Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-05T12:58:53.999Z Has data issue: false hasContentIssue false

Chapter 12 - Cedrus

Pinales: Cedraceae

from Part III - Living Arborescent Gymnosperm Genetic Presentations

Published online by Cambridge University Press:  11 November 2024

Christopher N. Page
Affiliation:
University of Exeter
Get access

Summary

Tall, long-lived forest trees with rough-barked trunks, mostly developing a broad-crowned habit with age, bearing massive boughs and widely spreading flattened branch systems, giving mature trees a particularly stately and majestic habit with age, especially when growing in open park-like landscapes. Distinguished from Picea by the presence of short shoots with clustered leaves, and female cones which are stiffly erect, never pendulous, throughout life to maturity.

Type
Chapter
Information
Evolution of the Arborescent Gymnosperms
Pattern, Process and Diversity
, pp. 272 - 291
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ajbilou, R., Maranon, T. & Arroyo, J. 2006. Ecological and biogeographical analyses of Mediterranean forests of northern Morocco. Acta Oecologica 29: 104113.CrossRefGoogle Scholar
Argant, J. 2004. Le gisement pliocene final de Saint-Vallier (Drom, France): Palynologie. Geobios 37 (suppl.): S8190.CrossRefGoogle Scholar
Barghoorn, E.S. Jr. & Bailey, I.W. 1938. The occurrence of Cedrus in the auriferous gravels of California. American Journal of Botany 25: 641648.CrossRefGoogle Scholar
Beals, E.W. 1965. The remnant cedar forests of Lebanon. Journal of Ecology 53: 679694.CrossRefGoogle Scholar
Benabdid, A. & Fennane, M. 1994. Connaissances sur la vegetation du maroc: phytogeographie, phytosocciologie et series de vegetation. Lazaroa 14: 2197.Google Scholar
Bertini, A. 2006. The Northern Apennines palynological record as a contribute for the reconstruction of the Messinian palaeoenvironments. Sedimentary Geology 188: 235258.CrossRefGoogle Scholar
Bertoldi, R. 1997. Lineamenti palinostratografici de depositi continentali del Pliocene-Pleistocene inferiore inizaile dell’Italia nord-occidental. Bolletino Societa Paleontologica Italiana 39: 6373.Google Scholar
Bertoldi, R., Rio, D. & Thunnell, R. 1989. Pliocene–Pleistocene vegetational and climatic evolution of the south-central Mediterranean. Palaeogeography, Palaeoclimatology, Palaeoecology 72: 263275.CrossRefGoogle Scholar
Blokhina, N.I. 1998. Fossil wood of Cedrus (Pinaceae) from the Paleogene of Kamchatka. Paleontological Journal 32: 532538.Google Scholar
Boukhris, I., Lahssini, S., Collalti, A., et al. 2023. Calibrating a process-based model to enhance robustness in carbon sequestration simulations: the case of Cedrus atlantica (Endl.) Manetti ex Carrière. Forests 14(2): 401.CrossRefGoogle Scholar
Boyd, A. 2009. Relict conifers from the mid-Pleistocene of Rhodes, Greece. Historical Biology 21: 115.CrossRefGoogle Scholar
Boydak, M. 2003. Regeneration of Lebanon cedar (Cedrus libani A. Rich.) on karstic lands in Turkey. Forest Ecology and Management 178: 231234.CrossRefGoogle Scholar
Brandis, D. 1921. Indian Trees. London: Constable.Google Scholar
Chaney, R.W. 1932. Notes on occurrence and age of fossil plants found in the auriferous gravels of Sierra Nevada. California State Division of Mines, Report of the State Mineralogist 28.Google Scholar
Chapman, E. 1949. Cyprus Trees and Shrubs. Nicosia: Government Printing Office.Google Scholar
Chowdhury, C.R. 1962. The embryology of conifers: a review. Phytomorphology 12: 313338.Google Scholar
Cornuel, , 1882. Note sur les cones de Pinus elongata decouvertes a Saint-Dizier et de la Houpette (Meuse). Bulletin de la Société Géologique de France Ser 3 10: 259263.Google Scholar
Craggs, H.J. 2005. Late Cretaceous climate signal of the Northern Pekulney Range flora of northeastern Russia. Palaeogeography, Palaeoclimatology, Palaeoecology 217: 2546.CrossRefGoogle Scholar
Darrow, B.S. 1936. A fossil araucarian embryo from the Cerro Cuadrado of Patagonia. Botanial Gazette 98: 328337.CrossRefGoogle Scholar
Dogra, P.D. 1986. Conifers of India and their natural gene resources in relation to forestry and the Himalayan environment. Glimpses in Plant Research 7: 129194.Google Scholar
Emberger, L. 1938. Contribucion a la connaissance des Cedres et en particulier de Deodar et du Cedre de l’Atlas. Revue Botanique Appliquees et d’Agriculture Tropicale 17: 7792.CrossRefGoogle Scholar
Ezzahiri, M. & Belghazi, B. 2000. Synthese de quelques resultants sur la regeneration naturelle du cedre de l’Atlas au Moven Atlas (Maroc). Secheresse, Science et Chagements Plaetaires 11: 7984.Google Scholar
Farjon, A. & Page, C.N. (eds.) 1999. Conifers: Status Survey and Conifer Action Plan. IUCN/SSC Conifer Specialist Group Report. Gland: International Union for the Conservation of Nature.Google Scholar
Ferguson, D.K. 1967. On the phytogeography of Coniferales in the European Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology 3: 73110.CrossRefGoogle Scholar
Gray, J. 1964. Northwest American Tertiary paleontology: the emerging picture. Pp 2130 in Cranwell, L. (ed.), Ancient Pacific Floras. Honolulu: University of Hawaii Press.Google Scholar
Grimson, F. & Zetter, R. 2011. Combined LM and SEM study of the Middle Miocene (Sarmatian) palynoflora from the Lavanttal Basin, Austria. Part II. Pinophyta (Cupressaceae, Pinaceae and Sciadopityaceae). Grana 50: 262310.CrossRefGoogle Scholar
Gupta, B.L. 1928. Forest Flora of Chakraata, Dehra Dun and Saharanpur Forest Divisions, United Provinces. Calcutta: Government of India Central Publication Branch.Google Scholar
Hart, J.A. 1987. A cladistic analysis of conifers: preliminary results. Journal of the Arnold Arboretum 68: 269307.CrossRefGoogle Scholar
Herman, A.B. & Spicer, R.A. 2010. Mid-Cretaceous floras and climate of the Russian high Arctic (Novosibirsk Islands, northern Yakutiya). Palaeogeography, Palaeoclimatology, Palaeoecology 295(3–4): 409422.CrossRefGoogle Scholar
Hsu, J., Tao, J. & Sun, X. 1973. On the discovery of a Quercus semicarpifolia bed in Mount Shisha Pangma and its significance in botany and geology. Acta Botanica Sinica 15(1): 103119.Google Scholar
Ivanov, D., Ashraf, A.R., Mosbrugger, V. & Palamarev, E. 2002. Palynological evidence for Miocene climate change in the Forecarpathian Basin (central Paratethys, NW Bulgaria). Palaeogeography, Palaeoclimatology, Palaeoecology 178(1–2): 1937.CrossRefGoogle Scholar
Kavgaci, A., Basaran, S. & Basaran, M.A. 2010. Cedar forest communities in Western Antalya (Taurus Mountains, Turkey). Plant Biosystems 144: 271287.CrossRefGoogle Scholar
Khouzami, M. 1994. The Lebanese cedar forests. Proceedings of the First National Conference on the Cedar of Lebanon, Present and Future. Beirut: American University of Beirut.Google Scholar
Khuri, S. & Akeroyd, J. 1999. Cherishing Lebanon’s famous cedars. Plant Talk 17: 1921.Google Scholar
Khuri, S. & Talhouk, S.N. 1999. Species accounts: cedar of Lebanon (Cedrus libani A. Rich). Pp. 108111 in Farjon, A. & Page, C.N. (eds.), Conifers: Status Survey and Conifer Action Plan. Gland: International Union for the Conservation of Nature.Google Scholar
Khuri, S., Shmoury, M.R., Baalbaki, R., Maunder, M. & Talkouk, S.N. 2000. Conservation of the Cedrus libani populations in Lebanon: history, current status and experimental application of somatic embryogenesis. Biodiversity and Conservation 9: 12611273.CrossRefGoogle Scholar
Kong, W.S. 1995. The distribution of conifers and taxads in time and space in the Korean Peninsula. Journal of the Korean Geographical Society 30(1): 113.Google Scholar
Kong, W.S. 2000. Vegetational history of the Korean Peninsula. Global Ecology and Biogeography 9(5): 391402.CrossRefGoogle Scholar
Krouchi, F., Derridj, A. & Lefevre, F. 2004. Year and tree effect on reproductive organisation of Cedrus atlantica in a natural forest. Forest Ecology and Management 197: 181189.CrossRefGoogle Scholar
Lamb, H.F. & Van-der-Kaars, S. 1995. Vegetation response to Holocene climatic change: pollen and palaeolimnological data from the Middle Atlas, Morocco. Holocene 5: 400408.CrossRefGoogle Scholar
Meddour, R. 1992. Regeneration naturelle de Cedrus atlantica Man. Et de divers pins apres incendie dans l’arboretum de Meurdja (Algerie). Foret mediterraneenne 13: 275287.Google Scholar
Meiggs, R. 1982. Trees and Timber in the Ancient Mediterranean World. Oxford: Clarendon Press.Google Scholar
Mikesell, M.W. 1969. The deforestation of Mount Lebanon. Geographic Review 59: 128.CrossRefGoogle Scholar
Mitchell, A.F. 1972. Conifers in the British Isles. London: HMSO.Google Scholar
Mouterde, P. 1966. Nouvelle Flore du Liban et de la Syrie. Beyrouth: Editions de l’imprimerie catholique.Google Scholar
Newton, A.C., Alnutt, T.R., Gillies, A.C.M., Lowe, A.J. & Ennos, R.A. 1999. Molecular phylogeography, intraspecific variation and the conservation of tree species. Trends in Ecology and Evolution 14: 140145.CrossRefGoogle Scholar
Page, C.N. 1979. Macaronesian heathlands. Pp 117123 in Specht, R.L. (ed.), Ecosystems of the World No 9A: Heathlands and Related Shrublands. Amsterdam: Elsevier.Google Scholar
Panetsos, K.P., Scaltsoyiannes, A. & Tsaktsira, M. 1994. Genetic variation in allozymes of Cedrus libani A. Rich and Cedrus atlantica Mannetti. Annales de la Recherche Forestiereau Maroc 27: 420434.Google Scholar
Pons, A. 1964. Contribution palynologique à l’étude de la flore et de la végétation pliocènes de la région rhodanienne. Doctoral dissertation, Masson & Cie.Google Scholar
Popescu, S.-M. 2006. Late Miocene and Early Pliocene environments in the southwestern Black Sea region from high-resolution palynology of DSDP Site 380A (Leg 42B). Palaeogeography, Palaeoclimatology, Palaeoecology 238: 6477.CrossRefGoogle Scholar
Puri, G.S. 1957. Preliminary observations on the phytogeographical changes in the Kashmir Valley during the Pleistocene. Palaeobotanist 6: 1618.Google Scholar
Qiao, C.-Y., Ran, J.-H., Li, Y. & Wang, X.-Q. 2007. Phylogeny and biogeography of Cedrus (Pinaceae) inferred from sequences of seven paternal chloroplast and maternal mitochondrial DNA regions. Annals of Botany 100: 573580.CrossRefGoogle ScholarPubMed
Ravazzi, C., Pini, R., Breda, M., et al. 2005. The lacustrine deposits of Fornaci di Ranica (late Early Pleistocene, Italian Pre-Alps): stratigraphy, palaeoenvironment and geological evolution. Quaternary International 131: 3558.CrossRefGoogle Scholar
Renau-Morata, B., Nebauer, S.G., Sales, E., et al. 2005. Genetic diversity and structure of natural and managed populations of Cedrus atlantica (Pinaceae) assessed using random amplified polymorphic DNA. American Journal of Botany 92: 875884.CrossRefGoogle ScholarPubMed
Roberts, M.C. & Whitehead, D.R. 1984. The palynology of a non-marine Neogene deposit in the Williamette Valley, Oregon (USA). Review of Palaeobotany and Palynology 41: 112.CrossRefGoogle Scholar
Sahni, K.C. 1990. Gymnosperms of India and Adjacent Countries. Dehradun: Bishen Singh and Mahendra Pal Singh India.Google Scholar
Saporta, G. 1880. Notice sur les vegetaux fossiles de la Craie inferieure des environs de Havre. Bulletin de la Société géologique de Normandie 6: 640661.Google Scholar
Sax, K. & Sax, H.J. 1933. Chromosome number and morphology in the conifers. Journal of the Arnold Arboretum 14: 356375.CrossRefGoogle Scholar
Schickhoff, U. 1994. Die Verbreitung der Vegetation im Kaghan-Tal (Westhimalaya, Pakistan) und ihre kartographische Darstellung im Mass-stab. Erdkunde 48: 92110.CrossRefGoogle Scholar
Semaan, M. & Haber, R. 2003. In situ conservation of Cedrus libani in Lebanon. Acta Horticultura 615: 415417.CrossRefGoogle Scholar
Sharma, C.M., Baduni, N.P., Gairola, S., Ghildiyal, S.K. & Suyal, S. 2010. Tree diversity and carbon stocks of some major forest types of Garhwal Himalaya, India. Forest Ecology and Management 260: 21702179.CrossRefGoogle Scholar
Sharma, C.M., Gairola, S., Baduni, N.P., Ghildiyal, S.K., & Suyal, S. 2011. Variation in carbon stocks on different slope aspects in seven major forest types of temperate region of Garhwal Himalaya, India. Journal of Biosciences 36: 701708.CrossRefGoogle Scholar
Stefanoviac, S., Jager, M., Deutsch, J., Broutin, J. & Masselot, M. 1998. Phylogenetic relationships of conifers inferred from partial 28S rRNA gene. American Journal of Botany 85: 688697.CrossRefGoogle ScholarPubMed
Stockey, R.A. 1977. Reproductive biology of the Cerro Cuadrado (Jurassic) fossil conifer: Paraucaria patagonica. American Journal of Botany 64: 733744.CrossRefGoogle Scholar
Su, T., Jacques, F.M.B., Spicer, R.A., et al. 2013. Post-Pliocene establishment of the present monsoonal climate in SW China: evidence from the late Pliocene Longmen megaflora. Climate of the Past 9(4): 19111920.CrossRefGoogle Scholar
Sun, X. & Wang, P. 2005. How old is the Asian monsoon system? Palaeobotanical records from China. Palaeogeography, Palaeoclimatology, Palaeoecology 222: 181222.CrossRefGoogle Scholar
Sveshnikova, I.N. and Budantsev, L.J. 1969. Iskopaemye flory Arktiki, I (Fossil Floras of the Arctic, I). Leningrad: Nauka (in Russian).Google Scholar
Takaso, T. & Owens, J.N. 1995. Ovulate cone morphology and pollination in Pseudotsuga and Cedrus. International Journal of Plant Sciences 156: 630639.CrossRefGoogle Scholar
Talhouk, S.N., Zurayk, R. & Khuri, S. 2001a. Conifer conservation in Lebanon. Acta Horticultura 615: 411414.Google Scholar
Talhouk, S.N., Zurayk, R. & Khuri, S. 2001b. Conservation of the coniferous forests of Lebanon: past, present and future prospects. Oryx 35: 206215.CrossRefGoogle Scholar
Talhouk, S.N., Zurayk, R. & Khuri, S. 2003. Conifer conservation in Lebanon. Acta Horticulturae 615: 411414.CrossRefGoogle Scholar
Terrab, A., Paun, O., Talavera, S., et al. 2006. Genetic diversity and population structure in natural populations of Moroccan Atlas Cedar (Cedrus atlantica; Pinaceae) determined with cpSSR markers. American Journal of Botany 93: 12741280.CrossRefGoogle ScholarPubMed
Vakhrameev, V.A. 1991. Jurassic and Cretaceous Floras and Climates of the Earth. Cambridge: Cambridge University Press.Google Scholar
Vishnu-Mittre, & Sharma, B.D. 1963. Pollen morphology of the Indian species of Alnus. Grana 4(2): 302305.Google Scholar
Wang, X.-Q., Han, Y. & Hong, D.-Y. 1998a. A molecular systematic study of Cathaya, a relic genus of the Pinaceae in China. Plant Systematics and Evolution 213: 165172.CrossRefGoogle Scholar
Wang, X.Q., Han, Y. & Hong, D.Y. 1998b. PCR-RFLP analysis of the chloroplast gene trn K in the Pinaceae, with special reference to the systematic position of Cathaya. Israel Journal of Plant Sciences 46(4): 265271.CrossRefGoogle Scholar
Wang, X.-Q., Tank, D.-C. & Sang, T. 2000. Phylogeny and divergence times in Pinaceae: evidence from three genomes. Molecular Biology and Evolution 17: 773781.CrossRefGoogle ScholarPubMed
Yasuda, Y., Kitagawa, H. & Nakagawa, T. 2000. The earliest record of major anthropogenic deforestation in the Ghab Valley, northwest Syria: a palynological study. Quaternary International 73: 127136.CrossRefGoogle Scholar
Yavuz-Isik, N. 2007. Pollen analysis of coal-bearing Miocene sedimentary rocks from the Seyitomer Basin (Kutahya), Western Anatolia. Geobios 40: 701708.CrossRefGoogle Scholar
Yu, C.J. 1971. The Tertiary fossil pollens and diatoms from Bukpyeong, Korea. Bulletin of the Geological Survey of Korea 13: 449484.Google Scholar
Zhu, Z.H., Wu, L., Xi, P., Song, Z.C. & Zhang, Y.Y. 1985. A Research on Tertiary Palynology from the Qaidam Basin, Qinghai Province. Beijing: Petroleum Industry Press.Google Scholar
Zohary, M. 1973. Geobotanical Foundations of the Middle East. Amsterdam: Verlag-Swets-Zeitlinger.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Cedrus
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009262965.016
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Cedrus
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009262965.016
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Cedrus
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009262965.016
Available formats
×