Skip to main content Accessibility help
×
Hostname: page-component-599cfd5f84-wh4qq Total loading time: 0 Render date: 2025-01-07T05:37:49.518Z Has data issue: false hasContentIssue false

Chapter 38 - Austrocedrus

Cupressales: Cupressaceae S.S.

from Part III - Living Arborescent Gymnosperm Genetic Presentations

Published online by Cambridge University Press:  11 November 2024

Christopher N. Page
Affiliation:
University of Exeter
Get access

Summary

Cupressoid evergreen trees, the fresh branchlets with foliage are mostly held in vertical planes. The leaves are collectively somewhat spanner-like in shape, each etched across one or both surfaces with conspicuous white detailed markings. The pellucid foliage and characteristic white markings particularly distinguishes Austrocedrus.

Type
Chapter
Information
Evolution of the Arborescent Gymnosperms
Pattern, Process and Diversity
, pp. 631 - 639
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arana, M.V., Gallo, L.A., Vendramin, G.G., et al. 2010. High genetic variation in marginal fragmented populations at extreme climatic conditions of the Patagonian cypress Austrocedrus chilensis. Molecular Phylogenetics and Evolution 54: 941949.CrossRefGoogle ScholarPubMed
Arroyo, M.T.K., Lohengrin, C., Marticorena, C. & Guiterrez, J. 1995. Convergence in the Mediterranean floras in central Chile and California: insights from comparative biogeography. Ecological Studies 108: 4388.CrossRefGoogle Scholar
Brion, C., Grigera, D. & Rossoi, P. 1993. The reproduction of Austrocedrus chilensis (D.Don) Florin & Boutelje. Comptes Rendus Academie de Sciences Paris, Sciences de la Vie 316: 721724.Google Scholar
Dodd, R.S. & Rafii, Z.A. 1995. Ecogeographic variation in seed fatty acids of Austrocedrus chilensis. Biochemical Systematics and Ecology 23: 825833.CrossRefGoogle Scholar
Dodd, R.S., Rafii, Z.A. & Power, A.B. 1998. Ecotypic adaptation in Austrocedrus chilensis in cuticular hydrocarbon composition. New Phytologist 138: 699708.CrossRefGoogle Scholar
Donoso, C. 1982. Resena ecologica de los bosques mediterraneos de Chile. Bosque 4: 117146.CrossRefGoogle Scholar
Donoso, C.R. 1993. Bosques Templados de Chile y Argentina: Variacion, Estructura y Dinamica. Santiago del Chile: Editorial Universitaria.Google Scholar
Gobbi, M. & Schlichter, T. 1998. Survival of Austrocedrus chilensis seedlings in relation to microsite conditions and forest thinning. Forest Ecology and Management 111: 137146.CrossRefGoogle Scholar
Gregory-Wodzicki, K.M. 2000. Uplift history of the Central and Northern Andes: a review. Bulletin of the Geological Society of America 112: 10911105.2.0.CO;2>CrossRefGoogle Scholar
Gyenge, J.E., Fernández, M.E., Dalla Saida, G. & Schlichter, T. 2005. Leaf and whole-plant water relations of the Patagonian conifer Austrocedrus chilensis (D.Don) Pic.Ser. et Bizzarri: implications on its drought resistance capacity. Annals of Forest Science 62: 297302.CrossRefGoogle Scholar
Heusser, C.J. 1987. Fire history of Fuego-Patagonia. Quaternary of South America and Antarctic Peninsula 5: 93109.Google Scholar
Hill, R.S. & Carpenter, R.J. 1989. Tertiary gymnosperms from Tasmania: Cupressaceae. Alcheringa 13: 89102.CrossRefGoogle Scholar
Hunziker, J.H. 1961. Estudios cromosomicos en Cupressus y Libocedrus (Cupressaceae). Revta Invest. Agric. Buenos Aires 15: 169185.Google Scholar
Kitzberger, T. & Veblen, T.T. 1997. Influences of humans and ENSO on fire history of Austrocedrus chilensis woodlands in northern Patagonia. Ecoscience 4: 508520.CrossRefGoogle Scholar
Kitzberger, T. & Veblen, T.T. 1999. Fire-induced changes in northern Patagonian landscapes. Landscape Ecology 14: 115.CrossRefGoogle Scholar
Macphail, M.K., Alley, N.F, Forsyth, S.M. & Wells, P.M. 1991. A late Oligocene–early Miocene cool climate flora in Tasmania. Alcheringa 15: 87106.CrossRefGoogle Scholar
Macphail, M.K., Alley, N.F, Truswell, E.M. & Sluiter, I.R.K. 1994. Early tertiary vegetation: evidence from spores and pollen. Pp 189261 in Hill, R.S. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Cambridge: Cambridge University Press.Google Scholar
Markgraf, V., Romero, E. & Villagran, C. 1996. History and paleoecology of South American Nothofagus forests. Pp 354386 in Veblen, T.T., Hill, R.S. & Read, J. (eds.), The Ecology and Biogeography of Nothofagus Forests. New Haven, CT: Yale University Press.Google Scholar
McBride, J.R. 1983. Analysis of tree rings and fire scars to establish fire history. Tree-Ring Bulletin 43: 5167.Google Scholar
Overpeck, J.T., Rind, D. & Goldberg, R. 1990. Climate-induced changes in forest disturbance and vegetation. Nature 343: 5153.CrossRefGoogle Scholar
Pastorino, M.J. & Gallo, L.A. 2002. Quaternary evolutionary history of Austrocedrus chilensis, a cypress native to the Andean–Patagonian forest. Journal of Biogeography 29: 11671178.CrossRefGoogle Scholar
Pastorino, M.J., Gallo, L.A. & Hattemer, H.H. 2004. Genetic variation in natural populations of Austrocedrus chilensis, a cypress pine of the Andean–Patagonian Forest. Biochemical Systematics and Ecology 32: 9931008.CrossRefGoogle Scholar
Paull, R. & Hill, R.S. 2008. Oligocene Austrocedrus from Tasmania (Australia): comparisons with Austrocedrus chilensis. International Journal of Plant Sciences 169: 315330.CrossRefGoogle Scholar
Paull, R. & Hill, R.S. 2009. Libocedrus macrofossils from Tasmania (Australia). International Journal of Plant Sciences 170: 381399.CrossRefGoogle Scholar
Relva, M.A. & Veblen, T.T. 1998. Impacts of introduced large herbivores on Austrocedrus chilensis forests in northern Patagonia, Argentina. Forest Ecology and Management 108: 2740.CrossRefGoogle Scholar
Rovere, A.E., Aizen, M.A. & Kitzberger, T. 2003. Growth and climatic response of male and female tree of Austrocedrus chilensis, a dioecious conifer from the temperate forests of southern South America. Ecoscience 10: 195203.CrossRefGoogle Scholar
Urretavizcaya, M.F & Defosse, G.E. 2004. Soil seed bank of Austrocedrus chilensis (D.Don) Pic.Serm. et Bizarri related to different degrees of fire disturbance in two sites of southern Patagonia, Argentina. Forest Ecology and Management 187: 361372.CrossRefGoogle Scholar
Veblen, T.T. & Lorenz, D.C. 1987. Post-fire stand development of AustrocedrusNothofagus forests in northern Patagonia. Plant Ecology 71: 113126.CrossRefGoogle Scholar
Veblen, T.T. & Lorenz, D.C. 1988. Recent vegetation changes along the forest/steppe ecotone of northern Patagonia. Annals of the Association of American Geographers 78: 93111.CrossRefGoogle Scholar
Veblen, T.T., Kitzberger, T. & Antonio, L. 1992. Disturbance and forest dynamics along a transect from Andean rain forest to Patagonian scrubland. Journal of Vegetation Science 3: 507520.CrossRefGoogle Scholar
Veblen, T.T., Burns, B.R., Kitzberger, T., Lara, A. & Villalba, R. 1995. The ecology of the conifers of southern South America. Pp 120155 in Enright, N.J. & Hill, R.S. (eds.), Ecology of the Southern Conifers. Melbourne: Melbourne University Press.Google Scholar
Veblen, T.T., Kitzberger, T., Villalba, R. & Donnegan, J. 1999. Fire history in northern Patagonia: the role of humans and climate variation. Ecological Monographs 69: 4767.CrossRefGoogle Scholar
Wells, P.K. & Hill, R.S. 1989. Fossil imbricate-leaved Podocarpaceae from tertiary sediments in Tasmania. Australian Systematic Botany 2: 387423.CrossRefGoogle Scholar
Whitlock, C., Bianchi, M.M., Bartelein, P.J., et al. 2006. Postglacial vegetation, climate, and fire history along the east side of the Andes (lat. 41–42.5°S), Argentina. Quaternary Research 66: 187201.CrossRefGoogle Scholar
Wilf, P., Cuneo, N.R., Johnson, K.R., et al. 2003. High plant diversity in Eocene South America: evidence from Patagonia. Science 300: 122125.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Austrocedrus
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009262965.042
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Austrocedrus
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009262965.042
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Austrocedrus
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009262965.042
Available formats
×