Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-18T19:39:35.906Z Has data issue: false hasContentIssue false

Chapter 51 - Araucaria

Araucariales: Araucariaceae

from Part III - Living Arborescent Gymnosperm Genetic Presentations

Published online by Cambridge University Press:  11 November 2024

Christopher N. Page
Affiliation:
University of Exeter
Get access

Summary

Tall, and always remarkably erect, eventually large, dioecious evergreen, long-lived, resiniferous trees. When young and often throughout life they have very strongly whorled and stout, more or less level to typically somewhat ascending branch systems, usually with upturning tips, with the lower branch whorls either retained or eventually shed to leave clean trunks which sometimes bear further foliar episodes of crown reiteration from middle to higher portions of the trunk. Tree crowns generally highly symmetric.

Type
Chapter
Information
Evolution of the Arborescent Gymnosperms
Pattern, Process and Diversity
, pp. 232 - 266
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, P. 1992. Australian Rainforests. Oxford: Clarendon Press.CrossRefGoogle Scholar
Aitchison, J.C., Clarke, G.L., Meffre, S. & Cluzel, D. 1995. Eocene arc-continent collision in New Caledonia and implications for regional Southwest Pacific tectonic evolution. Geology 23: 161164.2.3.CO;2>CrossRefGoogle Scholar
Alvin, K.L. 1982. Cheirolepidiaceae: biology, structure and palaeo-ecology. Review of Palaeobotany and Palynology 37: 7198.CrossRefGoogle Scholar
Archangelsky, S. 1966. New gymnosperms from the Tico flora, Santa Cruz Province, Argentina. Bulletin of the British Museum (Natural History), Geology 13: 259295.CrossRefGoogle Scholar
Ash, S.R. & Savidge, R.A. 2004. The bark of the Late Triassic Araucarioxylon arizonicum tree from Petrified Forest National Park, Arizona. Iawa Journal 25: 349368.CrossRefGoogle Scholar
Axsmith, B.J., Escapa, I.H. & Huber, P. 2008. An araucarian bract–scale complex from the Lower Jurassic of Massachusetts: implications for estimating phylogenetic and stratigraphic congruence in the Araucariaceae. Palaeontologia Electronica 11: 12A.Google Scholar
Backes, A. 1988. Condcionamento climático e distribuição geográfica de Araucaria angustifolia (Bert.) O. Ktze no Brazil. Pesquicas Botanicas 49: 540.Google Scholar
Barreda, V.D. 2012. Cretaceous/Paleogene floral turnover in Patagonia: drop in diversity, low extinction and a Classopollis spike. PLoS One 7(12): e52455.CrossRefGoogle Scholar
Berry, E.W. 1908. Some Araucarian remains from the Atlantic coastal plain. Bulletin of the Torrey Botanical Club 35: 249260.CrossRefGoogle Scholar
Beu, A.G., Griffin, M. & Maxwell, P.A. 1997. Opening of Drake Passage gateway and Late Miocene to Pleistocene cooling reflected in Southern Ocean molluscan dispersal: evidence from New Zealand and Argentina. Tectonophysics 281: 8397.CrossRefGoogle Scholar
Bigwood, A.J. & Hill, R.S. 1985. Tertiary araucarian macrofossils from Tasmania. Australian Journal of Botany 33: 645656.CrossRefGoogle Scholar
Bo, S., Siegert, M.J., Mud, S., et al. 2009. The Gamburtsev Mountains and the origins and early evolution of the Antarctic Ice Sheet. Nature 459: 690693.CrossRefGoogle Scholar
Bock, W. 1954. Primarucaria, a new araucarian genus from the Virginis Triassic. Journal of Paleontology 28: 3242.Google Scholar
Bosama, H.F., van Konijnenburg-van Cittert, J.H.A., van der Ham, R.W.J.M., van Amerom, H.W.J., & Hartkopf-Fröder, C. 2008. Conifers from the Santonian of Limburgh, the Netherlands. Cretaceous Research 30: 113.Google Scholar
Bose, M.N. 1975. Araucaria haastii Ettingshausen from Shag Point, New Zealand. Palaeobotanist 2: 7680.Google Scholar
Bose, M.N. & Jain, K.P. 1964. A megastrobilus belonging to the Araucariaceae from the Rajmahal Hills, Bihar, India. Palaeobotanist 12: 229231.Google Scholar
Bose, M.N. & Maheshwari, H.K. 1973. Some detached seed-scales belonging to Araucariaceae from the Mesozoic rocks of India. Geophytology 3: 205214.Google Scholar
Bowler, J.M. 1982. Aridity on the Late Tertiary and Quaternary of Australia. Pp 3545 in Barker, W.R. & Greenslade, P.J.M. (eds.), Evolution of the Flora and Fauna of Arid Australia. Adelaide: Peacock Press.Google Scholar
Brookfield, H.C. & Hart, D. 1966. Rainfall in the Tropical Southwest Pacific. Canberra: Australian National University.Google Scholar
Brown, J.T. 1977. On Araucarites rogersii Seward, from the Lower Cretaceous Kirkwood Formation of the Algoa Basin, Cape Province, South Africa. Palaeontologica Africana 20: 4751.Google Scholar
Burrows, G.E., Boag, T.S. & Stockey, R.A. 1992. A morphological investigation of the unusual cryptogeal germination strategy of Bunya pine (Araucaria bidwillii): an Australian rainforest conifer. International Journal of Plant Science 153: 503512.CrossRefGoogle Scholar
Calder, M.G. 1953. A coniferous petrified forest in Patagonia. Bulletin of the British Museum (Natural History) Geology 2: 97138.Google Scholar
Cantrill, D.J. 1992. Araucarian foliage from the Lower Cretaceous of southern Victoria, Australia. International Journal of Plant Sciences 153: 622645.CrossRefGoogle Scholar
Cantrill, D.J. & Falcon-Lang, H.J. 2001. Cretaceous (Late Albian) Coniferales of Alexander Island, Antarctica: part 2. Foliage, reproductive structures and roots. Review of Palaeobotany and Palynology 115: 119145.CrossRefGoogle Scholar
Cantrill, D.J. & Poole, I. 2005. A new Eocene Araucaria from Seymour Island, Antarctica: evidence from growth form and bark morphology. Alcheringa 29: 341350.CrossRefGoogle Scholar
Cantrill, D.J., Wanntorp, L. & Drinnan, A.N. 2011. Mesofossil flora from the Late Cretaceous of New Zealand. Cretaceous Research 32: 164173.CrossRefGoogle Scholar
Cesari, S.N., Marenssi, S.A. & Santilana, S.N. 2001. Conifers from the Upper Cretaceous of Cape Lamb, Vega Island, Antarctica. Cretaceous Research 22: 309319.CrossRefGoogle Scholar
Chambers, T.C., Drinnan, A.N. & McLoughlin, S. 1998. Some morphological features of Wollemi Pine (Wollemia nobilis: Araucariaceae) and their comparison to Cretaceous plant fossils. International Journal of Plant Sciences 1569: 160171.CrossRefGoogle Scholar
Clement, A.C., Seager, R. & Cane, M.A. 2000. Suppression of El Niño during the mid‐Holocene by changes in the Earth’s orbit. Paleoceanography 15(6): 731737.CrossRefGoogle Scholar
Cookson, I.C. 1947. Plant microfossils from the lignites of Kerguelen Archipelago. Report of the British, Australian and New Zealand Antarctic Expedition A 2: 127142.Google Scholar
Cookson, I.C. & Duigan, S.L. 1951. Tertiary Araucariaceae from south-eastern Australia, with notes on living species. Australian Journal of Scientific Research B 4: 415449.Google Scholar
Darrow, B.S. 1936. A fossil araucarian embryo from the Cerro Cuadrado of Patagonia. Botanical Gazette 98: 323337.CrossRefGoogle Scholar
Del Fueyo, G.M. & Archangelsky, A. 2002. Araucaria grandifolia Feruglio from the Lower Cretaceous of Patagonia, Argentina. Cretaceous Research 23(2): 265277.CrossRefGoogle Scholar
Del Fueyo, G.M. & Archangelsky, S. 2005. A new araucarian pollen cone with in situ Cyclusphaera Elsik from the Aptian of Patagonia, Argentina. Cretaceous Research 26(5): 757768.CrossRefGoogle Scholar
Del Fueyo, G.M., Caccavari, M.A. & Dome, E.A. 2008. Morphology and structure of the pollen cone and pollen grain of the Araucaria species from Argentina. Biocell 32: 4960.CrossRefGoogle ScholarPubMed
Delcois, X., Arilo, A., Penalver, E., et al. 2007. Fossiliferous amber deposits from the Cretaceous (Albian) of Spain. Comptes Rendus Palevol 6: 135149.Google Scholar
Dettmann, M.E. 1981. The Cretaceous flora. Pp 357375 in Keast, A. (ed.), Ecological Biogeography of Australia. The Hague: W.Junk.Google Scholar
Dettmann, M.E. 1994. Cretaceous vegetation: the microfossil record. Pp 143170 in Hill, R. (ed.), History of the Australian Vegetation: Cretaceous to Recent. Adelaide: University of Adelaide Press.Google Scholar
Dettmann, M.E. & Jarzen, D.M. 2000. Pollen of extant Wollemia (Wollemi pine) and comparisons with pollen of other extant and fossil Araucariaceae. Pp 167203 in Harley, M.M., Morton, C.M. & Blackmore, S. (eds.), Pollen and Spores: Morphology and Biology. Kew: Royal Botanic Gardens.Google Scholar
Dettmann, M.E., Molnar, R.E., Douglas, J.G., et al. 1992. Australian Cretaceous terrestrial faunas and floras: biostratigraphic and biogeographic implications. Cretaceous Research 13(3): 207262.CrossRefGoogle Scholar
Dettmann, M.E., Clifford, H.T. & Peters, M. 2012. Emwadea microcarpa gen. et sp. nov: anatomically preserved araucarian seed cones from the Winton Formation (late Albian), western Queensland, Australia. Alcheringa 36: 217237.CrossRefGoogle Scholar
DiesterHass, L. & Zahn, R. 1996. Eocene–Oligocene transition in the Southern Ocean: history of water mass circulation and biological productivity. Geology 24: 163166.2.3.CO;2>CrossRefGoogle Scholar
Dingle, R.V. & Lavelle, M. 1998. Late Cretaceous Cenozoic climatic variations of the northern Antarctic Peninsula: new geochemical evidence and review. Palaeogeography, Paleoclimatology and Palaeoecology 141: 215232.CrossRefGoogle Scholar
Douglas, J.G. 1969. The Mesozoic floras of Victoria: Parts 1 & 2. Memoirs of the Geological Survey of Victoria 28: 1310.Google Scholar
Douglas, J.G. & Williams, G.E. 1982. Southern polar forests: the Early Cretaceous floras of Victoria and their palaeoclimatic significance. Palaeogeography, Palaeoclimatology, Palaeoecology 39: 171185.CrossRefGoogle Scholar
Duarte, L.S., dos Santos, M.M.G., Hartz, S.M. & Pillar, V.D. 2006. Role of nurse plants on Araucaria forest expansion over grassland in south Brazil. Austral Ecology 31: 520528.CrossRefGoogle Scholar
Enright, N. 1982. The ecology of Araucaria species in New Guinea. Australian Journal of Ecology 7: 2338.CrossRefGoogle Scholar
Enright, N.J., Ogden, J. & Rigg, L.S. 1999. Dynamics of forests with Araucariaceae in the western Pacific. Journal of Vegetation Science 10: 793804.CrossRefGoogle Scholar
Enright, N.J., Rigg, L. and Jaffré, T. 2001. Environmental controls on species composition along a (maquis) shrubland to forest gradient in ultramafics at Mont Do, New Caledonia. South African Journal of Science 97: 573580.Google Scholar
Escapa, I.H. & Catalano, S.A. 2013. Phylogenetic analysis of Araucariaceae: integrating molecules, morphology, and fossils. International Journal of Plant Sciences 174(8): 11531170.CrossRefGoogle Scholar
Escapa, I.H., Sterli, J., Pol, D. & Nicoli, L. 2008. Jurassic tetrapods and flora of Cañadón Asfalto Formation in Cerro Cóndor Area, Chubut Province. Revista de la Associatión Geológical Argentina 63: 613624.Google Scholar
Escapa, I.H., Cuneo, N.R., Rothwell, G. & Stockey, R.A. 2013. Pararaucaria delfueyoi sp. nov. from the Late Jurassic Canadon Calcareo Formation, Chubut, Argentina: insights into the evolution of the Cheirolepidiaceae. International Journal of Plant Sciences 174: 458470.CrossRefGoogle Scholar
Falaschi, P., Grosfeld, J., Zamuner, A.B., Foix, N. & Rivera, S.M. 2011. Growth architecture and silhouette of Jurassic conifers from La Matilde Formation, Patagonia, Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology 302: 122141.CrossRefGoogle Scholar
Falaschi, P., Zamaioa, M.D., Caviglia, N. & Romero, E.J. 2012. Gymnosperm flora from the Nirihuau Formation (Late Oligocene–Early Miocene), Rio Negro Province, Argentina. Ameghiniana 49: 525551.CrossRefGoogle Scholar
Fang, K., Wang, Y., Yu, T., et al. 2008. Isolation of de-exined pollen and cytological studies of the pollen intines of Pinus bungeana Zucc. Ex Endl and Picea wilsonii Mast Flora morphology distribution. Functional Ecology of Plants 203(4): 332340.CrossRefGoogle Scholar
Farjon, A. & Page, C.N. (eds.) 1999. Conifers: Status Survey and Conifer Action Plan. IUCN/SSC Conifer Specialist Group Report. Gland: IUCN.Google Scholar
Feruglio, E. 1951. Piante del mesozoico della Patagonia. Pubblicazioni Dell’Istituto Geologico Della Universita Di Torino 1: 3580.Google Scholar
Florin, R. 1931. Untersuchungen zur Stammesgeschichte der Coniferales und Cordaitales. I. Morphologie und Epidermisstruktur der Assimilationsorgane bei den rezenten Koniferen. Kungluska Svenska Vetenskapsakademiens Handlangar 10: 1588.Google Scholar
Florin, R. 1944. Die Koniferen des Oberkarbon und unteren Perms. Morphologie der weiblichen Reproduktionsorgane der fossilen Cordaitales, fossilen und recenten Coniferales und Taxales. Palaeontographica 85: 457654.Google Scholar
Florin, R. 1963. The distribution of conifer and taxad genera in time and space. Acta Horti Bergiani 20: 121319.Google Scholar
Galloway, R.W. & Kemp, E.M. 1981. Late Cainozoic environments in Australia. Pp 5180 in Keast, A. (ed.), Ecological Biogeography of Australia. New York: Springer.CrossRefGoogle Scholar
Gaudeul, M., Rouhan, G., Gardner, M.F. & Hollingsworth, P.M. 2012. AFLP markers provide insights into the evolutionary relationships and diversification of new Caledonian Araucaria species (Araucariaceae). American Journal of Botany 99: 6881.CrossRefGoogle ScholarPubMed
Gifford, E.M. & Foster, A.S. 1989. Morphology and Evolution of Vascular Plants, 3rd edn. New York: W.H. Freeman.Google Scholar
Gnaedinger, S. & Herbst, R. 2009. First record of gymnosperm woods from the Roca Blanca Formation (Lower Jurassic), Santa Cruz Province, Argentina. Ameghiniana 46: 5971.Google Scholar
Gould, R.E. 1974. The fossil flora of the Walloon coal measures: a survey. Proceedings of the Royal Society of Queensland 85: 3341.Google Scholar
Gould, R.E. 1975. The succession of Australian pre-Tertiary megafossil floras. Botanical Review 41: 453483.CrossRefGoogle Scholar
Grubb, P.J. & Stevens, P.F. 1976. The Forests of the Fatima Basin and Mt Kerigomna and a Review of Montane and Subalpine Forests Elsewhere in Papua New Guinea. Canberra: Australian National University.Google Scholar
Halle, T.G. 1913. Some Mesozoic plant-bearing deposits in Patagonia and Tierra del Fuego and their floras. Kunglinga Svenska Vetenskapsakademiens handlingar 51: 158.Google Scholar
Harris, T.M. 1979. The Yorkshire Jurassic Flora. 5. Coniferales. London: British Museum.Google Scholar
Havel, J.J. 1971. The Araucaria forests of New Guinea and their regenerative capacity. Journal of Ecology 59: 203214.CrossRefGoogle Scholar
Hill, R.S. 1990. Araucaria (Araucariaceae) species from Australian Tertiary sediments: a micromorphological study. Australian Systematic Botany 3: 203220.CrossRefGoogle Scholar
Hill, R.S. & Bigwood, A.J. 1987. Tertiary gymnosperms from Tasmania: Araucariaceae. Alcheringa 11: 325335.CrossRefGoogle Scholar
Holdaway, R.J., Richardson, S.J., Dickie, I.A., Peltzer, D.A. & Coomes, D.A. 2011. Species‐ and community‐level patterns in fine root traits along a 120 000‐year soil chronosequence in temperate rain forest. Journal of Ecology 99(4): 954963.CrossRefGoogle Scholar
Hope, G. & Tulip, J. 1994. A long vegetation history from lowland Irian Jaya, Indonesia. Palaeogeography, Palaeoclimatology, Palaeoecology 109(2–4): 385398.CrossRefGoogle Scholar
Hueck, K. 1972. As Florestal de América do Sul: Ecologia, Imposição e Importância Econômica. Sao Paulo: Universidad de Bresilia, Editoria Poligono.Google Scholar
Jaramillo, C., Zavada, M., Oritz, J., Pardo, A. & Ochoa, D. 2013. Biogeography of the araucarian dispersed pollen Cyclusphaera. International Journal of Plant Sciences 174: 489498.CrossRefGoogle Scholar
Jeske-Pieruschka, V. & Behling, H. 2012. Palaeoenvironmental history of the Sao Francisco de Paula region in southern Brazil during the late Quaternary inferred from the Rincao das Cabritas core. Holocene 22: 12511262.CrossRefGoogle Scholar
Johnson, L.A.S. & Briggs, B.G. 1981. Three old southern families: Myrtaceae, Proteaceae and Restionaceae. Pp 427469 in Keast, A. (ed.), Ecological Biogeography of Australia. The Hague: W.Junk.CrossRefGoogle Scholar
Jovane, L., Coccioni, R., Marsili, A. & Acton, G. 2009. Late Eocene Earth: Hothouse, icehouse and impacts. Geological Society of America Special Papers 452: 149168.Google Scholar
Kendall, M.W. 1949. On a new conifer from the Scottish Lias. Annals and Magazine of Natural History 12(2): 299307.CrossRefGoogle Scholar
Kershaw, P. & Wagstaff, B. 2001. The southern conifer family Araucariaceae: history, status and value for palaeoenvironmental reconstruction. Annual Review of Ecology and Systematics 32: 397414.CrossRefGoogle Scholar
Klein, R.M. 1960. O aspecto dinâmico do pinhero brasileiro. Sellowia 12: 1744.Google Scholar
Kong, W.S. 1995. The distribution of conifers and taxads in time and space in the Korean Peninsula. Journal of the Korean Geographical Society 30(1): 113.Google Scholar
Kong, W.S. 2000. Vegetational history of the Korean Peninsula. Global Ecology and Biogeography 9(5): 391402.CrossRefGoogle Scholar
Krassilov, V. 1971. Evolution and systematics of conifers, a critical review. Paleontologiske Zhurnal 1: 720 (in Russian).Google Scholar
Krassilov, V. 1982. Early Cretaceous flora of Mongolia. Palaeontographica, Abt., B. 181: 143.Google Scholar
Krassilov, V. A. 1977. Fossil Araucaria from the Sahara. Priroda 5: 6568 (in Russian).Google Scholar
Krassilov, V. A. 1978. Araucariaceae as indicators of climate and paleolatitudes. Review of Palaeobotany and Palynology 26: 113124.CrossRefGoogle Scholar
Krassilov, V. & Schrank, E. 2011. New Albian macro- and palynoflora from the Negev (Israel) with description of a new gymnosperm morphotaxon. Cretaceous Research 32(1): 1329.CrossRefGoogle Scholar
Krassilov, V., Berner, A. & Barinova, S. 2013. Jurassic flora of the Negev Desert: plant taphonomy, paleoecology and paleogeographic inference. Palaeogeography, Palaeoclimatology, Palaeoecology 378: 112.CrossRefGoogle Scholar
Krausel, R. 1922. Beiträge zur Kenntnis der Kreideflora. I. Über einige Kreidep-flanzen von Swalmen (Niederlande). Mededeelingen van’s Rijks Geologischen Dienst, Serie A 40(2).Google Scholar
Kunzmann, L. 2007. Araucariaceae (Pinopsida): aspects in palaeobiogeography and palaeodiversity in the Mesozoic. Zoologischer Anzeiger 246: 257277.CrossRefGoogle Scholar
Laverack, P.S. & Godwin, M. 1987. Rainforests of northern Cape York Peninsula. Pp 201222 in Davis, B. (ed.), The Rainforest Legacy, vol 1. Canberra: Australian Government Publishing Service.Google Scholar
Li, L. & Hsu, P. 1984. Karyotype analysis in Platycladus orientalis and Fokienia hodginsii. Acta Botanica Yunnanica 9: 447451.Google Scholar
Li, L.C. 1995. Studies on the karyotype and phylogeny of the Pinaceae. Acta Phytotaxonomica Sinica 33: 417432.Google Scholar
Liu, N., Zhu, Y., Wei, Z.X., et al. 2009. Phylogenetic relationships and divergence times of the family Araucariaceae based on the DNA sequences of eight genes. Chinese Science Bulletin 54: 26482655.CrossRefGoogle Scholar
Longmore, M.E. 1997. Quaternary palynological records from perched lake sediments, Fraser Island, Queensland, Australia: rainforest, forest history and climatic control. Australian Journal of Botany 45(3): 507526.CrossRefGoogle Scholar
Lu, Y., Hautevelle, Y. & Michels, R. 2013. Determination of the molecular signature of fossil conifers by experimental palaeochemotaxonomy: part 1. The Araucariaceae family. Biogeosciences 10: 19431962.CrossRefGoogle Scholar
Macphail, M.K., Hill, K., Partrifge, A.D., Trusswell, E.M. & Foster, C. 1995. ‘Wollemi pine’: old pollen records for a newly discovered genus of gymnosperms. Geology Today 11: 4850.Google Scholar
Martin, H.A. 1981. The Tertiary flora. Pp 391406 in Keast, A. (ed.), Ecological Biogeography of Australia. The Hague: W.Junk.CrossRefGoogle Scholar
McCoy, S.G., Jaffré, T., Rigault, F. & Ash, J.E. 1999. Fire and succession in the ultramafic maquis of New Caledonia. Journal of Biogeography 26: 579594.CrossRefGoogle Scholar
Mehrotra, R.C. 2011. Living gymnosperms of India: past and recent. Phytotaxonomy 11: 8085.Google Scholar
Menendez, C.A. & Caccavari, M.A. 1966. Estructtura epdermica de Araucaria nathorstii Dus. del Terciaro de Pico Quemado, Rio Negro. Ameghiniana 4: 195199.Google Scholar
Meyen, S.V. 1984. Basic feature of gymnosperm systematics and phylogeny as evidenced by the fossil record. Botanical Review 50: 1111.CrossRefGoogle Scholar
Mickle, J.E. 1993. Cuticular micromorphology of Pagiophyllum bladensis, comb nov., from the Late Cretaceous of the North Carolina Coastal Plain, USA. Bulletin of the Torrey Botanical Club 120: 387391.CrossRefGoogle Scholar
Mildenhall, D.C. & Johnston, M.R. 1971. A megastrobilus belonging to the genus Araucarites from the Upper Motuan (Upper Albian) Waiparapa, North Island, New Zealand. New Zealand Journal of Botany 9: 6779.CrossRefGoogle Scholar
Miller, C.N. 1977. Mesozoic conifers. Biological Review 43: 218280.Google Scholar
Mitra, A.K. 1927. On the occurrence of two ovules on araucarian cone-scales. Annals of Botany 41: 461471.CrossRefGoogle Scholar
Mundo, I.A., Roig Juñet, F.A, Villalba, R., Kizberger, T. & Barcelo, M.B. 2012. Araucaria araucana tree ring chronologies in Argentina: spatial growth variations and climate influences. Trees 26: 443454.CrossRefGoogle Scholar
Nishida, M. 1981. A corm-like hypocotyle of araucarian seedling from the Upper Cretaceous of Hokkaido. Journal of Japanese Botany 56: 1520.Google Scholar
Ntima, O.O. 1968. The Araucarias: Fast-Growing Timber Trees of the Lowland Tropics. Oxford: University of Oxford.Google Scholar
Ogden, J. 1981. Dendrochronological studies and the determination of tree ages in the Australian tropics. Journal of Biogeography 8: 405420.CrossRefGoogle Scholar
Ohsawa, T., Nishida, H. & Nishida, M. 1995. The structure and affinities of the petrified plants from the Cretaceous of northern Japan and Saghalien. 15. Yezonia, a new section of Araucaria (Araucariaceae) based on permineralised vegetative and reproductive organs from the Upper Cretaceous of Hokkaido, Japan. Journal of Plant Research 108: 2539.CrossRefGoogle Scholar
Page, C.N. 1972. An assessment of inter-specific relations in Equisetum subgenus Equisetum. New Phytologist 71: 335369.CrossRefGoogle Scholar
Page, C.N. 1979. Macaronesian heathlands. Pp 117123 in Specht, R.L. (ed.), Ecosystems of the World No 9A: Heathlands and Related Shrublands. Amsterdam: Elsevier.Google Scholar
Page, C.N. 1990. Economic importance of conifer conservation. Pp. 293294 in Kubitsky, K. & Green, P.S. (eds.), The Families and Genera of Vascular Plants. I. Pteridophytes and Gymnosperms. Berlin: Springer.Google Scholar
Page, C.N. 2003. The conifer flora of New Caledonia: stasis, evolution and survival in an ancient group. Pp 149155 in Mill, R.R. (ed.), Conifers for the Future? Proceedings of the Fourth International Conifer Conference. Wye: Acta Horticulturae.Google Scholar
Page, C.N. & Clifford, H.T. 1981. Ecological biogeography of Australian conifers and ferns. Pp 473498 in Keast, A. (ed.), Ecological Biogeography of Australia. The Hague: W. Junk.Google Scholar
Pant, D.D. & Srivastava, G.K. 1968. On the cuticular structure of Araucaria (Araucarites) cutchensis (Feistmantel) comb. nov. from the Jabalpur series, India. Journal of the Linnean Society Botany 61: 201206.CrossRefGoogle Scholar
Panti, C., Pujana, R.R., Zamaloa, M.C. & Romero, E.J. 2012. Arauariaceae macrofossil record for South America and Antarctica. Alcheringa 36: 122.CrossRefGoogle Scholar
Philippe, M. & Daviero, V. 2000. Observation of vertical reiterations by Araucaria araucana (Mol.) K.Koch, and inferences for Mesozoic landscapes. Revue de Paléobiologie 19: 157163.Google Scholar
Pigram, C.J. & Davies, H.L. 1987. Terranes and the accretion history of the New Guinea orogen. Journal of Australian Geology and Geophysics 10: 193211.Google Scholar
Poiner, G., Lambert, J.B. & Wu, Y.Y. 2004. NMR analysis of amber in the Zubair Formation, Khafji oilfield (Saudi Arabia – Kuwait): coal as a source rock? Journal of Petroleum Geology 27: 207209.CrossRefGoogle Scholar
Pole, M. 2000. Dicotyledonous leaf macrofossils from the latest Albian–earliest Cenomanian of the Eromanga Basin, Queensland, Australia. Paleontological Research 4(1): 3952.Google Scholar
Pole, M. 2007. Early Eocene dispersed cuticles and mangrove to rainforest vegetation at Strahan-Regatte Point, Tasmania. Palaeontologica Electronica 10(3).Google Scholar
Pole, M. 2008. The record of Araucariaceae macrofossils in New Zealand. Alcheringa 32: 405426.CrossRefGoogle Scholar
Pole, M. & Philippe, M. 2010. Cretaceous plant fossils of Pitt island, the Chatham group, New Zealand. Alcheringa 34: 231263.CrossRefGoogle Scholar
Rack, F.R. 1993. A geologic perspective on the Miocene evolution of the Antarctic Circumpolar Current system. Tectonophysics 222: 397415.CrossRefGoogle Scholar
Ratcliffe, J.B. 1984. Cagar Alam Pegunungan Cyclops, Irian Jaya, Indonesia: management plan 1985–1989. IUCN/WWF Report no. 11.Google Scholar
Raubeson, L.A. & Gensel, P.G. 1991. Upper Cretaceous conifer leaf fossils from the Black Creek Formation, with an assessment of affinities using principal component analysis. Botanical Gazette 152: 380392.CrossRefGoogle Scholar
Richards, B.N. 1967. Introduction of the rain-forest species Araucaria cunninghamii Ait. to a dry sclerophyll forest environment. Plant and Soil 27: 201216.CrossRefGoogle Scholar
Rigg, L.S. 2005. Disturbance processes and spatial patterns of two emergent conifers in New Caledonia. Austral Ecology 30: 363373.CrossRefGoogle Scholar
Rigg, L.S., Enright, N.J. & Jaffré, T. 1998. Stand structure of the emergent conifer Araucaria laubenfelsii in forest and maquis at Mt. Do. Province Sud, New Caledonia. Australian Journal of Ecology 23: 528538.CrossRefGoogle Scholar
Rigg, L.S., Enright, N.J., Perry, G.L.W. & Miler, B.P. 2002. The role of cloud-combing and shading by isolated trees in the succession from maquis to rainforest in New Caledonia. Biotropica 34: 199210.CrossRefGoogle Scholar
Rigg, L.S., Enright, N.J. & Jaffré, T. 2010. Contrasting population dynamics of the endemic New Caledonian conifer Araucaria laubenfelsii in maquis and rain forest. Biotropica 42: 479487.CrossRefGoogle Scholar
Rogers, L.J. 1954. Reforestation of Paraná Pine. Unasylva 8: 1518.Google Scholar
Rouane, M. I. & Woltz, P. 1979. Apport de l’éltude des plantules pour la taxonomie et l’évolution des Araucariacées. Bulletin de la Société Botanique de France. Actualités Botaniques 3: 6776.CrossRefGoogle Scholar
Rouane, M.l. & Woltz, P. 1980. Interét des plantules pour la systématique et la évolution des Araucariacées. Bulletin de la Société d’histoire naturelle de Toulouse 116: 120136.Google Scholar
Setoguchi, H., Asakawa Osawa, T., Pintaud, J.C., Jaffré, T. & Veillon, J.M. 1998. Phylogenetic relationships within Araucariaceae based on rbcL gene sequences. American Journal of Botany 85(11): 15071516.CrossRefGoogle Scholar
Seward, A.C. 1919. Fossil Plants. Cambridge: Cambridge University Press.Google Scholar
Shackleton, N.J., Crowhurst, S., Hagelberg, T., Pisias, N. & Schneider, D.A. 1995. A new late Neogene timescale: applications to leg 138 sites. Proceedings of Ocean Drilling Program, Scientific Results 138: 73101Google Scholar
Sharma, B.D. & Bohra, D.R. 1977. Petrified araucarian megastrobili from the Jurassic of the Rajmahal Hills, India. Acta Palaeobotanica 18: 3136.Google Scholar
Shepherd, J.D. & Ditton, J.D. 2013. Rodent handling of Araucaria araucana seeds. Austral Ecology 38: 2332.CrossRefGoogle Scholar
Sing, G. 1957. Araucarites nipaniensis sp. nov.: a female araucarian cone-scale from the Rajmahal Series. Palaeobotanist 5: 6465.Google Scholar
Specht, R.L. 1981. Evolution of the Australian flora: some generalizations. Pp 783805 in Keast, A. (ed.), Ecological Biogeography of Australia. The Hague: W.Junk.CrossRefGoogle Scholar
Spegazzini, C. 1924. Coniferales fóssiles Patagónicas. Anales de la Sociedad Científica Argentina 97: 125139.Google Scholar
Spicer, R.A., Herman, A.B., Ahlberg, A.T., Raikevich, M.I. & Rees, P.M. 2002. Mid-Cretaceous Grebenka Flora of North-eastern Russia: stratigraphy, palaeobotany, taphonomy, and palaeoenvironment. Palaeogeography, Palaeoclimatology, Palaeoecology 184: 65105.CrossRefGoogle Scholar
Stefanović, S., Jager, M., Deutsch, J., Broutin, J. & Masselot, M. 1998. Phylogenetic relationships of conifers inferred from partial 28S rRNA gene sequences. American Journal of Botany 85: 688697.CrossRefGoogle Scholar
Stockey, R.A. 1975. Seeds and embryos of Araucaria mirabilis. American Journal of Botany 62: 856868.CrossRefGoogle Scholar
Stockey, R.A. 1977. Reproductive biology of the Cerro Cuadrado (Jurassic) fossil conifers: Pararaucaria patagonica Weiland. American Journal of Botany 64: 733744.CrossRefGoogle Scholar
Stockey, R.A. 1978. Reproductive biology of Cerro Cuadrado (Jurassic) fossil conifers: ontogeny and reproductive strategies in Araucaria mirabilis (Spegazzini) Windhausen. Palaeontographica B 166: 115.Google Scholar
Stockey, R.A. 1980. Jurassic Araucarian cone from southern England. Palaeontology 23: 657666.Google Scholar
Stockey, R.A. 1982. The Araucariaceae: an evolutionary perspective. Review of Palaeobotany & Palynology 37: 133154.CrossRefGoogle Scholar
Stockey, R.A. 1990. Antarctic and Gondwana conifers. Pp 179191 in Taylor, T.N. & Taylor, E.L. (eds.), Antarctic Paleobiology: Its Role in the Reconstruction of Gondwana. New York: Springer.CrossRefGoogle Scholar
Stockey, R.A. 1994. Mesozoic Araucariaceae: morphology and systematic relationships. Journal of Plant Research 107: 493502.CrossRefGoogle Scholar
Stockey, R.A. & Atkinson, I.J. 1993. Cuticle micromorphology of Agathis Salisbury. International Journal of Plant Sciences 154: 187225.CrossRefGoogle Scholar
Stockey, R.A. & Ko, H. 1986. Cuticle micromorphology of Araucaria de Jussieu. Botanical Gazette 147: 508548.CrossRefGoogle Scholar
Stockey, R.A. & Rothwell, G. 2013. Pararaucaria carrii sp. nov., anatomically preserved evidence for the conifer family Cheirolepidiaceae in the Northern Hemisphere. International Journal of Plant Sciences 174: 445457.CrossRefGoogle Scholar
Stockey, R.A. & Taylor, T.N. 1978. On the structure and evolutionary relationships of the Cerro Cuadrado fossil conifer seedlings. Botanical Journal of the Linnean Society 76: 161176.CrossRefGoogle Scholar
Stockey, R.A. & Taylor, T.N. 1981. Scanning electron microscopy of epidermal patterns and cuticular structure in the genus Agathis. Scanning Electron Microscopy 3: 207212.Google Scholar
Stockey, R.A., Nishida, M. & Nishida, H. 1990. Structure and diversity of the woody conifer seedling-like structures from the Upper Cretaceous of Hokkaido, Japan. Botanical Gazette 151: 252262.CrossRefGoogle Scholar
Stockey, R.A., Nishida, M. & Nishida, H. 1992. Upper Cretaceous araucarian cones from Hokkaido: Araucaria nihongii sp. nov. Review of Palaeobotany and Palynology 72: 2740.CrossRefGoogle Scholar
Stockey, R.A., Nishida, M. & Nishida, H. 1994. Upper Cretaceous araucarian cones from Hokkaido and Saghalien: Araucaria nipponensis sp. nov. International Journal of Plant Sciences 155: 800809.CrossRefGoogle Scholar
Stultz, D.Z., Axsmith, B.J., Knight, T.K. & Bingham, P.S. 2012. The conifer Araucaria bladensis and associated large pollen and ovulate cones from the Upper Cretaceous Ingersol shale (Eutaw Formation) of Alabama. Cretaceous Research 34: 142148.CrossRefGoogle Scholar
Takhtajan, A. 1986. Floristic Regions of the World. Berkley, CA: University of California Press.Google Scholar
Taylor, T.N. 1981. Palaeobotany: An Introduction to Fossil Plant Biology. New York: McGraw Hill.Google Scholar
Tognetti, R., Lombaridi, F., Lasserre, B., et al. 2012. Tree-ring responses in Araucaria araucana to two major eruptions of Lonquimay Volcano (Chile). Trees: Structure and Function 26: 18051819.CrossRefGoogle Scholar
Townrow, J.A. 1967. On a conifer from the Jurassic of east Antarctica. Papers and Proceedings of the Royal Society of Tasmania 101: 137147.CrossRefGoogle Scholar
Townrow, J.A. 1969. Some Lower Mesozoic Podocarpaceae and Araucariaceae. Pp 159184 in Gondwanan Stratigraphy. Gap: UNESCO.Google Scholar
Vakhrameev, V.A. 1970. Range and palaeoecology of Mesozoic conifers, the Cheirolepidiaceae. Palaeontological Zhurnal 1: 1934.Google Scholar
Van der Ham, R.W.J.M., van Konijnenburg-van Cittert, J.H.A., Dortangs, R.W., Herngreen, G.F.W. & van den Burgh, J. 2003. Brachyphyllum patens (Miquel) comb. nov. (Cheirolepidiaceae?): remarkable conifer foliage from the Maastrichtian type area (Late Cretaceous, NE Belgium, SE Netherlands). Review of Palaeobotany and Palynology 127: 7797.CrossRefGoogle Scholar
Van der Ham, R.W.J.M., Jagt, J.W.M., Renkens, S. & van Konijnenburg-van Cittert, J.H.A. 2010. Seed cone scales from the Upper Maastrichtian document the last occurrence in Europe of the Southern hemisphere conifer family Araucariaceae. Palaeogeography, Palaeoclimatology, Palaeoecology 291: 469473.CrossRefGoogle Scholar
van Konijnenburg-van Cittert, J.H. & Morgans, H.S., 1999. The Jurassic Flora of Yorkshire, Vol. 8. London: Palaeontological Association.Google Scholar
Van Royen, P. 1965. An outline of the flora and vegetation of the Cyclops Mountains. Nova Guinea N.S. 21: 451469.Google Scholar
Veblen, T.T. 1982. Regeneration patterns in Araucaria araucana forests in Chile. Journal of Biogeography 9: 1128.CrossRefGoogle Scholar
Veillon, J.-M. 1980. Architecture des espèces néo-calédonienne du genre Araucaria. Candollea 35: 609640.Google Scholar
Vera, E.I. & Cesari, S.N. 2012. Fossil woods (Coniferales) from the Baquero Group (Aptian), Santa Cruz Province, Argentina. Anals da Academia Brasileira de Ciencias 84: 617625.CrossRefGoogle Scholar
Vishnu-Mittre, M. 1954. Araucarites bindrabundensis sp. nov., a petrified megastrobilus from the Jurassic of Rajmahal Hills, Bihar. Palaeobotanist 3: 103108.Google Scholar
Wade, L.K. & McVean, D.N.L. 1969. Mt Wilhelm Studies. I. The Alpine and Subalpine Vegetation. Canberra: Australian National University.Google Scholar
Wagstaff, S.J., Martinsson, K. & Swenson, U. 2000. Divergence estimates of Tetrachondra hamiltonii and T. patagonica (Tetrachomdraceae) and their implications for Southern Hemisphere biogeography. New Zealand Journal of Botany 38: 587596.CrossRefGoogle Scholar
Webb, L.J. 1959. A physiognomic classification of Australian rainforests. Journal of Ecology 47: 551570.CrossRefGoogle Scholar
Webb, L.J. 1968. Environmental relationships of the structural types of Australian rainforest vegetation. Ecology 49: 296311.CrossRefGoogle Scholar
Webb, L.J. & Tracey, J.G. 1967. An ecological guide to new planning areas and site potential for hoop pine. Australian Forestry 31: 224239.CrossRefGoogle Scholar
Webb, L.J. & Tracey, J.G. 1981. Australian rainforests: patterns and change. Pp 605694 in Keast, A.J. (ed.), Ecological Biogeography of Australia. The Hague: W. Junk.CrossRefGoogle Scholar
Whitmore, T.C. 1966. The social status of Agathis in rainforests in Melanesia. Journal of Ecology 54: 285301.CrossRefGoogle Scholar
Wieland, G.R. 1935. The Cerro Cuadrado Petrified Forest. Washington, DC: Carnegie Institute of Washington Publications.Google Scholar
Wilde, M.H. & Eames, A.J. 1948. The ovule and ‘seed’ of Araucaria bidwillii, with discussion of the taxonomy of the genus. I. Morphology. Annals of Botany N.S. 12: 311326.CrossRefGoogle Scholar
Wilde, M.H. & Eames, A.J. 1955. The ovule and ‘seed’ of Araucaria bidwillii with discussion of the taxonomy of the genus. III. Anatomy of multi-ovulate cone scales. Annals of Botany N.S. 19: 343349.CrossRefGoogle Scholar
Wolfe, A.P., Tappert, R., Muehlenbachs, K., et al. 2009. A new proposal concerning the botanical origin of Baltic amber. Proceedings of the Royal Society B: Biological Sciences 276(1672): 34033412.CrossRefGoogle ScholarPubMed
Yamaguchi, L.F., Kato, M.J. & Paolo, D.M. 2009. Biflavenoids from Araucaria angustifolia protect against DNA UV-induced damage. Phytochemistry 70: 615620.CrossRefGoogle ScholarPubMed
Young, P.A.R. & McDonald, W.J.F. 1987. The distribution, composition and status of the rainforests of southern Queensland. Pp 119140 in Davis, B. (ed.), The Rainforest Legacy, vol 1. Canberra: Australian Government Publishing Service.Google Scholar
Zheng, S.L., Zhang, L.D., Zhang, W. & Yang, Y.J. 2008. A new female cone, Araucaria beipolaoensis sp. nov. from the Middle Jurassic Tiaojishan Formation, Beipiao, western Liaoning, China and its evolutionary significance. Acta Geological Sinica 82: 266282.Google Scholar
Zhou, Z., Barrett, P.M. & Hilton, J. 2003. An exceptionally preserved Lower Cretaceous ecosystem. Nature 421: 807814.CrossRefGoogle ScholarPubMed
Zonneveld, B.J.M. 2012. Genome sizes of all 19 Araucaria species are connected to geographical distance. Plant Systematics and Evolution 298: 12491255.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Araucaria
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.015
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Araucaria
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.015
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Araucaria
  • Christopher N. Page, University of Exeter
  • Book: Evolution of the Arborescent Gymnosperms
  • Online publication: 11 November 2024
  • Chapter DOI: https://doi.org/10.1017/9781009263108.015
Available formats
×