Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-05T13:00:19.612Z Has data issue: false hasContentIssue false

Chapter 16 - Cephalotaxus

Taxales: Cephalotaxaceae

from Part III - Living Arborescent Gymnosperm Genetic Presentations

Published online by Cambridge University Press:  11 November 2024

Christopher N. Page
Affiliation:
University of Exeter
Get access

Summary

Mostly dioecious (occasionally monoecious), evergreen, slow-growing, resiniferous woody shrubs or slender bushy trees, attaining moderate size and age, but with occasional members forming larger, much older and stouter trees. Of monopodial habit when young and throughout much of their life, or becoming of more or less irregular habit with maturity. The females bear scattered clusters of pendulous large fleshy-covered seeds in autumn, which are long-retained on the parent plant.

Type
Chapter
Information
Evolution of the Arborescent Gymnosperms
Pattern, Process and Diversity
, pp. 338 - 351
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Axelrod, D.I. 1996. Diverse upland Eocene forests, western USA. Journal of Palaeosciences 45: 8197.CrossRefGoogle Scholar
Bae, K., Jin, W., Thuong, P.T., et al. 2007. A new flavenoid glycoside from the leaf of Cephalotaxus koreana. Fitoterapia 78: 409413.CrossRefGoogle Scholar
Berhal, F. 2009. Synthesis of optically active monoacid side-chains of Cephalotaxus alkaloids. European Journal of Organic Chemistry 2009: 437443.CrossRefGoogle Scholar
Bhattacharya, A., Parmar, V.S., Sharma, S.K., et al. 2002. Chemical constituents of Cephalotaxus species. Journal of the Indian Chemical Society 79: 787795.Google Scholar
Bobrov, A.V., Melikian, A.P., Romanov, M.S. and Sorokin, A.N. 2004. Seed morphology and anatomy of Austrotaxus spicata (Taxaceae) and its systematic position. Botanical Journal of the Linnean Society 145: 437443.CrossRefGoogle Scholar
Bocar, M., Jossang, A. & Bodo, B. 2003. New alkaloids from Cephalotaxus fortunei. Journal of Natural Products 66: 152154.CrossRefGoogle Scholar
Buta, J.G., Flippen, J.L. & Lusby, W.R. 1978. Harringtonolide, a plant growth inhibitory tropone from Cephalotaxus harringtoniana (Forbes) K.Koch. Journal of Organic Chemistry 43: 10021003.CrossRefGoogle Scholar
Chaw, S.-.M, Sung, H.-M., Long, H., Zharkikh, A. & Li, W.-H 1995. The phylogenetic positions of the conifer genera Amentotaxus, Phyllocladus and Nageia inferred from 18S rRNA sequences. Journal of Molecular Evolution 41: 224230.CrossRefGoogle ScholarPubMed
Chaw, S.-M, Zharkikh, A., Sung, H.-M., Lau, T.-C. & Li, W.-H 1997. Molecular phylogeny of extant gymnosperms and seed plant evolution: analysis of nuclear 18S rDNA sequences. Molecular Biology and Evolution 14: 5668.CrossRefGoogle Scholar
Cheng, Y., Nicolson, R.G., Tripp, K. & Chaw, S.-M. 2000. Phylogeny of Taxaceae and Cephalotaxaceae genera inferred from chloroplast matK gene and nuclear rDNA ITS region. Molecular Phylogenetics and Evolution 14: 353365.CrossRefGoogle ScholarPubMed
Chuang, T.I. & Hu, W.W. L. 1963. Study of Amentotaxus argotaenia (Hance) Pilger. Botanical Bulletin of Academia Sinica II 4: 1014.Google Scholar
Cisowski, W., Mazol, I. & Glensk, M. 2005. Investigation of the essential oils from three Cephalotaxus species. Acta Poloniae Pharmaceutica 62: 461463.Google ScholarPubMed
Dark, S.O.S. 1932. Chromosomes of Taxus, Sequoia, Cryptomeria and Thuya. Annals of Botany 46: 965977.CrossRefGoogle Scholar
Du, D.-L., Su, J., Fu, Y.-C., et al. 2002. Genetic diversity of Cephalotaxus mannii, a rare and endangered plant. Acta Botanica Sinica 44: 193198.Google Scholar
Du, J., Chiu, M.-H., & Nie, R.-L. 1999. Two new lactones from Cephalotaxus fortunei var alpina. Journal of Natural Products 62: 16641665.CrossRefGoogle Scholar
Efferth, T., Sauerbrey, A., Halatsch, M.-E., Ross, D.D. & Gebhert, E. 2003. Molecular modes of action of cephalotaxine and homoharringtonine from the coniferous tree Cephalotaxus hainanensis in human tumor cell lines. Archives of Pharmacology 367: 5667.CrossRefGoogle ScholarPubMed
Eichler, A.W. 1889. Coniferae. Pp 28116 in Engler, A. & Prantl, K. (eds.), Die Naturlichen Pflanzenfamilien. Leipzig: Engelmann.Google Scholar
Erwin, D.M. & Schorn, H.E. 2005. Revision of the conifers from the Eocene Thunder Mountain flora, Idaho, U.S.A. Review of Palaeobotany and Palynology 137: 125145.CrossRefGoogle Scholar
Farjon, A. 2010. A Handbook of the World’s Conifers. Leiden: Konninklijke Brill NV.CrossRefGoogle Scholar
FIPI (Forest Inventory and Planning Institute, Vietnam) 1996. Vietnam Forest Trees. Hanoi: Agricultural Publishing House.Google Scholar
Florin, R. 1940 Die Koniferen etc. V. Palaeontographica 85(5): 243–236.Google Scholar
Florin, R. 1948. On the morphology and relationships of the Taxaceae. Botanical Gazette 110: 3139.CrossRefGoogle Scholar
Florin, R. 1951. Evolution in Cordaitales and Conifers. Acta Horti Bergiani 15: 285388.Google Scholar
Florin, R. 1954. The female reproductive organs of conifers and taxads. Biological Reviews 29: 367389.CrossRefGoogle Scholar
Florin, R. 1963. The distribution of conifer and taxad genera in time and space. Acta Horticultura Bergiani 20: 121312.Google Scholar
Gregor, H.J. 1979. Fruktifikationen der Gattung Cephalotaxus Siebold & Zuccarini aus dem Tertiar Europas und Japans. Feddes Repertorium 90: 110.CrossRefGoogle Scholar
Greguss, P. 1955. Identification of Living Gymnosperms on the Basis of Xylotomy. Budapest: Akad Kiado.Google Scholar
Gu, Z.-J. 1998. A karyomorphological study of Cephalotaxaceae. Acta Phytotaxonomica Sinica 1: 4752.Google Scholar
Hao, D.C., Xiao, P.G., Huang, B.L., Ge, G.B., & Yang, L. 2008. Interspecific relationships and origins of Taxaceae and Cephalotaxaceae revealed by partitioned Bayesian analyses of chloroplast and nuclear DNA sequences. Plant Systematics and Evolution 276: 89104.CrossRefGoogle Scholar
Hao, D.C., Huang, B.L., Chen, S.L. & Mu, J. 2009. Evolution of the chloroplast trnLtrnF region in the gymnosperm lineages Taxaceae and Cephalotaxaceae. Biochemical Genetics 47: 351369.CrossRefGoogle Scholar
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 296307.CrossRefGoogle Scholar
Heer, O. 1883. Die Fossile Flora Gronlands, II. Flora Fossilis Arctica 7: 1275.Google Scholar
Hu, Y.-S. & Wang, F.-H. 1989. Anatomy and affinities of Cephalotaxus (Cephalotaxaceae). Cathaya 1: 3748.Google Scholar
Huang, L. & Xue, Z. 1984. Cephalotaxus alkaloids. The Alkaloids: Chemistry and Pharmacology 23: 157226.Google Scholar
Ito, H., Ito, S., Matsui, T., & Marutani, T. 2006. Effect of fluvial and geomorphic disturbances on habitat segregation of tree species in a sedimentation-dominated riparian forest in warm-temperate mountainous region in southern Japan. Journal of Forest Research, 11(6): 405417.CrossRefGoogle Scholar
Janchen, E. 1949. Das System der Konifern. Akad. Wien. Sitz-ber. 158: 155262.Google Scholar
Jiang, T.L., Liu, R.H. & Salmon, S.E. 1983. Comparative in vitro antitumor activity of homoharingtonine and harringtonine against clonogenic human tumor cells. Investigational New Drugs 1: 2125.CrossRefGoogle Scholar
Kantarjian, H.M., Talpaz, M., Santini, V., et al. 2001. Homoharringtonine: history, current research, and future directions. Cancer 92: 15911605.3.0.CO;2-U>CrossRefGoogle Scholar
Kee, D.Y., Doc., G.J., Yun, H.H., Jei, M.R. & Kim, J. 2007. Inhibitors of osteoclast differentiation from Cephalotaxus koreana. Journal of Natural Products 70: 20292032.Google Scholar
Keng, H. 1963a. Phyllocladus hypophyllus Hook. F. Gardens Bulletin, Singapore 20: 123126.Google Scholar
Keng, H. 1963b. Taxonomic position of Phyllocladus and the classification of Conifers. Gardens Bulletin Singapore 20: 127130.Google Scholar
Keng, H. 1969. Aspects of morphology of Amentotaxus formosana with a note on the taxonomic position of the genus. Journal of the Arnold Arboretum 50: 432448.CrossRefGoogle Scholar
Kobayashi, J., Yoshinaga, M., Yoshida, N., Shiro, M. & Morita, H. 2002. Cephalocyclin A, a novel pentacyclic alkaloid from Cephalotaxus harringtoniana var nana. Journal of Organic Chemistry 67: 22832286.CrossRefGoogle Scholar
Koidzumi, G. 1932. Notes on Amentotaxaceae. Acta Hytotaxonomica Geobotanica 1: 185.Google Scholar
Kudo, Y. & Yamamoto, Y. 1931. Materials for a flora of Formosa, IV. Journal of the Society for Tropical Agriculture (Taihoku) 3(2): 110111.Google Scholar
Kuo, Y.-H., Lin, C.-H., Hwang, S.-Y., et al. 2000. A novel cytotoxic C-methylated biflavone from the stem of Cephalotaxus wilsoniana. Chemical and Pharmaceutical Bulletin 48: 440441.CrossRefGoogle Scholar
Kuo, Y.-H., Hwang, S.-Y., Kuo, L.-M.Y., et al. 2002. A novel cytotoxic C-methylated biflavone, taiwanhomoflavone-B from twigs of Cephalotaxus wilsoniana. Chemical and Pharmaceutical Bulletin 50: 16071608.CrossRefGoogle ScholarPubMed
Kurmann, M.H. 1992. Exine stratification in extant gymnosperms: a review of published transmission electron micrographs. Kew Bulletin 47: 25-39.CrossRefGoogle Scholar
Lee, M.K., Lim, S.W., Yang, H., et al. 2006. Osteoblast differentiation stimulating activity of biflavenoids from Cephalotaxus koreana. Bioorganic and Medical Chemistry Letters 16: 28502854.CrossRefGoogle ScholarPubMed
Li, H.L. 1953. Recent distribution and habitats of the conifers and taxads. Evolution 7: 245261.CrossRefGoogle Scholar
Li, W., Dai, R.-J., Yu, Y.-H., et al. 2007. Antihyperglycemic effect of Cephalotaxus sinensis leaves and GLUT-4 translocation facilitating activity of its flavenoid constituents. Biological and Pharmaceutical Bulletin 30: 11231129.CrossRefGoogle Scholar
Li, X.Y. & Wang, Y.J. 2003. Research on slope runoff processes in two vegetation types in Jinyung Mountain in Chongquing City. Journal of Beijing Forestry University 25: 8184.Google Scholar
Lu, D.Y., Cao, J.Y. & Xu, B. 1999. Biological activities and clinical utilizations of harringtonine and homoharringtonine. Natural Products Research and Development 12: 7073.Google Scholar
Luo, C.Y., Tang, J.Y. & Wang, Y.P. 2004. Homoharringtonine: a new treatment option for myeloid leukemia. Hematology 9: 259270.CrossRefGoogle ScholarPubMed
Mehrotra, R., Liu, X.Q., Li, C.S., Wang, Y.F. & Chauhan, M. 2005. Comparison of the Tertiary flora of southwest China and northeast India and its significance in the antiquity of the modern Himalayan flora. Review of Palaeobotany and Palynology 135: 145163.CrossRefGoogle Scholar
Mendiratta, A., Dayal, R. & Bartley, J.P. 2005. GC/MS analysis of essential oils of needles and twigs of Cephalotaxus harringtoniana (Knight ex Forbes) Koch var harringtoniana. Journal of Essential Oil Research 17: 308309.CrossRefGoogle Scholar
Meyer, H.W. & Manchester, S.R.. 1997. The Oligocene Bridge Creek flora of the John Day Formation, Oregon. University of California Publications in Geological Sciences 141: 1195.Google Scholar
Miki, S. 1958. Gymnosperms in Japan, with special reference to its remains. Journal of the Institute Polytechnic Osaka City University Ser D 9: 125150.Google Scholar
Mikolajczak, K.L., Powell, R.G. & Smith, Jr., C.R. 1972. Deoxyharringtonine, a new antitumor alkaloid from Cephalotaxus: structure and synthetic studies. Tetrahedron 28: 19952001.CrossRefGoogle Scholar
Miller, C.N. 1977. Mesozoic conifers. Botanical Review 43: 217280.CrossRefGoogle Scholar
Morita, H., Arisaka, M., Yoshida, N. & Kobayashi, J. 2000. Cephalezomines A–F, potent cytotoxic alkaloids from Cephalotaxus harringtoniana var. nana. Tetrahedron 56: 29292934.CrossRefGoogle Scholar
Morita, H., Yoshinaga, M. & Kobayashi, J. 2002. Cephalezomines G, H, J, K. L, and M, new alkaloids from Cephalotaxus harringtoniana var nana. Tetrahedron 58: 54895495.CrossRefGoogle Scholar
Neger, F.W. 1907. Cephalotaxaceae. Pp 2330 in Die Nadelhozer (Koniferen) und Ubrigen Gymnospermen. Leipzig: Engelmann.CrossRefGoogle Scholar
O’Brian, S., Kantarjian, H., Keating, M., et al. 1995. Homoharringtonine therapy induces responses in patients with chronic myelogenous leukemia in late chronic phase. Blood 86: 33223326.Google Scholar
Page, C.N., Kramer, K.U. & Green, P.S. 1990. Coniferophytina. P 279 in Kramer, K.U. & Green, P.S. (eds.), The Families and Genera of Vascular Plants. New York: Springer.Google Scholar
Phillips, E.W.J. 1941. The identification of conifer woods by their microscopic structure. Journal of the Linnean Society Botany 52: 259320.CrossRefGoogle Scholar
Phutdhawong, W., Korth, J., Buddhasukh, D. & Pyne, S.G. 2002. Volatile components from Cephalotaxus griffithii growing in northern Thailand. Flavour and Fragrance Journal 17: 153155.CrossRefGoogle Scholar
Pilger, R. 1926. Coniferae. Pp 121407 in Engler, A. & Prantl, K. (eds.), Die Naturlichen Pflanzenfamilien. Vol. 13. Leipzig: Engelmann.Google Scholar
Politi, M., Braca, A., De Tommasi, N., et al. 2003. Antimicrobial diterpenes from the seeds of Cephalotaxus harringtoniana var drupacea. Plant Medica 69: 468470.Google ScholarPubMed
Potbury, S., 1935. The La Porte Flora of Plumas County, California. Washington, DC: Carnegie Institute of Washington.Google Scholar
Powell, R.G. 2009. Plant seeds as sources of potential industrial chemicals, pharmaceuticals, and pest control agents. Journal of Natural Products 72: 516523.CrossRefGoogle ScholarPubMed
Powell, R.G., Weisleder, D. & Smith, Jr., C.R. 1972a. Antitumor alkaloids for Cephalotaxus harringtoniana: structure and activity. Journal of Pharmaceutical Sciences 61: 12271230.CrossRefGoogle Scholar
Powell, R.G., Mikolajczak, K.L., Weisleder, D. & Smith, Jr., C.R. 1972b. Alkaloids of Cephalotaxus wilsoniana. Phytochemistry 11: 33173320.CrossRefGoogle Scholar
Powell, R.G., Miller, R.W. & Smith, Jr., C.R. 1979. Cephalomannine: a new antitumour alkaloid from Cephalotaxus mannii. Journal of the Chemical Society, Chemical Communications 3: 102104.CrossRefGoogle Scholar
Quinn, C.J., Price, R.A. & Gadek, P.A. 2002. Familial concepts and relationships in the conifers based on rbcL and matK sequence comparisons. Kew Bulletin 57: 513531.CrossRefGoogle Scholar
Quintas-Cardama, A. & Cortes, J. 2008. Omacetaxine mepesuccinate: a semisynthetic formulation of the natural antitumoral alkaloid homoharringtonine, for chronic myelocytic leukemia and other myeloid malignancies. IDrugs 11: 356372.Google Scholar
Rai, H.S., Reeves, P.A., Peakall, R., Olmstead, R.G. & Graham, S.W. 2008. Inference of higher-order conifer relationships from a multi-locus plastid data set. Botany 86: 685–669.CrossRefGoogle Scholar
Sanhi, B. 1920. On certain archaic features of the seed of Taxus baccata, with remarks on the antiquity of the Taxineae. Annals of Botany 34: 117133.Google Scholar
Sax, K. & Sax, H.J. 1933. Chromosome number and morphology in the conifers. Journal of the Arnold Arboretum 14: 356375.CrossRefGoogle Scholar
Saxton, W.T. 1934. The morphology of Austrotaxus spicata Compton. Annals of Botany 38: 411427.CrossRefGoogle Scholar
Singh, H. 1961. The life history and systematic position of Cephalotaxus drupacea Sieb. et Zucc. Phytomorphology 11: 153197.Google Scholar
Stefanoff, B. & Jordanoff, D. 1935. Studies upon the Pliocene flora of the Plain of Sofia. Sborn. Akad. Nauk. T., Sofia 29: 130.Google Scholar
Stewart, W.N. & Rothwell, G.A. 1993. Palaeobotany and the Evolution of Plants. 2nd ed. Cambridge: Cambridge University Press.Google Scholar
Su, Z. & Chen, B. 1999. Floristic characteristics of the rare and endangered plant species in North Guangdong and their conservation strategies. Forest Research 12: 2330.Google Scholar
Sun, N.J., Zhao, Z.F., Chen, R.T., Lin, W. & Zhou, Y.Z. 1981. Isolation and identification of the antitumor agent hainanolide from Cephalotaxus fortunei. Acta Pharmaceutica Sinica 16: 233234 (author’s translation).Google ScholarPubMed
Suzuki, M. 1979. The course of resin canals in the shoots of conifers. I. Taxaceae, Cephalotaxaceae and Podocarpaceae. The Botanical Magazine, Tokyo, 92: 235251.CrossRefGoogle Scholar
Takano, I., Yasuda, I., Nishijima, M., et al. 1996a. Alkaloids from Cephalotaxus harringtoniana. Phytochemistry 43: 299303.CrossRefGoogle Scholar
Takano, I., Yasuda, I., Nishijima, M., et al. 1996b. New Cephalotaxus alkaloids from Cephalotaxus harringtoniana var drupacea. Journal of Natural Products 59: 965967.CrossRefGoogle Scholar
Takano, I., Yasuda, I., Nishijima, M., et al. 1997. Ester-type Cephalotaxus alkaloids from Cephalotaxus harringtoniana var drupacea. Phytochemistry 44: 735738.CrossRefGoogle ScholarPubMed
Takhtajan, A.L. 1956. Vjisshie rastenija. Telomophyta I. Psilophytales-Coniferales. Moscow: Editio Academiiae Scientarum USSR (in Russian).Google Scholar
Takhtajan, A.L. 1969. Flowering Plants: Origin and Dispersal. Edinburgh: Oliver & Boyd.Google Scholar
Tang, Z.-X. 1968. Investigation on sexual reproductive cycle in Torreya grandis. Acta Phytotaxonomica Sinica 24: 453.Google Scholar
Thomas, B.A. & Spicer, R.A. 1987. The Evolution and Palaeobiology of Land Plants. London: Croom Helm.Google Scholar
Tomlinson, B.P. & Zacharias, E.H. 2001. Phyllotaxis, phenology and architecture in Cephalotaxus, Torreya and Amentotaxus (Coniferales). Botanical Journal of the Linnean Society 135: 215228.CrossRefGoogle Scholar
Van der Burgh, J. 1983. Allochthonous seed and fruit floras from the Pliocene of the Lower Rhine Basin. Review of Palaeobotany and Palynology 40: 3390.CrossRefGoogle Scholar
Van Tieghem, M.P. 1891. Structure et affinities des Cephalotaxus. Bulletin Société Botanique Francaise 38: 184190.CrossRefGoogle Scholar
Wang, C., Wang, Y. & Huang, S. 1994. Study on ex situ conservation of threatened plants of the first national list in Guangxi. Guihaia 14: 3953.Google Scholar
Wang, L.-W., Su, H.-J., Yang, S.-Z., Won, S.-J. & Lin, C.-N. 2004. New alkaloids and a tetraflavenoid from Cephalotaxus wilsoniana. Journal of Natural Products 67: 11821185.CrossRefGoogle Scholar
Wang, X.-P. 1994. Factors caused endangerment of Hainan plumyew (Cephalotaxus mannii) and its conservation means. Guihaia 14: 369372.Google Scholar
Wang, Y.-S. 1992. The preliminary studies on biological and ecological characteristics of Cephalotaxus mannii Hook. F. Journal of Plant Resources and Environment 1: 6364.Google Scholar
Wilde, M.H. 1977. A new interpretation of microsporangiate cones in Cephalotaxaceae and Taxaceae. Phyotomorphology 25: 434450.Google Scholar
Wilson, E.H. 1916. The Conifers and Taxads of Japan. Cambridge, MA: Arnold Arboretum.Google Scholar
Won, H. & Renner, S.S. 2006. Dating dispersal and radiation in the gymnosperm Gnetum (Gnetales): clock calibration when outgroup relationships are uncertain. Systematic Biology 55: 610622.CrossRefGoogle ScholarPubMed
Yang, H.-L., Zhu, J.-Z., Qi, S. & Zhu, G.-P. 2005. Surface roughness coefficient of forest watershed in the Three Gorges Region. Journal of Beijing Forestry University 27: 3841.Google Scholar
Ying, T. S., Zhang, Y. L. & Boufford, D. E. 1993. The Endemic Genera of Seed Plants of China. Beijing: Science Press.Google Scholar
Yook, C.-S., Jung, J.-H., Jeong, J.-H., Nohara, T. & Chang, S.-Y. 2000. Biflavenoids from the leaves of Cephalotaxus koreana Nakai. Natural Products Sciences 6: 14.Google Scholar
Zeng, J. 1989. A study on the Cephalotaxus fortunei forest of Xiaolian Mountain in Ninglang County, Yunnan. Acta Botanica Yunnanica 11: 426432.Google Scholar
Zhou, D.C., Zittoun, R. & Marie, J.P. 1995. Homoharringtonine: an effective new natural product in cancer chemotherapy. Bulletin du Cancer 82: 987995.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Cephalotaxus
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009262965.020
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Cephalotaxus
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009262965.020
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Cephalotaxus
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009262965.020
Available formats
×