Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-19T14:52:30.384Z Has data issue: false hasContentIssue false

1 - Macroevolution for plant reproductive biologists

Published online by Cambridge University Press:  05 January 2012

Sébastien Patiny
Affiliation:
Université de Mons-Hainaut, Belgium
Get access

Summary

From micro- to macroevolution

Just as there is a microevolutionary process that explains organismal adaptations, so is there a macroevolutionary process that explains biological diversity. Consider western North America’s wildflowers. How is it that there are 246 penstemons that are hymenopteran pollinated, and 40 penstemons that have taken on hummingbirds, but no penstemon species has adapted to fly or butterfly or beetle pollination? How is it that there are 60 kinds of dudleyas, all with ranges emanating from the coastal mountains? And how about mariposa lilies, a group of 35 species varying in flower colors and petal hairs yet all pollinated by both beetles and bees via a highly generalized floral mechanism? The amounts of diversity and the patterns in which they are arranged are the products of a macroevolutionary process.

The microevolutionary process is more familiar. Mutations occur from time to time. They are undirected. Many are deleterious to the functioning of the organism in its environment. For a while they contribute to the genetic load, then eventually they are lost due to natural selection. Many other mutations are neutral or nearly neutral given the environment where the organism lives and the genetic state of the organism at other loci. Neutral alleles change in frequency due to genetic drift. A few new mutations are beneficial to the individuals that carry them, or to their close relatives, and these are selected up in frequency. The beneficence of these alleles may depend on the outside environment, for example on the kinds of animals that are pollinating those plants in their local population. Likewise, whether or not an allele is beneficial may depend on the genetic state of the rest of the organism. If the outside environment or the genetic background change, then what was once deleterious or neutral may become beneficial.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aarssen, L. W. 2000 Why are most selfers annuals? A new hypothesis for the fitness benefit of selfingOikos 89 606CrossRefGoogle Scholar
Ackerly, D. D. 2003 Community assembly, niche conservatism, and adaptive evolution in changing environmentsInternational Journal of Plant Sciences 164 S165CrossRefGoogle Scholar
Ackerly, D. D. 2009 Conservatism and diversification of plant functional traits: Evolutionary rates versus phylogenetic signalProceedings of the National Academy of Sciences USA 106 19699CrossRefGoogle ScholarPubMed
Armbruster, W. S.Lee, J.Baldwin, B. G. 2009 Macroevolutionary patterns of defense and pollination in vines: Adaptation, exaptation, and evolutionary noveltyProceedings of the National Academy of Sciences USA 106 18085CrossRefGoogle ScholarPubMed
Armbruster, W. S.Hanen, T. F.Pélabon, C.Pérez-Barrales, R.Maad, J. 2009 The adaptive accuracy of flowers: Measurements and microevolutionary patternsAnnals of Botany 103 1529CrossRefGoogle Scholar
Barton, N. H. 2000 Genetic hitchhikingPhilosophical Transactions of the Royal Society B 355 1553CrossRefGoogle ScholarPubMed
Baskin, C. C.Baskin, J. M. 1998 Seeds: Ecology, Biogeography, and Evolution of Dormancy and GerminationSan Diego, CAAcademic PressGoogle Scholar
Bolmgren, K.Eriksson, O. 2005 Fleshy fruits – origins, niche shifts, and diversificationOikos 109 255CrossRefGoogle Scholar
Brandon, R. N. 1990 Adaptation and EnvironmentPrinceton, NJPrinceton University PressGoogle Scholar
Castellanos, M. C.Wilson, P.Thomson, J. D. 2003 Pollen transfer by hummingbirds and bumblebees, and the divergence of pollination modes in Evolution 57 2742CrossRefGoogle Scholar
Charlesworth, D.Morgan, M. T.Charlesworth, B. 1993 Mutation accumulation in finite outbreeding and inbreeding populationsGenetical Research 61 39CrossRefGoogle Scholar
Cruden, R. W. 1977 Pollen–ovule ratios: A conservative indicator of breeding system in flowering plantsEvolution 31 32CrossRefGoogle Scholar
Dawkins, R. 2004 Extended phenotype – but not extended. A reply to Laland, Turner and JablonkaBiology and Philosophy 19 377CrossRefGoogle Scholar
de Quieroz, A. 2002 Contingent predictability in evolution: Key traits and diversificationSystematic Biology 51 917CrossRefGoogle Scholar
Dodd, M. E.Silvertown, J.Chase, M. W. 1999 Phylogenetic analysis of trait evolution and species diversity variation among angiosperm familiesEvolution 53 732CrossRefGoogle ScholarPubMed
Doherty, P. F.Sorci, G.Royle, J. A.Hines, J. E.Nichols, J. D.Boulinier, T. 2003 Sexual selection affects local exinction and turnover in bird communitiesProceedings of the National Academy of Sciences USA 100 5858CrossRefGoogle Scholar
Dorsey, A.Wilson, P. 2011 Rarity as a life-history correlate in (Crassulaceae)American Journal of Botany 98 1104CrossRefGoogle Scholar
Eldredge, N. 2003 Evolutionary DynamicsP Crutchfield, J.Schuster, P.Oxford, UKOxford University PressGoogle Scholar
Eldredge, N.Thompson, J. N.Brakefield, P. M.Gavrilets, S.Jablonski, D.Jackson, J. B. C.Lenski, R. E.Lieberman, B. S.McPeek, M. A.Miller III, W. 2005 The dynamics of evolutionary stasisPaleobiology 31 133CrossRefGoogle Scholar
Endress, P. K. 1996 Diversity and Evolutionary Biology of Tropical FlowersCambridge, UKCambridge University PressGoogle Scholar
FitzJohn, R. G.Maddison, W. P.Otto, S. P. 2009 Estimating trait-dependent speciation and extinction rates from incompletely resolved phylogeniesSystematic Biology 58 595CrossRefGoogle ScholarPubMed
Futuyma, D. J. 2010 Evolutionary constraint and ecological consequencesEvolution 64 1865CrossRefGoogle ScholarPubMed
Gegear, R. J.Laverty, T. M. 2005 Flower constancy in bumblebees: A test of the trait variability hypothesisAnimal Behavior 69 939CrossRefGoogle Scholar
Gould, S. J. 2002 The Structure of Evolutionary TheoryCambridge, MAHarvard University PressGoogle Scholar
Gould, S. J.Lewontin, R. C. 1979 The spandrels of San Marco and the Panglossian paradigm: A critique of the adaptationist programmeProceedings of the Royal Society London B 205 581CrossRefGoogle Scholar
Gould, S. J.Lloyd, E. A. 1999 Individuality and adaptation across levels of selection: How shall we name and generalize the unit of Darwinism?Proceedings of the National Academy of Sciences USA 96 11904CrossRefGoogle ScholarPubMed
Gould, S. J.Vrba, E. S. 1982 Exaptation – a missing term in the science of formPaleobiology 8 4CrossRefGoogle Scholar
Grant, V. 1949 Pollination systems as isolating mechanisms in angiospermsEvolution 3 82CrossRefGoogle ScholarPubMed
Harder, L. D.Wilson, W. G. 1998 A clarification of pollen discounting and its joint effects with inbreeding depression on mating system evolutionAmerican Naturalist 152 684CrossRefGoogle ScholarPubMed
Heilbuth, J. C. 2000 Lower species richness in dioecious cladesAmerican Naturalist 156 221CrossRefGoogle ScholarPubMed
Herrera, C.M. 1992 Historical effects and sorting processes as explanations for contemporary ecological patterns: Character syndromes in Mediterranean woody plantsAmerican Naturalist 140 421CrossRefGoogle Scholar
Hodges, S.A. 1997 Floral nectar spurs and diversificationInternational Journal of Plant Sciences 158 S81CrossRefGoogle Scholar
Hodges, S.A. 1997 Molecular Evolution and Adaptive RadiationsGivinish, T.Sytsma, K.Cambridge, MACambridge University PressGoogle Scholar
Holsinger, K. E.Thomson, J. D. 1994 Pollen discounting in : Mass-action estimates from pollen transfer dynamicsAmerican Naturalist 144 799CrossRefGoogle Scholar
Igic, B.Bohs, L.Kohn, J.R. 2006 Ancient polymorphism reveals unidirectional breeding system shiftsProceedings of the National Academy of Sciences USA 103 1359CrossRefGoogle ScholarPubMed
Janzen, D. 1985 On ecological fittingOikos 45 308CrossRefGoogle Scholar
Johnson, S.D. 2006 Ecology and Evolution of FlowersHarder, L. D.Barrett, S. C. H.Oxford, UKOxford University PressGoogle Scholar
Jones, K. N. 2001 Cognitive Ecology of Pollination: Animal Behavior and Floral EvolutionChittka, L.Thomson, J.D.Cambridge, UKCambridge University PressGoogle Scholar
Kalisz, S.Horth, L.McPeek, M. A. 1997 Conservation in Highly Fragmented LandscapesSchwartz, M. W.New York, NYChapman & HallGoogle Scholar
Kay, K. M.Voelckel, C.Yang, J. Y.Hufford, K. M.Kaska, D. D.Hodges, S. A. 2006 Ecology and Evolution of FlowersHarder, L. D.Barrett, S. C. H.Oxford, UKOxford University PressGoogle Scholar
Kelley, S. T.Farrell, B. D. 1998 Is specialization a dead end? The phylogeny of host use in bark beetles (Scolytidae)Evolution 52 1731CrossRefGoogle Scholar
Kimball, S.Wilson, P.Crowther, J. 2004 Local ecology and geographic ranges of plants in the Bishop Creek watershed of the eastern Sierra Nevada, California, USAJournal of Biogeogrpahy 31 1637CrossRefGoogle Scholar
Kondrashov, A. S.Shpak, M. 1998 On the origin of species by means of assortative matingProceedings of the Royal Society London B 265 2273CrossRefGoogle ScholarPubMed
Lande, R.Schemske, D. W. 1985 The evolution of self-fertilization and inbreeding depression in plants. I. Genetic modelsEvolution 39 24CrossRefGoogle ScholarPubMed
Lavergne, S.Thompson, J. D.Garnier, E.Debussche, M. 2004 The biology and ecology of narrow endemic and widespread plants: A comparative study of trait variation in 20 congeneric pairsOikos 107 505CrossRefGoogle Scholar
Lengyel, S.Gove, A. D.Latimer, A. M.Majer, J. D.Dunn, R. R. 2009 Ants sow the seeds of global diversification in flowering plantsPLoS ONE 4 e5480CrossRefGoogle ScholarPubMed
Leppik, E. E. 1966 Floral evolution and pollination in the LeguminosaeAnnales Botanici Fennici 3 299Google Scholar
Lester, S. E.Ruttenberg, B. I.Gaines, S. D.Kinlan, B. P. 2007 The relationship between dispersal ability and geographic range sizeEcology Letters 10 74558CrossRefGoogle ScholarPubMed
Levin, D. A. 2000 The Origin, Expansion, and Demise of Plant SpeciesOxford, UKOxford University PressGoogle Scholar
Lynch, M.Conery, J.Reinhard, B. 1995 Mutational meltdowns in sexual populationsEvolution 49 1067CrossRefGoogle ScholarPubMed
McEwen, J. R.Vamosi, J. C. 2010 Floral colour versus phylogeny in structuring subalpine flowering communitiesProceedings of the Royal Society London B 277 29572965CrossRefGoogle ScholarPubMed
Mishler, B. D. 2010 Contermporary Debates in Philosophy of BiologyAyala, F. J.Oxford, UKJohn Wiley & SonsGoogle Scholar
Moore, B. R.Donoghue, M. J. 2007 Correlates of diversification in the plant clade Dipsacales: Geographic movement and evolutionary innovationsAmerican Naturalist 170 S28CrossRefGoogle ScholarPubMed
Moran, R. C. 2004 A Natural History of FernsPortland, ORTimber PressGoogle Scholar
Mulcahy, D. L. 1979 The rise of the angiosperms: A genecological factorScience 206 20CrossRefGoogle ScholarPubMed
Nunney, L. 1989 The maintenance of sex by group selectionEvolution 43 245CrossRefGoogle ScholarPubMed
Okasha, S. 2003 Does the concept of “clade selection” make sense?Philosophy of Science 70 739CrossRefGoogle Scholar
Ollerton, J.Masinde, S.Meve, U.Picker, M.Whittington, A. 2009 Fly pollination in (Apocynaceae: Asclepiadoideae): Biogeographic and phylogenetic perspectivesAnnals of Botany 103 1501CrossRefGoogle ScholarPubMed
Payne, J. L.Finnegan, S. 2007 The effect of geographic range on exinction risk during background and mass extinctionsProceedings of the National Academy of Sciences USA 104 10506CrossRefGoogle Scholar
Prinzing, A.Durka, W.Klotz, S.Bradl, R. 2001 The niche of higher plants: Evidence for phylogenetic conservatismProceedings of the Royal Society London B 268 2383CrossRefGoogle ScholarPubMed
Rausher, M. D. 2006 The Science of FlavonoidsGrotewold, E.New York, NYSpringerGoogle Scholar
Rausher, M. D. 2008 Evolutionary transitions in floral colorInternational Journal of Plant Sciences 169 7CrossRefGoogle Scholar
Ricklefs, R. E.Renner, S. S. 2000 Evolutionary flexibility and flowering plant familial diversity: A comment on Dodd, Silvertown, and ChaseEvolution 54 1061CrossRefGoogle ScholarPubMed
Riedl, R. 1975 Order in Living Organisms: A Systems Analysis of EvolutionNew York, NYWileyGoogle Scholar
Riedl, R. 1977 A systems–analytical approach to macroevolutionary phenomenaQuarterly Review of Biology 52 351CrossRefGoogle Scholar
Roy, K.Hunt, G.Jablonski, D. 2009 Phylogenetic conservatism of extinctions in marine bivalvesScience 325 733CrossRefGoogle ScholarPubMed
Sargent, R. D. 2004 Floral symmetry affects speciation rates in angiospermsProceedings of the Royal Society London B 271 603CrossRefGoogle ScholarPubMed
Schaefer, H. M.Schaefer, V.Levey, D. J. 2004 How plant–animal interactions signal new insights in communicationTrends in Ecology and Evolution 19 577CrossRefGoogle Scholar
Schiestl, F.P.Schlüter, P.M. 2009 Floral isolation, specialized pollination, and pollinator behavior in orchidsAnnual Review of Entomology 54 425CrossRefGoogle ScholarPubMed
Slowinski, J. B.Guyer, C. 1993 Testing whether certain traits have caused amplified diversification: An improved method based on a model of random speciation and extinctionAmerican Naturalist 142 1019CrossRefGoogle ScholarPubMed
Stebbins, G. L. 1952 Aridity as a stimulus to plant evolutionAmerican Naturalist 86 33CrossRefGoogle Scholar
Stebbins, G. L. 1957 Self-fertilization and population variability in the higher plantsAmerican Naturalist 91 337CrossRefGoogle Scholar
Stöcklin, J.Fischer, M. 1999 Plants with longer-lived seeds have lower local extinction rates in grassland remnants 1950–1985Oecologia 120 539Google ScholarPubMed
Takebayashi, N.Morrell, P. L. 2001 Is self-fertilization an evolutionary dead end? Revisiting an old hypothesis with genetic theories and a macroevolutionary approachAmerican Journal of Botany 88 1143CrossRefGoogle Scholar
Tiffney, B. H.Mazer, S. J. 1995 Angiosperm growth habit, dispersal and diversificationEvolutionary Ecology 9 93CrossRefGoogle Scholar
Vamosi, J. C.Vamosi, S. M. 2005 Present day risk of extinction may exacerbate the lower species richness of dioecious cladesDiversity and Distributions 11 25CrossRefGoogle Scholar
Valdespino, I. A. 1993 Flora of North America North of MexicoNew York, NYOxford University PressGoogle Scholar
Vrba, E. S.Gould, S. J. 1986 The hierarchical expansion of sorting and selection: Sorting and selection cannot be equatedPaleobiology 12 217CrossRefGoogle Scholar
Wagner, G. P.Laubichler, M. D. 2004 Rupert Riedl and the re-synthesis of evolutionary and developmental biology: Body plans and evolvabilityJournal of Experimental Zoology (Mol Dev Evol) 302B 92CrossRefGoogle Scholar
Waser, N. M. 2001 Cognitive Ecology of Pollination: Animal Behavior and Floral EvolutionChittka, L.Thomson, J. D.Cambridge, UKCambridge University PressGoogle Scholar
Waser, N. M.Price, M. V. 1981 Pollinator choice and stabilizing selection for flower color in Evolution 35 376CrossRefGoogle Scholar
Waser, N. M.Chittka, L.Price, M. V.Williams, N. M.Ollerton, J. 1996 Generalization in pollination systems, and why it mattersEcology 77 1043CrossRefGoogle Scholar
Whitney, K. D. 2009 Comparative evolution of flower and fruit morphologyProceedings of the Royal Society London B 276 2941CrossRefGoogle ScholarPubMed
Williams, G. C. 1992 Natural Selection: Domains, Levels, and ChallengesOxford, UKOxford University PressGoogle Scholar
Wilson, P.Stine, M. 1996 Floral constancy in bumblebees: Handling efficiency or perceptual conditioning?Oecologia 106 493CrossRefGoogle ScholarPubMed
Wilson, P.Thomson, J. D. 1996 Floral BiologyLloyd, D.Barrett, S. C. H.New York, NYChapman & HallGoogle Scholar
Wilson, P.Castellanos, M. C.Wolfe, A.Thomson, J. D. 2006 Plant–Pollinator Interactions from Specialization to GeneralizationWaser, N.Ollerton, J.Chicago, ILUniversity of Chicago PressGoogle Scholar
Wilson, P.Wolfe, A. D.Armbruster, W. S.Thomson, J. D. 2007 Constrained lability in floral evolution: Counting convergent origins of hummingbird pollination in and New Phytologist 176 883CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×