Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T08:34:08.269Z Has data issue: false hasContentIssue false

7 - A bird's-eye view of the function of sleep

Published online by Cambridge University Press:  10 March 2010

Patrick McNamara
Affiliation:
Boston University
Robert A. Barton
Affiliation:
University of Durham
Charles L. Nunn
Affiliation:
Max Planck Institute for Evolutionary Anthropology
Get access

Summary

Introduction

Sleep has been detected in every animal that has been adequately studied (Cirelli & Tononi, 2008). The ubiquitous nature of sleep suggests that it evolved early in the course of evolution and therefore may serve a conserved function essential to all animals. This hypothesis forms the rationale behind the development of “simple” animal models of sleep (Allada & Siegel, 2008; Mignot, 2008). By studying sleep in animals such as the fruit fly (Drosophila melanogaster), where the power of genetic techniques can be readily employed, we may gain insight into the initial (perhaps cellular) function of sleep, a function that may still be relevant to understanding sleep in humans. Indeed, recent studies have already demonstrated remarkable similarities between sleep in Drosophila and sleep in mammals (Hendricks, Finn, Panckeri, et al., 2000; Shaw, Cirelli, Greenspan, et al., 2000; reviewed in Cirelli & Bushey, 2008). Although the utility of studying sleep in “simple” animal models is undeniable, it is unlikely that this approach alone will tell the whole story, especially given that Drosophila do not exhibit brain states comparable to mammalian slow-wave sleep (SWS) and rapid eye-movement (REM) sleep (Cirelli, 2006; Cirelli & Bushey, 2008; Hendricks & Sehgal, 2004; Nitz, van Swinderen, Tononi, et al., 2002). Indeed, the heterogeneous nature of mammalian sleep suggests that the specific changes in brain activity that accompany SWS and REM sleep might serve secondarily evolved functions not found in simple animals.

Type
Chapter
Information
Evolution of Sleep
Phylogenetic and Functional Perspectives
, pp. 145 - 171
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allada, R., & Siegel, J. M. (2008). Unearthing the phylogenetic roots of sleep. Current Biology, 18, R670–R679.CrossRefGoogle Scholar
Allman, J. M. (1999). Evolving brains. New York: W. H. Freeman.Google Scholar
Amlaner, C. J., & Ball, N. J. (1994). Avian sleep. In Kryger, M. H., Roth, T., & Dement, W. C. (Eds.), Principles and practice of sleep medicine (2nd ed., pp. 81–94). Philadelphia: W. B. Saunders.Google Scholar
Amzica, F., & Steriade, M. (1995). Disconnection of intracortical synaptic linkages disrupts synchronization of a slow oscillation. Journal of Neuroscience, 15, 4658–4677.CrossRefGoogle ScholarPubMed
Ayala-Guerrero, F., Mexicano, G., & Ramos, J. I. (2003). Sleep characteristics in the turkey Meleagris gallopavo. Physiology & Behavior, 78, 35–40.CrossRefGoogle ScholarPubMed
Ball, N. J., Amlaner, C. J., Shaffery, J. P., & Opp, M. R. (1988). Asynchronous eye closure and unihemispheric quiet sleep of birds. In Koella, W. P., Obál, F., Schulz, H., & Visser, P. (Eds.), Sleep '86 (pp. 151–153). New York: Gustav Fischer.Google Scholar
Benington, J. H. (2000). Sleep homeostasis and the function of sleep. Sleep, 23, 959–966.CrossRefGoogle ScholarPubMed
Benington, J. H., & Frank, M. G. (2003). Cellular and molecular connections between sleep and synaptic plasticity. Progress in Neurobiology, 69, 71–101.CrossRefGoogle ScholarPubMed
Berger, R. J., & Phillips, N. H. (1994). Constant light suppresses sleep and circadian rhythms in pigeons without consequent sleep rebound in darkness. American Journal of Physiology, 267, R945–R952.Google ScholarPubMed
Berger, R. J., & Phillips, N. H. (1995). Energy conservation and sleep. Behavioral Brain Research, 69, 65–73.CrossRefGoogle ScholarPubMed
Buchet, C., Dewasmes, G., & Maho, Y. (1986). An electrophysiological and behavioral study of sleep in emperor penguins under natural ambient conditions. Physiology and Behavior, 38(3), 331–335.CrossRefGoogle ScholarPubMed
Butler, A. B. (2008). Evolution of brains, cognition, and consciousness. Brain Research Bulletin, 75, 442–449.CrossRefGoogle ScholarPubMed
Butler, A. B., & Cotterill, R. M. (2006). Mammalian and avian neuroanatomy and the question of consciousness in birds. Biological Bulletin, 211, 106–127.CrossRefGoogle ScholarPubMed
Borbély, A. A., Tobler, I., & Hanagasioglu, M. (1984). Effect of sleep deprivation on sleep and EEG power spectra in the rat. Behavioural Brain Research, 14, 171–182.CrossRefGoogle ScholarPubMed
Capellini, I., Barton, R. A., McNamara, P., Preston, B. T., & Nunn, C. L. (2008). Phylogenetic analysis of the ecology and evolution of mammalian sleep. Evolution, 62, 1764–1776.CrossRefGoogle ScholarPubMed
Cirelli, C. (2006). Cellular consequences of sleep deprivation in the brain. Sleep Medicine Reviews, 10, 307–321.CrossRefGoogle Scholar
Cirelli, C., & Bushey, D. (2008). Sleep and wakefulness in Drosophila melanogaster. Annals of the New YorkAcademy of Sciences, 1129, 323–329.CrossRefGoogle Scholar
Cirelli, C., & Tononi, G. (2008). Is sleep essential?Public Library of Science Biology, 6, E216.Google ScholarPubMed
Cirelli, C., Gutierrez, C. M., & Tononi, G. (2004). Extensive and divergent effects of sleep and wakefulness on brain gene expression. Neuron, 41, 35–43.CrossRefGoogle ScholarPubMed
Cirelli, C., LaVaute, T. M., & Tononi, G. (2005). Sleep and wakefulness modulate gene expression in Drosophila. Journal of Neurochemistry, 94, 1411–1419.CrossRefGoogle ScholarPubMed
Derégnaucourt, S., Mitra, P. P., Fehér, O., Pytte, C., & Tchernichovski, O. (2005). How sleep affects the developmental learning of bird song. Nature, 433, 710–716.CrossRefGoogle ScholarPubMed
Dewasmes, G., Cohen-Adad, F., Koubi, H., & Maho, Y. (1985). Polygraphic and behavioral study of sleep in geese: Existence of nuchal atonia during paradoxical sleep. Physiology and Behavior, 35, 67–73.CrossRefGoogle ScholarPubMed
Eiland, M. M., Lyamin, O. I., & Siegel, J. M. (2001). State-related discharge of neurons in the brainstem of freely moving box turtles (Terrapene carolina major). Archives of Italian Biology, 139, 23–36.Google Scholar
Emery, N. J., & Clayton, N. S. (2004). The mentality of crows: Convergent evolution of intelligence in corvids and apes. Science, 306, 1903–1907.CrossRefGoogle ScholarPubMed
Emery, N. J., & Clayton, N. S. (2005). Evolution of the avian brain and intelligence. Current Biology, 15, R946–R950.CrossRefGoogle ScholarPubMed
Esser, S. K., Hill, S. L., & Tononi, G. (2008). Sleep homeostasis and cortical synchronization: I. Modeling the effects of synaptic strength on sleep slow waves. Sleep, 30, 1617–1630.CrossRefGoogle Scholar
Fuchs, T. (2006). Brain-behavior adaptations to sleep loss in the nocturnally migrating Swainson's thrush (Catharus ustulatus). Unpublished doctoral dissertation, Bowling Green State University, Bowling Green, OH.Google Scholar
Gaztelu, J. M., García-Austt, E., & Bullock, T. H. (1991). Electrocorticograms of hippocampal and dorsal cortex of two reptiles: Comparison with possible mammalian homologs. Brain, Behavior, and Evolution, 37, 144–160.CrossRefGoogle ScholarPubMed
Gilestro, G. F., Tononi, G., & Cirelli, C. (2009). Widespread changes in synaptic markers as a function of sleep and wakefulness in Drosophila. Science, 324, 109–112.CrossRefGoogle ScholarPubMed
Güntürkün, O. (2005a). The avian “prefrontal cortex” and cognition. Current Opinion in Neurobiology, 15, 686–693.CrossRefGoogle ScholarPubMed
Güntürkün, O. (2005b). Avian and mammalian “prefrontal cortices”: Limited degrees of freedom in the evolution of the neural mechanisms of goal-state maintenance. Brain Research Bulletin, 66, 311–316.CrossRefGoogle ScholarPubMed
Hahn, T. T., Sakmann, B., & Mehta, M. R. (2006). Phase-locking of hippocampal interneurons' membrane potential to neocortical up-down states. Nature Neuroscience, 9, 1359–1361.CrossRefGoogle ScholarPubMed
Hartse, K. M. (1994). Sleep in insects and nonmammalian vertebrates. In Kryger, M. H., Roth, T., & Dement, W. C. (Eds.), Principles and practice of sleep medicine (2nd ed., pp. 95–104). Philadelphia: W. B. Saunders.Google Scholar
Hartse, K. M., & Rechtschaffen, A. (1982). The effect of amphetamine, nembutal, alpha-methyl-tyrosine, and parachlorophenylalanine on the sleep-related spike activity of the tortoise (Geochelone carbonaria) and on the cat ventral hippocampus spike. Brain, Behavior, and Evolution, 2, 199–222.CrossRefGoogle Scholar
Heller, H. C., Graf, R., & Rautenberg, W. (1983). Circadian and arousal state influences on thermoregulation in the pigeon. American Journal of Physiology, 245, R321–R328.Google ScholarPubMed
Hendricks, J. C., & Sehgal, A. (2004). Why a fly? Using Drosophila to understand the genetics of circadian rhythms and sleep. Sleep, 27, 334–342.CrossRefGoogle Scholar
Hendricks, J. C., Finn, S. M., Panckeri, K. A., Chavkin, J., Williams, J. A., Sehgal, A., et al. (2000). Rest in Drosophila is a sleep-like state. Neuron, 25, 129–138.CrossRefGoogle ScholarPubMed
Hill, S., & Tononi, G. (2005). Modeling sleep and wakefulness in the thalamocortical system. Journal of Neurophysiology, 93, 1671–1698.CrossRefGoogle ScholarPubMed
Hill, S., Tononi, G., & Ghilardi, M. F. (2008). Sleep improves the variability of motor performance. Brain Research Bulletin, 76, 605–611.CrossRefGoogle ScholarPubMed
Hohtola, E., Rintamaki, H., & Hissa, R. (1980). Shivering and ptiloerection as complementary cold defense responses in the pigeon during sleep and wakefulness. Journal of Comparative Physiology, 136, 77–81.CrossRefGoogle Scholar
Huber, R., Deboer, T., & Tobler, I. (2000). Effects of sleep deprivation on sleep and sleep EEG in three mouse strains: Empirical data and simulations. Brain Research, 857, 8–19.CrossRefGoogle ScholarPubMed
Huber, R., Tononi, G., & Cirelli, C. (2007). Exploratory behavior, cortical BDNF expression, and sleep homeostasis. Sleep, 30, 129–139.CrossRefGoogle ScholarPubMed
Huber, R., Ghilardi, M. F., Massimini, M., & Tononi, G. (2004). Local sleep and learning. Nature, 430, 78–81.CrossRefGoogle Scholar
Isomura, Y., Sirota, A., Ozen, S., Montgomery, S., Mizuseki, K., Henze, D. A., et al. (2006). Integration and segregation of activity in entorhinal-hippocampal subregions by neocortical slow oscillations. Neuron, 52, 871–882.CrossRefGoogle ScholarPubMed
Jackson, C., McCabe, B. J., Nicol, A. U., Grout, A. S., Brown, M. W., & Horn, G. (2008). Dynamics of a memory trace: Effects of sleep on consolidation. Current Biology, 18, 393–400.CrossRefGoogle ScholarPubMed
Jarvis, E. D., Güntürkün, O., Bruce, L., Csillag, A., Karten, H., Kuenzel, W., et al. (2005). Avian brains and a new understanding of vertebrate brain evolution. Nature Reviews Neuroscience, 6, 151–159.CrossRefGoogle Scholar
Jerison, H. J. (2001). The evolution of neural and behavioral complexity. In Roth, G. & Wullimann, M. F. (Eds.), Brain evolution and cognition (pp. 523–553). New York: Wiley.Google Scholar
Jha, S. K., Jones, B. E., Coleman, T., Steinmetz, N., Law, C. T., Griffin, G., et al. (2005). Sleep-dependent plasticity requires cortical activity. Journal of Neuroscience, 25, 9266–9274.CrossRefGoogle ScholarPubMed
Jones, S. G., Vyazovskiy, V. V., Cirelli, C., Tononi, G., & Benca, R. M. (2008a). Homeostatic regulation of sleep in the white-crowned sparrow (Zonotrichia leucophrys gambelii). BioMed Central Neuroscience, 9, 47.Google Scholar
Jones, S., Pfister-Genskow, M., Benca, R. M., & Cirelli, C. (2008b). Molecular correlates of sleep and wakefulness in the brain of the white-crowned sparrow. Journal of Neurochemistry, 105, 46–62.CrossRefGoogle ScholarPubMed
Kirsch, J. A., Güntürkün, O., & Rose, J. (2008). Insight without cortex: Lessons from the avian brain. Consciousness and Cognition, 17, 475–483.CrossRefGoogle ScholarPubMed
Klein, M., Michel, F., & Jouvet, M. (1964). Etude polygraphique du sommeil chez les oiseaux. [Polygraphic study of sleep with birds]. Comptes Rendus des Seances de la Societe de Biologie et de ses Filiales, 158, 90–103.Google Scholar
Krueger, J. M., & Obál, , Jr, F.. (1993). A neuronal group theory of sleep function. Journal of Sleep Research, 2, 63–69.CrossRefGoogle ScholarPubMed
Krueger, J. M., Rector, D. M., Roy, S., Van Dongen, H. P. A., Belenky, G., & Pankseppet, J. (2008). Sleep as a fundamental property of neuronal assemblies. Nature Reviews Neuroscience, 9, 910–919.CrossRefGoogle ScholarPubMed
Lesku, J. A., Roth, II, T. C., Amlaner, C. J., & Lima, S. L. (2006). A phylogenetic analysis of sleep architecture in mammals: The integration of anatomy, physiology, and ecology. American Naturalist, 168, 441–453.CrossRefGoogle ScholarPubMed
Lesku, J. A., Roth, T. C., Rattenborg, N. C., Amlaner, C. J., & Lima, S. L. (in press). History and future of comparative analyses in sleep research. Neuroscience and Biobehavioral Reviews, doi:10.1016/j.neubiorev.2009.04.002.
Lima, S. L., & Rattenborg, N. C. (2007). A behavioural shutdown can make sleeping safer: A strategic perspective on the function of sleep. Animal Behaviour, 74, 189–197.CrossRefGoogle Scholar
Lima, S. L., Rattenborg, N. C., Lesku, J. A., & Amlaner, C. J. (2005). Sleeping under the risk of predation. Animal Behaviour, 70, 723–736.CrossRefGoogle Scholar
Lorenzo, D., & Velluti, J. C. (2004). Noradrenaline decreases spike voltage threshold and induces electrographic sharp waves in turtle medial cortex in vitro. Brain, Behavior, and Evolution, 64, 104–114.CrossRefGoogle ScholarPubMed
Lorenzo, D., Macadar, O., & Velluti, J. C. (1999). Origin and propagation of spontaneous electrographic sharp waves in the in vitro turtle brain: A model of neuronal synchronization. Clinical Neurophysiology, 110, 1535–1544.CrossRefGoogle ScholarPubMed
Low, P. S., Shank, S. S., Sejnowski, T. J., & Margoliash, D. (2008). Mammalian-like features of sleep structure in zebra finches. Proceedings of the National Academy of Sciences of the United States of America, 105, 9081–9086.CrossRefGoogle ScholarPubMed
Lubow, R. E. (1974). High-order concept formation in the pigeon. Journal of Experimental Analysis of Behavior, 21, 475–483.CrossRefGoogle ScholarPubMed
Lyamin, O. I., Manger, P. R., Ridgway, S. H., Mukhametov, L. M., & Siegel, J. M. (2008). Cetacean sleep: An unusual form of mammalian sleep. Neuroscience and Biobehavioral Reviews, 32, 1451–1484.CrossRefGoogle ScholarPubMed
Margoliash, D. (2005). Song learning and sleep. Nature Neuroscience, 8, 546–548.CrossRefGoogle ScholarPubMed
Marshall, L., Helgadóttir, H., Mölle, M., & Born, J. (2006). Boosting slow oscillations during sleep potentiates memory. Nature, 444, 610–613.CrossRefGoogle ScholarPubMed
Martínez-Cerdeño, V., Noctor, S. C., & Kriegstein, A. R. (2006). The role of intermediate progenitor cells in the evolutionary expansion of the cerebral cortex. Cerebral Cortex, 16(1), i152–i161.CrossRefGoogle ScholarPubMed
Martinez-Gonzalez, D., Lesku, J. A., & Rattenborg, N. C. (2008). Increased EEG spectral power density during sleep following short-term sleep deprivation in pigeons (Columba livia): Evidence for avian sleep homeostasis. Journal of Sleep Research, 17, 140–153.CrossRefGoogle ScholarPubMed
Massimini, M., Huber, R., Ferrarelli, F., Hill, S., & Tononi, G. (2004). The sleep slow oscillation as a traveling wave. Journal of Neuroscience, 24, 6862–6870.CrossRefGoogle ScholarPubMed
Medina, L., & Reiner, A. (2000). Do birds possess homologues of mammalian primary visual, somatosensory, and motor cortices?Trends in Neuroscience, 23, 1–12.CrossRefGoogle ScholarPubMed
Mignot, E. (2008). Why we sleep: The temporal organization of recovery. Public Library of Science Biology, 6, E106.Google Scholar
Miyamoto, H., Katagiri, H., & Hensch, T. (2003). Experience-dependent slow-wave sleep development. Nature Neuroscience, 6, 553–554.CrossRefGoogle ScholarPubMed
Mölle, M., Yeshenko, O., Marshall, L., Sara, S. J., & Born, J. (2006). Hippocampal sharp wave-ripples linked to slow oscillations in rat slow-wave sleep. Journal of Neurophysiology, 96, 62–70.CrossRefGoogle ScholarPubMed
Molnár, Z., Métin, C., Stoykova, A., Tarabykin, V., Price, D. J., Francis, F., et al. (2006). Comparative aspects of cerebral cortical development. European Journal of Neuroscience, 23, 921–934.CrossRefGoogle ScholarPubMed
Murphy, M., Riedner, B. A., Huber, R., Massimini, M., Ferrarelli, F., & Tononi, G. (2009). Source modeling sleep slow waves. Proceedings of the National Academy of Sciences of the USA, 106, 1608–1613.CrossRefGoogle ScholarPubMed
Newman, S. M., Paletz, E. M., Rattenborg, N. C., Obermeyer, W. H., & Benca, R. M. (2008). Sleep deprivation in the pigeon (Columba livia) using the disk-over-water method. Physiology and Behavior, 93, 50–58.CrossRefGoogle ScholarPubMed
Nicol, S. C., Andersen, N. A., Phillips, N. H., & Berger, R. J. (2000). The echidna manifests typical characteristics of rapid eye movement sleep. Neuroscience Letters, 283, 49–52.CrossRefGoogle ScholarPubMed
Nitz, D. A., van Swinderen, B., Tononi, G., & Greenspan, R. J. (2002). Electrophysiological correlates of rest and activity in Drosophila melanogaster. Current Biology, 12, 1934–1940.CrossRefGoogle ScholarPubMed
Ookawa, T. (2004). The electroencephalogram and sleep in the domestic chicken. Avian and Poultry Biology Reviews, 15, 1–8.CrossRefGoogle Scholar
Ookawa, T., & Gotoh, J. (1964). Electroencephalographic study of chickens; Periodic recurrence of low voltage and fast waves during behavioral sleep. Poultry Science, 43, 1603–1604.CrossRefGoogle Scholar
Ookawa, T., & Gotoh, J. (1965). Electroencephalogram of the chicken recorded from the skull under various conditions. Journal of Comparative Neurology, 124, 1–14.CrossRefGoogle ScholarPubMed
Pepperberg, I. M. (2002). In search of King Solomon's ring: Cognitive and communicative studies of grey parrots (Psittacus erithacus). Brain Behavior and Evolution, 59, 54–67.CrossRefGoogle Scholar
Peters, J., Vonderahe, A., & Schmid, D. (1965). Onset of cerebral electrical activity associated with behavioral sleep and attention in the developing chick. Journal of Experimental Zoology, 160, 255–262.CrossRefGoogle ScholarPubMed
Prior, H., Schwarz, A., & Güntürkün, O. (2008). Mirror-induced behavior in the magpie (Pica pica): Evidence of self-recognition. Public Library of Science Biology, 6, E202.Google ScholarPubMed
Rattenborg, N. C. (2006a). Evolution of slow-wave sleep and palliopallial connectivity in mammals and birds: A hypothesis. Brain Research Bulletin, 69, 20–29.CrossRefGoogle ScholarPubMed
Rattenborg, N. C. (2006b). Do birds sleep in flight?Naturwissenschaften, 93, 413–425.CrossRefGoogle ScholarPubMed
Rattenborg, N. C. (2007). Response to commentary on evolution of slow-wave sleep and palliopallial connectivity in mammals and birds: A hypothesis. Brain Research Bulletin, 72, 187–193.CrossRefGoogle ScholarPubMed
Rattenborg, N. C., Lima, S. L., & Amlaner, C. J. (1999a). Facultative control of avian unihemispheric sleep under the risk of predation. Behavioural Brain Research, 105, 163–172.CrossRefGoogle ScholarPubMed
Rattenborg, N. C., Lima, S. L., & Amlaner, C. J. (1999b). Half-awake to the risk of predation. Nature, 397, 397–398.CrossRefGoogle ScholarPubMed
Rattenborg, N. C., Amlaner, C. J., & Lima, S. L. (2000). Behavioral, neurophysiological, and evolutionary perspectives on unihemispheric sleep. Neuroscience and Biobehavioral Reviews, 24, 817–842.CrossRefGoogle ScholarPubMed
Rattenborg, N. C., Amlaner, C. J., & Lima, S. L. (2001). Unilateral eye closure and interhemispheric EEG asymmetry during sleep in the pigeon (Columba livia). Brain, Behavior, and Evolution, 58, 323–332.CrossRefGoogle Scholar
Rattenborg, N. C., Mandt, B. H., Obermeyer, W. H., Winsauer, P. J., Huber, R., Wikelski, M., et al. (2004). Migratory sleeplessness in the white-crowned sparrow (Zonotrichia leucophrys gambelii). Public Library of Science Biology, 2, E212.Google Scholar
Rattenborg, N. C., Martinez-Gonzalez, D., Lesku, J. A., & Scriba, M. (2008a). A bird's-eye view on the function of sleep. Science, 322, 527.CrossRefGoogle Scholar
Rattenborg, N. C., Voirin, B., Vyssotski, A. L., Kays, R. W., Spoelstra, K., Kuemmeth, F., et al. (2008b). Sleeping outside the box: Electroencephalographic measures of sleep in sloths inhabiting a rainforest. Biology Letters, 4, 402–405.CrossRefGoogle ScholarPubMed
Rattenborg, N. C., Martinez-Gonzalez, D., & Lesku, J. A. (2009). Avian sleep homeostasis: Convergent evolution of complex brains, cognition, and sleep functions in mammals and birds. Neuroscience and Biobehavioral Reviews, 33, 253–270.CrossRefGoogle ScholarPubMed
Reiner, A., Stern, E. A., & Wilson, C. J. (2001). Physiology and morphology of intratelencephalically projecting corticostriatal-type neurons in pigeons as revealed by intracellular recording and cell filling. Brain, Behavior, and Evolution, 58, 101–114.CrossRefGoogle ScholarPubMed
Rial, R. V., Nicolau, M. C., Gamundi, A., Akaârir, M., Garau, C., Aparicio, S., et al. (2007). Comments on evolution of sleep and the palliopallial connectivity in mammals and birds. Brain Research Bulletin, 72, 183–186.CrossRefGoogle ScholarPubMed
Roth, II, T. C., Lesku, J. A., Amlaner, C. J., & Lima, S. L. (2006). A phylogenetic analysis of the correlates of sleep in birds. Journal of Sleep Research, 15, 395–402.CrossRefGoogle ScholarPubMed
Sanchez-Vives, M. V., & McCormick, D. A. (2000). Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nature Neuroscience, 3, 1027–1034.CrossRefGoogle ScholarPubMed
Sejnowski, T. J., & Destexhe, A. (2000). Why do we sleep? Brain Research, 886, 208–223.CrossRef
Shank, S. S., & Margoliash, D. (2009). Sleep and sensorimotor integration during early vocal learning in a songbird. Nature, 458, 73–77.CrossRefGoogle Scholar
Shaw, P. J., Cirelli, C., Greenspan, R. J., & Tononi, G. (2000). Correlates of sleep and waking in Drosophila melanogaster. Science, 287, 1834–1837.CrossRefGoogle ScholarPubMed
Shimizu, T. (2008). The avian brain revisited: Anatomy and evolution of the telencephalon. In Watanabe, S. & Hofman, M. A. (Eds.), Integration of comparative neuroanatomy and cognition (pp. 55–73). Tokyo: Keio University Press.Google Scholar
Siegel, J. M., Manger, P. R., Nienhuis, R., Fahringer, H. M., & Pettigrew, J. D. (1996). The echidna Tachyglossus aculeatus combines REM and non-REM aspects in a single sleep state: Implications for the evolution of sleep. Journal of Neuroscience, 16, 3500–3506.CrossRefGoogle Scholar
Siegel, J. M., Manger, P. R., Nienhuis, R., Fahringer, H. M., Shalita, T., & Pettigrew, J. D. (1999). Sleep in the platypus. Neuroscience, 91, 391–400.CrossRefGoogle ScholarPubMed
Sirota, A., Csicsvari, J., Buhl, D., & Buzsáki, G. (2003). Communication between neocortex and hippocampus during sleep in rodents. Proceedings of the National Academy of Sciences of the United States of America, 100, 2065–2069.CrossRefGoogle ScholarPubMed
Solodkin, M., Cardona, A., & Corsi-Cabrera, M. (1985). Paradoxical sleep augmentation after imprinting in the domestic chick. Physiology and Behavior, 35, 343–348.CrossRefGoogle ScholarPubMed
Stahel, C. D., Megirian, D., & Nicol, S. C. (1984). Sleep and metabolic rate in the little penguin (Eudyptula minor). Journal of Comparative Physiology, B: Biochemical, Systemic, and Environmental Physiology, 154, 487–494.CrossRefGoogle Scholar
Steriade, M. (2006). Grouping of brain rhythms in corticothalamic systems. Neuroscience, 137, 1087–1106.CrossRefGoogle ScholarPubMed
Steriade, M., & Timofeev, I. (2003). Neuronal plasticity in thalamocortical networks during sleep and waking oscillations. Neuron, 37, 563–576.CrossRefGoogle ScholarPubMed
Steriade, M., Amzica, F., & Contreras, D. (1994). Cortical and thalamic cellular correlates of electroencephalographic burst-suppression. Electroencephalography and Clinical Neurophysiololgy, 90, 1–16.CrossRefGoogle ScholarPubMed
Stickgold, R., & Walker, M. P. (2007). Sleep-dependent memory consolidation and reconsolidation. Sleep Medicine, 8, 331–343.CrossRefGoogle ScholarPubMed
Szymczak, J. T. (1987). Daily distribution of sleep states in the rook (Corvus frugilegus). Journal of Comparative Physiology, A: Sensory, Neural and Behavioral Physiology, 161, 321–327.CrossRefGoogle Scholar
Szymczak, J. T. (1989). Influence of environmental temperature and photoperiod on temporal structure of sleep in corvids. Acta Neurobiologiae Experimentalis, 49, 359–366.Google ScholarPubMed
Szymczak, J. T., Helb, H. W., & Kaiser, W. (1993). Electrophysiological and behavioral correlates of sleep in the blackbird (Turdus merula). Physiology and Behavior, 53, 1201–1210.CrossRefGoogle Scholar
Timofeev, I., Grenier, F., Bazhenov, M., Sejnowski, T. J., & Steriade, M. (2000). Origin of slow cortical oscillations in deafferented cortical slabs. Cerebral Cortex, 10, 1185–1199.CrossRefGoogle ScholarPubMed
Tobler, I. (2005). Phylogeny of sleep regulation. In Kryger, M. H., Roth, T., & Dement, W. C. (Eds.), Principles and practice of sleep medicine (4th ed., pp. 77–90). Philadelphia: W. B. Saunders.CrossRefGoogle Scholar
Tobler, I., & Borbély, A. A. (1988). Sleep and EEG spectra in the pigeon (Columba livia) under baseline conditions and after sleep-deprivation. Journal of Comparative Physiology, A: Sensory, Neural and Behavioral Physiology, 163, 729–738.CrossRefGoogle Scholar
Tobler, I., & Jaggi, K. (1987). Sleep and EEG spectra in the Syrian hamster (Mesocricetus auratus) under baseline conditions and following sleep deprivation. Journal of Comparative Physiology, A: Sensory, Neural and Behavioral Physiology, 161, 449–459.CrossRefGoogle ScholarPubMed
Tömböl, T. (1995). Golgi structure of telencephalon of chicken. Budapest, Hungary: Semmelweis University Medical School.Google Scholar
Tononi, G., & Cirelli, C. (2003). Sleep and synaptic homeostasis: A hypothesis. Brain Research Bulletin, 62, 143–150.CrossRefGoogle ScholarPubMed
Tononi, G., & Cirelli, C. (2006). Sleep function and synaptic homeostasis. Sleep Medicine Reviews, 10, 49–62.CrossRefGoogle ScholarPubMed
Twyver, H., & Allison, T. (1972). A polygraphic and behavioral study of sleep in the pigeon (Columba livia). Experimental Neurology, 35, 138–153.CrossRefGoogle Scholar
Velluti, J. C., Russo, R. E., Simini, F., & Garcia-Austt, E. (1991). Electroencephalogram in vitro and cortical transmembrane potentials in the turtle (Chrysemys d'orbigny). Brain, Behavior, and Evolution, 38, 7–19.CrossRefGoogle Scholar
Fersen, L., Wynne, C. D. L., Delius, J. D., & Staddon, J. E. R. (1992). Transitive inference formation in pigeons. Journal of Experimental Psychology: Animal Behavior Processes, 17, 334–341.Google Scholar
Fersen, L., & Delius, J. D. (1989). Long-term retention of many visual patterns by pigeons. Ethology, 82, 141–155.CrossRefGoogle Scholar
Vyazovskiy, V. V., & Tobler, I. (2005). Regional differences in NREM sleep slow-wave activity in mice with congenital callosal dysgenesis. Journal of Sleep Research, 14, 299–304.CrossRefGoogle ScholarPubMed
Vyazovskiy, V. V., Achermann, P., & Tobler, I. (2007). Sleep homeostasis in the rat in the light and dark period. Brain Research Bulletin, 74, 37–44.CrossRefGoogle ScholarPubMed
Vyazovskiy, V. V., Cirelli, C., Pfister-Genskow, M., Faraguna, U., & Tononi, G. (2008). Molecular and electrophysiological evidence for net synaptic potentiation in wake and depression in sleep. Nature Neuroscience, 11, 200–208.CrossRefGoogle ScholarPubMed
Vyssotski, A. L., Serkov, A. N., Itskov, P. M., Dell'Omo, G., Latanov, A. V., Wolfer, D. P., et al. (2006). Miniature neurologgers for flying pigeons: Multichannel EEG and action and field potentials in combination with GPS recording. Journal of Neurophysiology, 95, 1263–1273.CrossRefGoogle ScholarPubMed
Walker, J. M., & Berger, R. J. (1980). Sleep as an adaptation for energy conservation functionally related to hibernation and shallow torpor. Progress in Brain Research, 53, 255–278.CrossRefGoogle ScholarPubMed
Watanabe, S., Sakamoto, J., & Wakita, M. (1995). Pigeons' discrimination of paintings by Monet and Picasso. Journal of the Experimental Analysis of Behavior, 63, 165–174.CrossRefGoogle ScholarPubMed
Weimerskirch, H., Chastel, O., Barbraud, C., & Tostain, O. (2003). Frigatebirds ride high on thermals. Nature, 421, 333–334.CrossRefGoogle ScholarPubMed
Weimerskirch, H., Corre, M., Jaquemet, S., Potier, M., & Marsac, F. (2004). Foraging strategy of a top predator in tropical waters: Great frigatebirds in the Mozambique Channel. Marine Ecology Progress Series, 275, 297–308.CrossRefGoogle Scholar
Yamazaki, Y., Aust, U., Huber, L., Hausmann, M., & Güntürkün, O. (2007). Lateralized cognition: Asymmetrical and complementary strategies of pigeons during discrimination of the “human concept.”Cognition, 104, 315–344.CrossRefGoogle ScholarPubMed
Zepelin, H., Hartzer, M. K., & Pendergast, S. (1998). Saccadic oscillations in the sleep of birds. Sleep, 21, 6.Google Scholar
Zepelin, H., Siegel, J. M., & Tobler, I. (2005). Mammalian sleep. In Kryger, M. H., Roth, T., & Dement, W. C. (Eds.), Principles and practice of sleep medicine (4th ed., pp. 91–100). Philadelphia: W. B. Saunders.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×