characteristics for Chamaecyparis obtusa var formosana in northeastern Taiwan. Forest Ecology and Management 173: 227234.CrossRefGoogle Scholar
Haas, M.J. & Kuser, J.E. 2003. Establishment of Chamaecyparis thyoides on an extremely low-nutrient sandy site on the Atlantic Coastal Plain, U.S.A. Restoration Ecology 11: 231238.CrossRefGoogle Scholar
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Hoshino, D., Nishimura, N. & Yamamoto, S. 2001. Age, size structure and spatial pattern of major tree species in an old-growth Chamaecyparis obtusa forest, Central Japan. Forest Ecology and Management 152: 3143.CrossRefGoogle Scholar
Hoshino, D., Nishimura, N. & Yamamoto, S. 2002. Dynamics of major conifer and broadleaved tree species in an old-growth Chamaecyparis obtusa forest, Central Japan. Forest Ecology and Management 159: 133144.CrossRefGoogle Scholar
Hoshino, D., Nishimura, N. & Yamamoto, S. 2003. Effects of canopy conditions on the regeneration of major tree species in an old-growth Chamaecyparis obtusa forest in central Japan. Forest Ecology and Management 175: 141152.CrossRefGoogle Scholar
Hwang, S.Y., Lin, H.W., Kuo, Y.S. & Lin, T.P. 2001. RAPD variation in relation to population differentiation of Chamaecyparis formosensis and Chamaecyparis taiwanensis. Botanical Bulletin of Academica Sinica 42: 173179.Google Scholar
Igarashi, T. & Kiyono, Y. 2008. The potential of hinoki (Chamaecyparis obtusa [Sieb. & Zucc.] Endlicher) plantation forests for the restoration of the original plant community in Japan. Forest Ecology and Management 255: 183192.CrossRefGoogle Scholar
Jerabkova, L., Prescott, C. & Kishchuk, B. 2006. Nitrogen availability in soil and forest floor of contrasting types of boreal mixedwood forests. Canadian Journal of Forest Research 36: 112122.CrossRefGoogle Scholar
Jiang, Z. & Wang, H. 2000. Japanese cedar (Chamaecyaris obtusa) grown in China. Forest Research 13: 308315.Google Scholar
Klemm, O., Chang, S.C. & Hsia, Y.J. 2006. Energy fluxes at a subtropical mountain cloud forest. Forest Ecology and Management 224(1–2): 510.CrossRefGoogle Scholar
Kotyk, M., Basinger, J. & McIver, E. 2003. Early Tertiary Chamaecyparis Spach from Axel Heiberg Island, Canadian High Arctic. Canadian Journal of Botany 81: 113130.CrossRefGoogle Scholar
Kunimatsu, T., Hamabata, E., Sudo, M. & Hida, Y. 2001. Comparison of nutrient budgets between three forested mountain watersheds on granite bedrock. Water, Science and Technology 44: 129140.CrossRefGoogle ScholarPubMed
Kusumoto, D. & Suzuki, K. 2003. Spatial distribution and time-course of polyphenol accumulation as a defense response induced by wounding in the phloem of Chamaecyparis obtusa. New Phytologist 159: 167173.CrossRefGoogle ScholarPubMed
Kvaček, Z. 2004. Revisions to the Early Oligocene flora of Flörsheim (Mainz Basin, Germany) based on epidermal anatomy. Senckenbergiana Lethaea 84: 173.CrossRefGoogle Scholar
Kvaček, Z. & Rember, W.C. 2000. Shared Miocene conifers of the Clarkia flora and Europe. Acta Universitatis Carollinae Geologica 44: 7585.Google Scholar
Lai, I.-L., Scharr, H., Chavarria-Krauser, A., et al. 2005. Leaf growth dynamics of two congener gymnosperm tree species reflect the heterogeneity of light intensities given in their natural ecological niche. Plant Cell and Environment 28: 14961505.CrossRefGoogle Scholar
Lai, I.-L., Schroder, W.H., Wu, J.-T., et al. 2007. Can fog contribute to the nutrition of Chamaecyparis obtusa var formosana? Uptake of a fog solute tracer into foliage and transport to roots. Tree Physiology 27: 10011009.CrossRefGoogle Scholar
Laidig, K.J. & Zampella, R.A. 1999. Community attributes of Atlantic white cedar (Chamaecyparis thyoides) swamps in disturbed and undisturbed Pinelands watersheds. Wetlands 19: 3549.CrossRefGoogle Scholar
Laing, J.M., Shear, T.H., & Blazich, F.A. 2011. How management strategies have affected Atlantic white-cedar forest recovery after massive wind damage in the Great Dismal Swamp. Forest Ecology and Management 262: 13371344.CrossRefGoogle Scholar
Li, J.H., Zhang, D.L. & Donoghue, M.J. 2003. Phylogeny and biogeography of Chamaecyparis (Cupressaceae) inferred from DNA sequences of the nuclear ribosomal ITS region. Rhodora 105: 106117.Google Scholar
Lin, J.-X & Hu, Y.-S. 1999. Species accounts: white berry yew (Pseudotaxus chienii (W.C.Cheng) W.C.Cheng). Pp 106107 in Farjon, A. & Page, C.N. (eds.), Conifers: Status Survey and Conifer Action Plan. Gland: International Union for the Conservation of Nature.Google Scholar
Little, D.P., Schwarzbach, A.E., Adams, R.P. & Hsieh, C.-F. 2004. The circumscription and phylogenetic relationships of Callitropsis and the newly described genus Xanthocyparis (Cupressaceae). American Journal of Botany 91(11): 18721881.CrossRefGoogle Scholar
Liu, Y.-S., Mohr, B.A.R. & Basinger, J.F. 2009. Historical biogeography of the genus Chamaecyparis (Cupressaceae, Coniferales) based on its fossil record. Palaeodiversity and Palaeoenvironments 89: 203209.CrossRefGoogle Scholar
Maeta, T. & Yamamoto, C. 1981. Interspecific hybridization among Chamaecyparis species. In XVII IUFRO World Congress, Japan.Google Scholar
Mai, D.H. & Ferguson, D.K. 2004. Emanuel Palamarev (1933–2004). Taxon 53: 605606.CrossRefGoogle Scholar
Manter, D.K., Karchesy, J.J. & Kelsey, R.G. 2006. The sporicidal activity of yellow-cedar heartwood, essential oil and wood constituents towards Phytophthora ramorum in culture. Forest Pathology 36: 297308.CrossRefGoogle Scholar
Martinetto, E. & Ravazzi, C. 1997. Plant biochronology of the Valle della Fornace succession (Varese) based on the Plio–Pleistocene record in northern Italy. Geology Insubria 2(2): 8198.Google Scholar
Matsumoto, A., Uchida, K., Taguchi, Y., Tani, N. & Tsumura, Y. 2010. Genetic diversity and structure of natural fragmented Chamaecyparis obtusa populations as revealed by microsatellite markers. Journal of Plant Research 123: 689699.CrossRefGoogle ScholarPubMed
McIver, E.E. 1994. An early Chamaecyparis (Cupressaceae) from the Late Cretaceous of Vancouver Island, British Columbia, Canada. Canadian Journal of Botany 72: 17871796.CrossRefGoogle Scholar
McIver, E.E. & Basinger, J.F. 1987. Mesocyparis borealis gen. et sp. nov.: fossil Cupressaceae from the early Tertiary of Saskatchewan, Canada. Canadian Journal of Botany 65: 23382351.CrossRefGoogle Scholar
Michener, D.C. 1993. Chamaecyparis. Pp 408410 in Flora of North America Editorial Committee (eds.), Flora of North America. Vol. 2. Oxford: Oxford University Press.Google Scholar
Miki, S. 1957. Of Japan, with special reference to its remains. Journal of the Institute of Polytechnics, Osaka City University 8: 221272.Google Scholar
Miki, S. 1958. Gymnosperms in Japan, with special reference to the remains. Journal of the Institute of Polytechnical Osaka City University Series D, Biology 9: 125-152.Google Scholar
Mitchell, A.F. 1972. Conifers in the British Isles: A Descriptive Handbook. London: HMSO.Google Scholar
Moriyami, Y. & Yamamoto, S. 1994. Occurrence pattern and size structure of clonal patches of Chamaecyparis pisifera under a closed canopy gap in an old-growth C. pisifera forest. Journal of Japan Forestry Society 76: 426432.Google Scholar
Munz, P.A. & Keck, D.D. 1959. A California Flora. Berkeley, CA: University of California Press.Google Scholar
Murakami, S. 2006. A proposal for a new forest canopy interception mechanism: splash droplet evaporation. Journal of Hydrology 319: 7282.CrossRefGoogle Scholar
Mylecraine, K.A., Kuser, J.E., Smouse, P.E. & Zimmermann, G.L. 2004. Geographic allozyne variation in Atlantic white-cedar, Chamaecyparis thyoides, Cupressaceae. Canadian Journal of Forest Research 34: 24432454.CrossRefGoogle Scholar
Mylecraine, K.A., Kuser, J.E., Zimmermann, G.L. & Smouse, P.E. 2005. Rangewide provenance variation in Atlantic white-cedar (Chamaecyparis thyoides): early survival and growth in New Jersey and North Carolina plantations. Forest Ecology and Management 216: 91104.CrossRefGoogle Scholar
Nakawatase, J. & Peterson, D. 2006. Spatial variability in forest growth: climate relationships in the Olympic Mountains. Canadian Journal of Forest Research 36: 7791.CrossRefGoogle Scholar
Osono, T., Ono, Y. & Takeda, H. 2003. Fungal ingrowth on forest floor and decomposing needle litter of Chamaecyparis obtusa in relation to resource availability and moisture condition. Soil Biology and Biochemistry 35: 14231431.CrossRefGoogle Scholar
Saporta, M. G. de. 1889. Dernières adjonctions a la flore fossile d’Aix-En-Provence. In Masson, G. (ed.) Annales Des Sciences Naturelles-Botanique, Vol. 10. Paris: Librairie de l’Académie de Médecine.Google Scholar
Sato, K. & Wakamatsu, T. 2000. Soil solution chemistry in forests with granite bedrock in Japan. In Acid Rain 2000: Proceedings from the 6th International Conference on Acidic Deposition: Looking Back to the Past and Thinking of the Future, Japan.CrossRefGoogle Scholar
Savill, P.S. 1991. The Silviculture of Trees used in British Forestry. Oxford: C.A.B. International.Google Scholar
Sax, K. & Sax, H.J. 1933. Chromosome number and morphology in the conifers. Journal of the Arnold Arboretum 14: 356375.CrossRefGoogle Scholar
Schulz, C. & Stützel, T. 2006. Variability of male cones in Chamaecyparis as an example for Cupressaceae male cones. Feddes Repertorium: Zeitschrift für botanische Taxomonie und Geobotanik 117(1–2): 146157.CrossRefGoogle Scholar
Stan, A.B., Maertens, T.B., Daniels, L.D. & Zeglen, S. 2011. Reconstructing population dynamics of yellow-cedar in declining stands: baseline information from tree rings. Tree Ring Research 67: 1325.CrossRefGoogle Scholar
Stockwell, K.D. 1999. Structure and history of the Atlantic white cedar stands at Appleton Bog, Knox County, Maine, USA. Natural Areas Journal 19: 4756.Google Scholar
Straus, A. 1952. Beiträge zur Pliocänflora von Willershausen III. Die niederen Pflanzengruppen bis zu den Gymnospermen. Palaeontographica Abteilung B 93: 144.Google Scholar
Szafer, W. 1947. The Pliocene flora of Kroscienko in Poland. Polska Akademia Umiejetnosi Rozprawy Wydzialu Matematyczno-Przyrodniczego Dzial B 72: 1213.Google Scholar
Szafer, W. 1954. Pliocene flora from the vicinity of Czorsztyn and its relationship to the Pleistocene. Prace Instytutu Geologicznego 11: 1238 (in Polish with English summary).Google Scholar
Takahashi, H.A., Yonenobu, H., Nakamura, T. & Wada, H. 2001. Seasonal fluctuation of stable carbon isotopic composition in Japanese cypress tree rings from the last glacial period–possibility of paleoenvironment reconstruction. Radiocarbon 43(2A): 433438.CrossRefGoogle Scholar
Takeda, H. 1995. A 5 year study of litter decomposition processes in a Chamaecyparis obtusa Endl. Ecological Research 10: 95104.CrossRefGoogle Scholar
Torgeson, D.C. (ed.) 1967. Fungicides: An Advanced Treatise, Vol. 1–2. New York: Academic Press.Google Scholar
Tseng, M.-H., Lai, W.-R. Hsieh, C.-L. & Kuo, Y.-H. 2007. Allelopathy on bark of downed logs of Chamaecyparis obtusa Sieb. & Zicc. var formosana (Hayata) Rehder. Journal of Chemical Ecology 33: 12831296.CrossRefGoogle Scholar
Tsumura, Y. 2006. The phylogeographic structure of Japanese coniferous species as revealed by genetic markers. Taxon 55: 5366.CrossRefGoogle Scholar
Tsumura, Y., Matsumoto, A., Tani, N., et al. 2007. Genetic diversity and genetic structure of natural populations of Chamaecyparis obtusa: implications for management and conservation. Heredity 99: 161172.CrossRefGoogle ScholarPubMed
Ueda, H., Takatsuki, S. & Takahashi, Y. 2003. Seasonal change in browsing by sika deer on hinoki cypress trees on Mount Takahara, central Japan. Ecological Research 18: 355364.CrossRefGoogle Scholar
Van der Burgh, J. & Zetter, R. 1998. Plant mega-and microfossil assemblages from the Brunssumian of Hambach’near Düren, BRD. Review of Palaeobotany and Palynology 101(1–4): 209256.CrossRefGoogle Scholar
Vepakomma, U., Kneeshaw, D. & St-Onge, B. 2010. Interactions of multiple disturbances in shaping boreal forest dynamic: a spatially explicit analysis using multi-temporal lidar data and high-resolution imagery. Journal of Ecology 98: 526539.CrossRefGoogle Scholar
Vikulin, S.V., Zhilin, S.G. & Potapova, Y.Y. 1995. Leaf whorls of Cupressaceae from the Maastrichtian of central Kazakhstan. Paleontological Journal 29: 185193.Google Scholar
Wang, W.-P., Hwang, C.-Y., Lin, T.-P. & Hwang, S.-Y. 2003. Historical biogeography and phylogenetic relationships of the genus Chamaecyparis (Cupressaceae) inferred from chloroplast DNA polymorphism. Plant Systematics and Evolution 241(suppl.): 1328.CrossRefGoogle Scholar
Watt, A.S. 1947. Pattern and process in the plant community. Journal of Ecology 35: 122.CrossRefGoogle Scholar
Welch, H.J. 1966. Dwarf Conifers: A Complete Guide. London: Faber.Google Scholar
Whigham, D.F. & Richardson, C.J. 1988. Soil and plant chemistry of an Atlantic white cedar wetland on the Inner Coastal Plain of Maryland. Canadian Journal of Botany 66: 568576.CrossRefGoogle Scholar
White, P.S. 1979. Pattern, process, and natural disturbance in vegetation. Botanical Review 45: 229299.CrossRefGoogle Scholar
Whitmore, T.C. 1975. Tropical Rainforest of the Far East. Oxford: Clarendon Press.Google Scholar
Wonkka, C.L., Lafon, C.W., Hutton, C.M. & Joslin, A.J. 2013. A CSR classification of tree life history strategies and implications for ice storm damage. Oikos 122(2): 209222.CrossRefGoogle Scholar
Wu, S.P. & Chen, Z.-S. 2005. Characteristics and genesis of inceptisols with placic horizons in the subalpine forest soils of Taiwan. Geoderms 125: 331341.CrossRefGoogle Scholar
Yamamoto, S.I. 1992. The gap theory in forest dynamics. The Botanical Magazine= Shokubutsu-gaku-zasshi 105: 375383.CrossRefGoogle Scholar
Yamamoto, S.I. 1993. Gap characteristics and gap regeneration in a subalpine coniferous forest on Mt Ontake, central Honshu, Japan. Ecological Research 8(3): 277285.CrossRefGoogle Scholar
Yamamoto, S. 1998. Regeneration ecology of Chamaecyparis obtusa and Chamaecyparis pisifera (Hinoki and Sawara cypress), Japan. Pp 3953 in Laderman, A.D. (ed.), Coastally Restricted Forests. Oxford: Oxford University Press.Google Scholar
Yamamoto, S. 2000. Forest gap dynamics and tree regeneration. Journal of Forest Research 5: 223229.CrossRefGoogle Scholar
Yamamoto, S. & Moriyama, Y. 1997. Stand structure and the regeneration of Chamaecyparis pisifera (Sieb. et Zucc.) Endlicher on sites with different soil development in an old-growth coniferous forest, central Japan. Journal of Forestry Research 2: 133140.CrossRefGoogle Scholar
Yamamoto, S. & Suto, A. 1994. Occurrence pattern of Thujopsis dolobrata saplings in the understorey of an old-growth Chamaecyparis forest. Akasawa Forest Reserve, Central Japan. Journal of the Japanese Forestry Society 76: 553559.Google Scholar
Yamashita, T., Kasuya, N., Nishimura, S. & Takeda, H. 2004. Comparison of two coniferous plantations in central Japan with respect to forestry productivity, growth phenology and soil nitrogen dynamics. Forest Ecology and Management 200: 215226.CrossRefGoogle Scholar
Yulin, J., Wenbi, M., Xiaoliang, S., et al. 1999. Bioengineering for high-grade highway infrastructure development in southwest China. Proceedings of the Conference of the International Erosion Control Association, Nashville, pp. 39–44.Google Scholar
Zablocki, J. 1930. Tertiare Pflanzen des Salzlagers von Wieliczka. II. Acta Societatis Botanicorum Poloniae 7: 139150.CrossRefGoogle Scholar
Zampella, R.A. & Lathrop, R.G. 1997. Landscape changes in Atlantic white-cedar (Chamaecyparis thyoides) wetlands in the New Jersey pinelands. Landscape Ecology 12: 397408.CrossRefGoogle Scholar
Zavarin, E. & Anderson, A.B. 1956. Extrahierbare Bestandteile Kernholzes der Kalifornischen Flußzeder (Incense‐Cedar, Libocedrus decurrens Torrey) IV. Vorkommen und Chromatographie von Thujaplicinen. Chemische Berichte 89(2): 545549.CrossRefGoogle Scholar
Zhang, Q., Hu, Y.-S. & Lin, J.-X. 2004. Female cone development in Fokienia, Cupressus, Chamaecyparis and Juniperus (Cupressaceae). Acta Botanica Sinica 46: 10751082.Google Scholar
Zobel, D.B. 1986. Port-Orford-cedar: a forgotten species. Journal of Forest History 30(1): 2936.CrossRefGoogle Scholar
Zobel, D.B. 1998. Chamaecyparis forests: a comparative analysis. Pp 3953 in Laderman, A.D. (ed.), Coastally Restricted Forests. Oxford: Oxford University Press.Google Scholar
Zobel, D.B. & Hawk, G.M. 1980. The environment of Chamaecyparis lawsoniana. American Midland Naturalist 103: 280297.CrossRefGoogle Scholar
Zobel, D., Roth, L. & Hawk, G. 1985. Ecology, pathology, and management of Port-Orford-Cedar (Chamaecyparis lawsoniana). General Technical Report PNW-GTR-184, US Forest Service.Google Scholar
Zobel, D.B., Kitzmiller, J., Sniezko, R. & Riley, L. 2002. Range-wide genetic variation in Port-Orford cedar (Cupressaceae, Chamaecyparis lawsoniana): II. Timing in height growth. Journal of Sustainable Forestry 14: 3350.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Chamaecyparis
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009262965.026
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Chamaecyparis
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009262965.026
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Chamaecyparis
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009262965.026
Available formats
×