Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-15T10:31:24.439Z Has data issue: false hasContentIssue false

11 - Senescence in Modular Animals

Botryllid Ascidians as a Unique Ageing System

from Part II - Senescence in Animals

Published online by Cambridge University Press:  16 March 2017

Richard P. Shefferson
Affiliation:
University of Tokyo
Owen R. Jones
Affiliation:
University of Southern Denmark
Roberto Salguero-Gómez
Affiliation:
University of Sheffield
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Babcook, R. (1991). Comparative demography of three species of scleractinian corals using age- and size-dependent classifications. Ecological Monographs, 61, 225–44.Google Scholar
Ballarin, L., Cima, F. & Sabbadin, A. (1998). Apoptosis during the takeover phase of the ascidian Botryllus schlosseri colonial life cycle. Animal Biology, 7, 86.Google Scholar
Ballarin, L., Burighel, P. & Cima, F. (2008). A tale of death and life: natural apoptosis in the colonial ascidian Botryllus schlosseri (Urochordata, Ascidiacea). Current Pharmaceutical Design, 14, 138–47.CrossRefGoogle ScholarPubMed
Berrill, N. J. (1941). The development of the bud in Botryllus. Biology Bulletin, 80, 169–84.Google Scholar
Berrill, N. J. (1950a). The Tunicata (London: Ray Society).Google Scholar
Berrill, N. J. (1950b). The Tunicata with an Account of the British Species (London: Ray Society).Google Scholar
Berrill, N. J. (1951). Regeneration and budding in tunicates. Biological Reviews, 26, 451–75.CrossRefGoogle Scholar
Borges, R. M. (2009). Phenotypic plasticity and longevity in plants and animals: cause and effect? Journal of Biosciences, 84, 605–11.Google Scholar
Boyd, H. C., Brown, S. K., Harp, J. A. & Weissman, I. L. (1986). Growth and sexual maturation of laboratory-cultured Monterey Botryllus schlosseri. Biological Bulletin, 170, 91109.CrossRefGoogle Scholar
Brown, D. P., Basch, L., Barshis, D., et al. (2009). American Samoa’s island of giants: massive Porites colonies at Ta’u island. Coral Reefs, 28, 735.CrossRefGoogle Scholar
Brunetti, R. (1974). Observations on the life cycle of Botryllus schlosseri (Pallas) (Ascidiacea) in the Venetian lagoon. Italian Journal of Zoology, 41, 225–51.Google Scholar
Brunetti, R. & Copello, M. (1978). Growth and senescence in colonies of Botryllus schlosseri (Pallas) (Ascidiacea). Italian Journal of Zoology, 45, 359–64.Google Scholar
Buss, L. W. (1983). Evolution, development and the units of selection. Proceedings of the National Academy of Science the United States of America, 80, 1387–91.CrossRefGoogle ScholarPubMed
Chadwick-Furman, N. E. & Weissman, I. L. (1995). Life histories and senescence of Botryllus schlosseri (Chordata, Ascidiacea) in Monterey Bay. Biological Bulletin, 89, 3641.CrossRefGoogle Scholar
Cima, F., Manni, L., Basso, G., et al. (2010). Hovering between death and life: natural apoptosis and phagocytes in the blastogenetic cycle of the colonial ascidian Botryllus schlosseri. Developmental and Comparative Immunology, 34, 272–85.CrossRefGoogle ScholarPubMed
Curran, S. P., Wu, X. D., Riedel, C. G. & Ruvkun, G. (2009). A soma-to-germline transformation in long-lived Caenorhabditis elegans mutants. Nature 459, 1079–84.CrossRefGoogle ScholarPubMed
Das, U. & Das, A. K. (2000). Review of canine transmissible venereal sarcoma. Veterinary Research Communications, 24, 545–56.CrossRefGoogle ScholarPubMed
Elahi, R. & Edmunds, P. J. (2007a). Tissue age affects calcification in the scleractinian coral Madracis mirabilis. Biological Bulletin, 212, 20–8.CrossRefGoogle ScholarPubMed
Elahi, R. & Edmunds, P. J. (2007b). Consequences of fission in the coral Siderastrea siderea: growth rates of small colonies and clonal input to population structure. Coral Reefs, 26, 271–6.CrossRefGoogle Scholar
Finch, C. E. (1990). Longevity, Senescence, and the Genome (University of Chicago Press).Google Scholar
Finch, C. E. (1998). Variations in senescence and longevity include the possibility of negligible senescence. The Journals of Gerontology Series B: Biological Sciences 53A, B235–9.Google Scholar
Finch, C. E. (2009). Update on slow aging and negligible senescence: mini-review. Gerontology, 55, 307–13.CrossRefGoogle ScholarPubMed
Finkel, T. & Holbrook, N. J. (2000). Oxidants, oxidative stress and the biology of ageing. Nature, 408, 239–47.CrossRefGoogle ScholarPubMed
Grigg, R. (1977). Population dynamics of two gorgonian corals. Ecology, 58, 278–90.CrossRefGoogle Scholar
Grosberg, R. K. (1988). Life history within a population of the colonial ascidian Botryllus schlosseri: I. The genetic and environmental control of seasonal variation. Evolution, 42, 900–20.Google Scholar
Hamilton, W. D. (1966). The moulding of senescence by natural selection. Journal of Theoretical Biology, 12, 1245.CrossRefGoogle ScholarPubMed
Harvell, C. D. & Grosberg, R. K. (1988). The timing of sexual maturity in clonal animals. Ecology, 69, 1855–64.CrossRefGoogle Scholar
Heininger, K. (2012). The germ-soma conflict theory of aging and death: obituary to the ‘Evolutionary theories of aging’. WebmedCentral AGING, 3(4), WMC003275. doi: 10.9754/journal.wmc. 2012.003275Google Scholar
Hughes, K. A. & Reynolds, R. M. (2005). Evolutionary and mechanistic theories of aging. Annual Review of Entomology, 50, 421–45.CrossRefGoogle ScholarPubMed
Hughes, R. N. (1989). A Functional Biology of Clonal Animals (London: Chapman & Hall).Google Scholar
Hughes, T. P. & Jackson, J. B. C. (1980). Do corals lie about their age? Some demographic consequences of partial mortality, fission, and fusion. Science, 209, 713–15.CrossRefGoogle ScholarPubMed
Izzard, C. S. (1973). Development of polarity and bilateral asymmetry in the palleal bud of Botryllus schlosseri (Pallas). Journal of Morphology, 139, 126.CrossRefGoogle ScholarPubMed
Jackson, J. B. C. & Coates, A. G. (1986). Life cycles and evolution of clonal modular animals. Philosophical Transactions of the Royal Society London Series B: Biological Sciences, 313, 722.Google Scholar
Jackson, J. B. C. & Hughes, T. P. (1985). Adaptive strategies of coral reef invertebrates. American Scientist, 73, 265–73.Google Scholar
Kawamura, K., Kitamura, S., Sekida, S., et al. (2012). Molecular anatomy of tunicate senescence: reversible function of mitochondrial and nuclear genes associated with budding cycles. Development, 139, 4083–93.CrossRefGoogle ScholarPubMed
Kirkwood, T. B. (2005). Understanding the odd science of aging. Cell, 120, 437–47.CrossRefGoogle ScholarPubMed
Kirkwood, T. B. L. & Holliday, F. R. S. (1979). The evolution of ageing and longevity. Proceedings of the Royal Society of London Series B: Biological Sciences, 205, 531–46.Google ScholarPubMed
Kojis, B. L. & Quinn, N. J. (1985). Puberty in Goniastrea favulus age or size limited? In Proceedings of the 5th International Coral Reef Congress, Vol. 4 (pp. 289–93).Google Scholar
Lauzon, R. J., Ishizuka, K. J. & Weissman, I. L. (1992). A cyclical, developmentally regulated death phenomenon in a colonial urochordate. Developmental Dynamics, 94, 7183.CrossRefGoogle Scholar
Lauzon, R. J., Patton, C. W. & Weissman, I. L. (1993). A morphological and immunohistochemical study of programmed cell death in Botryllus schlosseri (Tunicata, Ascidiacea). Cell Tissue Research, 272, 115–27.CrossRefGoogle ScholarPubMed
Lauzon, R. J., Kidder, S. J. & Long, P. (2007). Suppression of programmed cell death regulates the cyclical degeneration of organs in a colonial urochordate. Developmental Biology, 301, 92105.CrossRefGoogle Scholar
Lauzon, R. J., Rinkevich, B., Patton, C. W. & Weissman, I. L. (2000). A morphological study of non-random senescence in a colonial urochordate. Biological Bulletin, 198, 367–78.CrossRefGoogle Scholar
Manni, L., Zaniolo, G., Cima, F., et al. (2007). Botryllus schlosseri: a model ascidian for the study of asexual reproduction. Developmental Dynamics, 236, 335–52.CrossRefGoogle Scholar
Medawar, P. B. (1952). An Unsolved Problem in Biology (London: Lewis.Google Scholar
Meesters, E. H. & Bak, R. P. M. (1995). Age-related deterioration of a physiological function in the branching coral Acropora palmata. Marine Ecology Progress Series, 121, 203–9.CrossRefGoogle Scholar
Mitteldorf, J. (2010). Aging is not a process of wear and tear. Rejuvenation Research, 13, 322–6.CrossRefGoogle Scholar
Mukai, H. & Watanabe, H. (1976). Studies on the formation of germ cells in a compound ascidian Botryllus primigenus Oka. Journal of Morphology, 148, 377–82.CrossRefGoogle Scholar
Murchison, E. P. (2008). Clonally transmissible cancers in dogs and Tasmanian devils. Oncogene, 27, S1930.CrossRefGoogle ScholarPubMed
Sköld, H. N. & Obst, M. (2011). Potential for clonal animals in longevity and ageing studies. Biogerontology, 12, 387–96.Google Scholar
Palumbi, S. R. & Jackson, J. B. C. (1983). Aging in modular organisms: ecology of zooid senescence in Steginoporella sp. (Bryozoa, Cheilostomata). Biological Bulletin, 164, 267–78.CrossRefGoogle Scholar
Piraino, S., De Vito, D., Schmich, J. et al. (2004). Reverse development in Cnidaria. Canadian Journal of Zoology, 82, 1748–54.CrossRefGoogle Scholar
Rabinowitz, C. & Rinkevich, B. (2004). In vitro delayed senescence of extirpated buds from zooids of the colonial tunicate, Botryllus schlosseri. Journal of Experimental Biology, 207, 1523–32.CrossRefGoogle ScholarPubMed
Rabinowitz, C. & Rinkevich, B. (2011). De novo emerged stemness signatures in epithelial monolayers developed from extirpated palleal buds. In Vitro Cellular and Developmental Biology: Animal, 47, 2631.CrossRefGoogle ScholarPubMed
Rabinowitz, C., Alphasi, G. & Rinkevich, B. (2009). Further portrayal of epithelial monolayers, emergent de novo from extirpated ascidians’ palleal buds. In Vitro Cellular and Developmental Biology: Animal, 45, 334–42.CrossRefGoogle ScholarPubMed
Rebbeck, C. A., Thomas, R., Breen, M., et al. (2009). Origins and evolution of a transmissible cancer. Evolution, 63, 2340–9.CrossRefGoogle ScholarPubMed
Rinkevich, B. (2000). A critical approach to the definition of Darwinian units of selection. Biological Bulletin, 199, 231–40.CrossRefGoogle Scholar
Rinkevich, B. (2002). The branching coral Stylophora pistillata: the contribution of genetics in shaping colony landscape. Israel Journal of Zoology, 48, 7182.CrossRefGoogle Scholar
Rinkevich, B. & Loya, Y. (1986). Senescence and dying signals in a reef building coral. Experientia, 42, 320–2.CrossRefGoogle Scholar
Rinkevich, B. & Shapira, M. (1998). An improved diet for inland broodstock and the establishment of an inbred line from Botryllus schlosseri, a colonial sea squirt (Ascidiacea). Aquatic Living Resources, 11, 163–71.CrossRefGoogle Scholar
Rinkevich, B. & Weissman, I. L. (1990). Botryllus schlosseri (Tunicata) whole colony irradiation: do senescent zooid resorption and immunological resorption involve similar recognition events? Journal of Experimental Zoology, 253, 189201.CrossRefGoogle ScholarPubMed
Rinkevich, B., Shlemberg, Z. & Fishelson, L. (1995). Whole body protochordate regeneration from totipotent blood cells. Proceedings of the National Academy of Sciences of the United States of America, 92, 7695–9.Google ScholarPubMed
Rinkevich, B., Porat, R. & Goren, M. (1998). On the development and reproduction of Botryllus schlossen (Tunicata) colonies from the eastern Mediterranean Sea: plasticity of life history traits. Invertebrate Reproduction and Development, 34, 207–18.CrossRefGoogle Scholar
Rinkevich, B., Lauzon, R. J., Brown, B. W. & Weissman, I. L. (1992). Evidence for a programmed lifespan in a colonial protochordate. Proceedings of the National Academy of Sciences the United States of America, 89, 3456–550.CrossRefGoogle Scholar
Rinkevich, Y., Paz, G., Rinkevich, B. & Reshef, R. (2007). Systemic bud induction and retinoic acid signaling underlie whole body regeneration in urochordate Botrylloides leachi. PLoS Biology, 5, 900–13.CrossRefGoogle ScholarPubMed
Rinkevich, Y., Voskoboynik, A., Rosner, A., et al. (2013). Repeated, long-term cycling of putative stem cells between niches in a basal chordate. Developmental Cell, 24, 7688.CrossRefGoogle Scholar
Roark, E. B., Guilderson, T. P., Dunbar, R. B., et al. (2009). Extreme longevity in proteinaceous deep-sea corals. Proceedings of the National Academy of Sciences the United States of America, 106, 5204–8.CrossRefGoogle ScholarPubMed
Roach, D. A. & Gampe, J. (2004). Age‐specific demography in Plantago: uncovering age‐dependent mortality in a natural population. American Naturalist, 164, 60–9.CrossRefGoogle Scholar
Rosen, B. R. (1986). Modular growth and form of corals: a matter of metamers? Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 313, 115–42.Google Scholar
Rosner, A., Moiseeva, E., Rinkevich, Y., et al. (2009). Vasa and the germ line lineage in colonial urochordate. Developmental Biology 331, 113–28.CrossRefGoogle ScholarPubMed
Salguero‐Gómez, R. & Casper, B. B. (2010). Keeping plant shrinkage in the demographic loop. Journal of Ecology, 98, 312–23.CrossRefGoogle Scholar
Simon-Blecher, N., Achituv, Y., & Rinkevich, B. (2004). Protochordate concordant xeno-transplantation settings reveal outbreaks of donor cells and divergent lifespan traits. Developmental and Comparative Immunology, 28, 983–91.CrossRefGoogle Scholar
Tanner, J. E. (2001). The influence of clonality on demography: patterns in expected longevity and survivorship. Ecology, 82, 1971–81.CrossRefGoogle Scholar
Tuomi, J. & Vuorisalo, T. (1989). Hierarchical selection in modular organisms. Trends in Ecology & Evolution, 14, 209–13.Google Scholar
Vaupel, J. W., Baudisch, A., Dölling, M., et al. (2004). The case for negative senescence. Theoretical Population Biology, 65, 339–51.CrossRefGoogle ScholarPubMed
Voskoboynik, A., Reznick, A. Z. & Rinkevich, B. (2002). Rejuvenescence and extension of a urochordate lifespan following a single, acute administration of an anti-oxidant, butylated hydroxytoluene. Mechanisms of Ageing and Development, 123, 1203–10.CrossRefGoogle ScholarPubMed
Voskoboynik, A., Rinkevich, B.A. Weiss, E. et al. (2004). Macrophage involvement for successful degeneration of apoptotic organs in the colonial urochordate Botryllus schlosseri. Journal of Experimental Biology 207, 2409–16.CrossRefGoogle ScholarPubMed
Voskoboynik, A., Simon-Blecher, N. Soen, Y., et al. (2007). Striving for normality: whole body regeneration through a series of abnormal generations. FASEB Journal 21, 1335–44.CrossRefGoogle ScholarPubMed
Voskoboynik, A., Soen, B., Rinkevich, Y., et al. (2008). Identification of the endostyle as a stem cell niche in a basal chordate. Cell Stem Cell, 3, 456–64.CrossRefGoogle Scholar
Yund, P. O., & Stires, A. (2002). Spatial variation in population dynamics in a colonial ascidian (Botryllus schlosseri). Marine Biology, 141, 955–63.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×