Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-15T10:00:46.704Z Has data issue: false hasContentIssue false

8 - Avian Escape Artists?

Patterns, Processes and Costs of Senescence in Wild Birds

from Part II - Senescence in Animals

Published online by Cambridge University Press:  16 March 2017

Richard P. Shefferson
Affiliation:
University of Tokyo
Owen R. Jones
Affiliation:
University of Southern Denmark
Roberto Salguero-Gómez
Affiliation:
University of Sheffield
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aubry, L. M., Cam, E., Koons, D. N., et al. (2011). Drivers of age-specific survival in a long-lived seabird: contributions of observed and hidden sources of heterogeneity. Journal of Animal Ecology, 80, 375–83.CrossRefGoogle Scholar
Aubry, L. M., Koons, D. N., Monnat, J. Y. & Cam, E. (2009). Consequences of recruitment decisions and heterogeneity on age-specific breeding success in a long-lived seabird. Ecology, 90, 24912502.CrossRefGoogle Scholar
Auld, J. R. & Charmantier, A. (2011). Life history of breeding partners alters age-related changes of reproductive traits in a natural population of blue tits. Oikos, 120, 1129–38.CrossRefGoogle Scholar
Auld, J. R., Perrins, C. M. & Charmantier, A. (2013). Who wears the pants in a mute swan pair? Deciphering the effects of male and female age and identity on breeding success. Journal of Animal Ecology, 82, 826–35.CrossRefGoogle Scholar
Balbontín, J., de Lope, F., Hermosell, I. G., et al. (2011). Determinants of age-dependent change in a secondary sexual character. Journal of Evolutionary Biology, 24, 440–8.CrossRefGoogle Scholar
Balbontín, J., Hermosell, I. G., Marzal, A., et al. (2007). Age-related change in breeding performance in early life is associated with an increase in competence in the migratory barn swallow Hirundo rustica. Journal of Animal Ecology, 76, 915–25.CrossRefGoogle ScholarPubMed
Balbontín, J., Møller, A. P., Hermosell, I. G., et al. (2012a). Geographical variation in reproductive ageing patterns and life-history strategy of a short-lived passerine bird. Journal of Evolutionary Biology, 25, 22982309.CrossRefGoogle ScholarPubMed
Balbontín, J., Møller, A. P., Hermosell, I. G., et al. (2012b). Lifetime individual plasticity in body condition of a migratory bird. Biological Journal of the Linnean Society, 105, 420–34.CrossRefGoogle Scholar
Barrett, E. L. B., Burke, T. A., Hammers, M., et al. (2013). Telomere length and dynamics predict mortality in a wild longitudinal study. Molecular Ecology, 22, 249–59.CrossRefGoogle Scholar
Bennett, P. M. & Owens, I. P. F. (2002). Evolutionary Ecology of Birds (Oxford University Press).CrossRefGoogle Scholar
Bize, P., Cotting, S., Devevey, G., et al. (2014). Senescence in cell oxidative status in two bird species with contrasting life expectancy. Oecologia, 174, 10971105.CrossRefGoogle ScholarPubMed
Blas, J., Sergio, F. & Hiraldo, F. (2009). Age-related improvement in reproductive performance in a long-lived raptor: a cross-sectional and longitudinal study. Ecography, 32, 647–57.CrossRefGoogle Scholar
Bonduriansky, R. & Brassil, C. E. (2002). Rapid and costly ageing in wild male flies. Nature, 420, 377–9.CrossRefGoogle ScholarPubMed
Boonekamp, J. J., Salomons, M., Bouwhuis, S., et al. (2014). Reproductive effort accelerates actuarial senescence in wild birds: an experimental study. Ecology Letters, 17, 599605.CrossRefGoogle ScholarPubMed
Bosman, D. S., Vercruijsse, H. J. P., Stienen, E. W. M., et al. (2013). Age of first breeding interacts with pre- and post-recruitment experience in shaping breeding phenology in a long-lived gull. PLoS ONE, 8(12), e82093.CrossRefGoogle Scholar
Botkin, D. B. & Miller, R. S. (1974). Mortality rates and survival of birds. American Naturalist, 108, 181–92.CrossRefGoogle Scholar
Bouwhuis, S., Charmantier, A., Verhulst, S. & Sheldon, B.C. (2010a). Individual variation in rates of senescence: natal origin effects and disposable soma in a wild bird population. Journal of Animal Ecology, 79, 1251–61.CrossRefGoogle Scholar
Bouwhuis, S., Charmantier, A., Verhulst, S. & Sheldon, B. C. (2010b). Trans-generational effects on ageing in a wild bird population. Journal of Evolutionary Biology, 23, 636–42.CrossRefGoogle Scholar
Bouwhuis, S., Choquet, R., Sheldon, B. C. & Verhulst, S. (2012). The forms and fitness cost of senescence: age-specific recapture, survival, reproduction, and reproductive value in a wild bird population. American Naturalist, 179, E1527.CrossRefGoogle Scholar
Bouwhuis, S., Sheldon, B. C., Verhulst, S. & Charmantier, A. (2009). Great tits growing old: selective disappearance and the partitioning of senescence to stages within the breeding cycle. Proceedings of the Royal Society of London Series B: Biological Sciences, 276, 2769–77.Google ScholarPubMed
Bouwhuis, S., van Noordwijk, A. J., Sheldon, B. C., et al. (2010c). Similar patterns of age-specific reproduction in an island and mainland population of great tits Parus major. Journal of Avian Biology, 41, 615–20.Google Scholar
Bouwhuis, S., Vedder, O. & Becker, P. H. (2015). Sex-specific pathways of parental age effects on offspring lifetime reproductive success in a long-lived seabird. Evolution, 69, 1760–71.CrossRefGoogle Scholar
Breton, A. R., Nisbet, I. C. T., Mostello, C. S. & Hatch, J. J. (2014). Age-dependent breeding dispersal and adult survival within a metapopulation of common terns Sterna hirundo. Ibis, 156, 534–47.CrossRefGoogle Scholar
Broggi, J., Hohtola, E., Koivula, K., et al. (2010). Idle slow as you grow old: longitudinal age-related metabolic decline in a wild passerine. Evolutionary Ecology, 24, 177–84.CrossRefGoogle Scholar
Brown, W. P. & Roth, R. R. (2009). Age-specific reproduction and survival of individually marked wood thrushes, Hylocichla mustelina. Ecology, 90, 218–29.CrossRefGoogle ScholarPubMed
Brunet-Rossinni, A. K. & Austad, S. N. (2006). Senescence in wild populations of mammals and birds. In Handbook of the Biology of Aging, ed. Masoro, E. J. & Austad, S. N. pp. 243–66). (Burlington MA: Academic Press).Google Scholar
Cam, E., Link, W. A., Cooch, E. G., et al. (2002). Individual covariation in life-history traits: seeing the trees despite the forest. American Naturalist, 159, 96105.CrossRefGoogle ScholarPubMed
Clutton-Brock, T. H. & Sheldon, B. C. (2010). Individuals and populations: the role of long-term, individual-based studies of animals in ecology and evolutionary biology. Trends in Ecology and Evolution, 25, 562–73.CrossRefGoogle ScholarPubMed
Cornwallis, C. K., Dean, R. & Pizzari, T. (2014). Sex-specific patterns of aging in sexual ornaments and gametes. American Naturalist, 184, E6678.CrossRefGoogle ScholarPubMed
Dean, R., Cornwallis, C. K., Løvlie, H., et al. (2010). Male reproductive senescence causes potential for sexual conflict over mating. Current Biology, 20, 1192–6.CrossRefGoogle ScholarPubMed
DuVal, E. H. (2012). Variation in annual and lifetime reproductive success of lance-tailed manakins: alpha experience mitigates effects of senescence on siring success. Proceedings of the Royal Society of London Series B: Biological Sciences, 279, 1551–9.Google ScholarPubMed
Eising, C. (2004). Mother knows best? Costs and benefits of differential maternal hormone allocation in birds. PhD thesis, University of Groningen.Google Scholar
Evans, S. R., Gustafsson, L. & Sheldon, B. C. (2011). Divergent patterns of age-dependence in ornamental and reproductive traits in the collared flycatcher. Evolution, 65, 1623–36.CrossRefGoogle ScholarPubMed
Evans, S. R. & Sheldon, B. C. (2013). Pigments versus structure: examining the mechanism of age-dependent change in a carotenoid-based colour. Journal of Animal Ecology, 82, 418–28.CrossRefGoogle Scholar
Fisher, R. A. (1930). The Genetical Theory of Natural Selection (Oxford: Clarendon Press).CrossRefGoogle Scholar
Forslund, P. & Pärt, T. (1995). Age and reproduction in birds: hypotheses and tests. Trends in Ecology and Evolution, 10, 374–8.CrossRefGoogle ScholarPubMed
Froy, H., Phillips, R. A., Wood, A. G., et al. (2013). Age-related variation in reproductive traits in the wandering albatross: evidence for terminal improvement following senescence. Ecology Letters, 16, 642–9.CrossRefGoogle ScholarPubMed
Groothuis, T. G. G., Müller, W., von Engelhardt, N., et al. (2005). Maternal hormones as a tool to adjust offspring phenotype in avian species. Neuroscience and Biobehavioral Reviews, 29, 329–52.CrossRefGoogle ScholarPubMed
Gustafsson, L. & Pärt, T. (1990). Acceleration of senescence in the collared flycatcher Ficedula albicollis by reproductive costs. Nature, 347, 279–81.CrossRefGoogle Scholar
Hager, R., Cheverud, J. M. & Wolf, J. B. (2009). Change in maternal environment induced by cross-fostering alters genetic and epigenetic effects on complex traits in mice. Proceedings of the Royal Society of London Series B: Biological Sciences, 276, 2949–54.Google ScholarPubMed
Hamilton, W. D. (1966). Moulding of senescence by natural selection. Journal of Theoretical Biology, 12, 1245.CrossRefGoogle ScholarPubMed
Hammers, M., Richardson, D. S., Burke, T. & Komdeur, J. (2012). Age-dependent terminal declines in reproductive output in a wild bird. PLoS ONE, 7(7), e40413.CrossRefGoogle Scholar
Hammers, M., Richardson, D. S., Burke, T. & Komdeur, J. (2013). The impact of reproductive investment and early-life environmental conditions on senescence: support for the disposable soma hypothesis. Journal of Evolutionary Biology, 26, 19992007.CrossRefGoogle ScholarPubMed
Holmes, D. J. & Austad, S. N. (1995a). Birds as animal-models for the comparative biology of aging: a prospectus. Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 50, B5966.CrossRefGoogle ScholarPubMed
Holmes, D. J. & Austad, S. N. (1995b). The evolution of avian senescence patterns: implications for understanding primary aging processes. American Zoologist, 35, 307–17.CrossRefGoogle Scholar
Jones, O. R., Gaillard, J.-M., Tuljapurkar, S., et al. (2008). Senescence rates are determined by ranking on the fast-slow life-history continuum. Ecology Letters, 11, 664–73.CrossRefGoogle ScholarPubMed
Kervinen, M., Lebigre, C., Alatalo, R. V., et al. (2015). Life-history differences in age-dependent expressions of multiple ornaments and behaviors in a lekking bird. American Naturalist, 185, 1327.CrossRefGoogle Scholar
Kim, S. Y., Velando, A., Torres, R. & Drummond, H. (2011). Effects of recruiting age on senescence, lifespan and lifetime reproductive success in a long-lived seabird. Oecologia, 166, 615–26.CrossRefGoogle Scholar
Kingsolver, J. G., Diamond, S. E., Siepielski, A. M. & Carlson, S. M. (2012). Synthetic analyses of phenotypic selection in natural populations: lessons, limitations and future directions. Evolutionary Ecology, 26, 1101–18.CrossRefGoogle Scholar
Kirkwood, T. B. L. & Rose, M. R. (1991). Evolution of senescence: late survival sacrificed for reproduction. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 332, 1524.Google ScholarPubMed
Kreft, I. G. G., de Leeuw, J. & Aiken, L. S. (1995). The effect of different forms of centering in hierarchical linear models. Multivariate Behavioural Research, 30, 121.CrossRefGoogle ScholarPubMed
Lack, D. (1943). The Life of the Robin (London: Witherby).Google Scholar
Limmer, B. & Becker, P. H. (2010). Improvement of reproductive performance with age and breeding experience depends on recruitment age in a long-lived seabird. Oikos, 119, 500–7.CrossRefGoogle Scholar
Lindstedt, S. L. & Calder, W. A. (1976). Body size and longevity in birds. Condor, 78, 91–4.CrossRefGoogle Scholar
Marzolin, G. A., Charmantier, A. & Gimenez, O. (2011). Frailty in state-space models: application to actuarial senescence in the dipper. Ecology, 92(3), 562–7.CrossRefGoogle ScholarPubMed
McCleery, R. H., Clobert, J., Julliard, R. & Perrins, C. M. (1996). Nest predation and delayed cost of reproduction in the great tit. Journal of Animal Ecology, 65, 96104.CrossRefGoogle Scholar
McCleery, R. H., Perrins, C. M., Sheldon, B. C. & Charmantier, A. (2008). Age-specific reproduction in a long-lived species: the combined effects of senescence and individual quality. Proceedings of the Royal Society of London Series B: Biological Sciences, 275, 963–70.Google Scholar
McDonald, D. B., Fitzpatrick, J. W. & Woolfenden, G. E. (1996). Actuarial senescence and demographic heterogeneity in the Florida scrub jay. Ecology, 77, 2373–81.CrossRefGoogle Scholar
McGlothlin, J. W., Jawor, J. M. & Ketterson, E. D. (2007). Natural variation in a testosterone-mediated trade-off between mating effort and parental effort. American Naturalist, 170, 864–75.CrossRefGoogle Scholar
Medawar, P. B. (1952). An Unsolved Problem in Biology (London: Lewis).Google Scholar
Metcalfe, N. B. & Monaghan, P. (2003). Growth versus lifespan: perspectives from evolutionary ecology. Experimental Gerontology, 38, 935–40.CrossRefGoogle ScholarPubMed
Millon, A., Petty, S. J., Little, B. & Lambin, X. (2011). Natal conditions alter age-specific reproduction but not survival or senescence in a long-lived bird of prey. Journal of Animal Ecology, 80, 968–75.CrossRefGoogle Scholar
Mizutani, Y., Tomita, N., Niizuma, Y. & Yoda, K. (2013). Environmental perturbations influence telomere dynamics in long-lived birds in their natural habitat. Biology Letters, 9, 20130511.CrossRefGoogle ScholarPubMed
Moe, B., Rønning, B., Verhulst, S. & Bech, C. (2009). Metabolic ageing in individual zebra finches. Biology Letters, 5, 86–9.CrossRefGoogle ScholarPubMed
Møller, A. P. & de Lope, F. (1999). Senescence in a short-lived migratory bird: age-dependent morphology, migration, reproduction and parasitism. Journal of Animal Ecology, 68, 163–71.CrossRefGoogle Scholar
Monaghan, P. (2008). Early growth conditions, phenotypic development and environmental change. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 363, 1635–45.CrossRefGoogle ScholarPubMed
Monaghan, P., Charmantier, A., Nussey, D. H. & Ricklefs, R. E. (2008). The evolutionary ecology of senescence. Functional Ecology, 22, 371–8.CrossRefGoogle Scholar
Newton, I. & Rothery, P. (1998). Age-related trends in the breeding success of individual female sparrowhawks Accipiter nisus. Ardea, 86, 2131.Google Scholar
Nilsson, J. F., Tobler, M., Nilsson, J. A. & Sandell, M. I. (2011). Long-lasting consequences of elevated yolk testosterone for metabolism in the zebra finch. Physiological and Biochemical Zoology, 84, 287–91.CrossRefGoogle ScholarPubMed
Nussey, D. H., Froy, H., Lemaitre, J. F., et al. (2013). Senescence in natural populations of animals: widespread evidence and its implications for bio-gerontology. Ageing Research Reviews, 12, 214–25.CrossRefGoogle ScholarPubMed
Orell, M. & Belda, E. J. (2002). Delayed cost of reproduction and senescence in the willow tit Parus montanus. Journal of Animal Ecology, 71, 5564.CrossRefGoogle Scholar
Pardo, D., Barbraud, C. & Weimerskirch, H. (2013). Females better face senescence in the wandering albatross. Oecologia, 173, 1283–94.CrossRefGoogle ScholarPubMed
Partridge, L. & Barton, N.H. (1996). On measuring the rate of ageing. Proceedings of the Royal Society of London Series B: Biological Sciences, 263, 1365–71.Google Scholar
Péron, G., Crochet, P. A., Choquet, R., et al. (2010). Capture-recapture models with heterogeneity to study survival senescence in the wild. Oikos, 119, 524–32.CrossRefGoogle Scholar
Perrins, C. M. (1979). British Tits (London: Collins).Google Scholar
Potti, J., Canal, D. & Serrano, D. (2013). Lifetime fitness and age-related female ornament signalling: evidence for survival and fecundity selection in the pied flycatcher. Journal of Evolutionary Biology, 26, 1445–57.CrossRefGoogle ScholarPubMed
Preston, B. T., Saint Jalme, M., Hingrat, Y., et al. (2011). Sexually extravagant males age more rapidly. Ecology Letters, 14, 1017–24.CrossRefGoogle ScholarPubMed
Price, G. R. (1970). Selection and covariance. Nature, 227, 520.CrossRefGoogle ScholarPubMed
Rebke, M., Coulson, T., Becker, P. H. & Vaupel, J. W. (2010). Reproductive improvement and senescence in a long-lived bird. Proceedings of the National Academy of Sciences of the United States of America, 107, 7841–6.Google Scholar
Reed, T. E., Kruuk, L. E. B., Wanless, S., et al. (2008). Reproductive senescence in a long-lived seabird: rates of decline in late-life performance are associated with varying costs of early reproduction. American Naturalist, 171, E89101.CrossRefGoogle Scholar
Reid, J. M., Bignal, E. M., Bignal, S., et al. (2003). Age-specific reproductive performance in red-billed choughs Pyrrhocorax pyrrhocorax: patterns and processes in a natural population. Journal of Animal Ecology, 72, 765–76.CrossRefGoogle Scholar
Richdale, L. E. (1957). A Population Study of Penguins (Oxford: Clarendon Press).Google Scholar
Ruuskanen, S., Lehikoinen, E., Nikinmaa, M., et al. (2013). Long-lasting effects of yolk androgen on phenotype in the pied flycatcher (Ficedula hypoleuca). Behavioral Ecology and Sociobiology, 67, 361–72.CrossRefGoogle Scholar
Salomons, H. M., Mulder, G. A., van de Zande, L., et al. (2009). Telomere shortening and survival in free-living corvids. Proceedings of the Royal Society of London Series B: Biological Sciences, 276, 3157–65.Google ScholarPubMed
Schroeder, J., Burke, T., Mannarelli, M. E., et al. (2011). Maternal effects and heritability of annual productivity. Journal of Evolutionary Biology, 25, 149–56.Google ScholarPubMed
Schroeder, J., Nakagawa, S., Rees, M., et al. (2015). Reduced fitness in progeny from old parents in a natural population. Proceedings of the National Academy of Sciences of the United States of America, 112, 4021–5.Google Scholar
Torres, R., Drummond, H. & Velando, A. (2011). Parental age and lifespan influence offspring recruitment: a long-term study in a seabird. PLoS ONE, 6(11), e27245.CrossRefGoogle Scholar
Treidel, L. A., Whitley, B. N., Benowitz-Fredericks, Z. M. & Haussmann, M. F. (2013). Prenatal exposure to testosterone impairs oxidative damage repair efficiency in the domestic chicken (Gallus gallus). Biology Letters, 9, 20130684.CrossRefGoogle ScholarPubMed
van de Pol, M. & Verhulst, S. (2006). Age-dependent traits: a new statistical model to separate within- and between-individual effects. American Naturalist, 167, 766–73.CrossRefGoogle ScholarPubMed
van de Pol, M. & Wright, J. (2009). A simple method for distinguishing within- versus between-subject effects using mixed models. Animal Behaviour, 77, 753–8.CrossRefGoogle Scholar
Vaupel, J. W., Manton, K. G. & Stallard, E. (1979). The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography, 16, 439–54.CrossRefGoogle ScholarPubMed
Vaupel, J. W. & Yashin, A. I. (1985). Heterogeneity’s ruses: some surprising effects of selection on population-dynamics. American Statistician, 39, 176–85.Google ScholarPubMed
Verhulst, S., Geerdink, M., Salomons, H. M. & Boonekamp, J. J. (2014). Social life histories: jackdaw dominance increases with age, terminally declines and shortens lifespan. Proceedings of the Royal Society of London Series B: Biological Sciences, 281, 20141045.Google ScholarPubMed
Williams, G. C. (1957). Pleiotropy, natural selection, and the evolution of senescence. Evolution, 11, 398411.CrossRefGoogle Scholar
Zhang, H., Rebke, M., Becker, P. H. & Bouwhuis, S. (2015a). Fitness prospects: effects of age, sex and recruitment age on reproductive value in a long-lived seabird. Journal of Animal Ecology, 84, 199207.CrossRefGoogle Scholar
Zhang, H., Vedder, O., Becker, P. H. & Bouwhuis, S. (2015b). Age-dependent trait variation: the relative contribution of within-individual change, selective appearance and disappearance in a long-lived seabird. Journal of Animal Ecology, 84(3), 797807.CrossRefGoogle Scholar
Zhang, H., Vedder, O., Becker, P.H. & Bouwhuis, S. (2015c). Contrasting between- and within-individual trait effects on mortality risk in a long-lived seabird. Ecology, 96, 71–9.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×