Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-31T15:13:12.005Z Has data issue: false hasContentIssue false

6 - Brain and Spatial Cognition in Amphibians

Stem Adaptations in the Evolution of Tetrapod Cognition

from Part I - Evolution of Learning Processes

Published online by Cambridge University Press:  26 May 2022

Mark A. Krause
Affiliation:
Southern Oregon University
Karen L. Hollis
Affiliation:
Mount Holyoke College, Massachusetts
Mauricio R. Papini
Affiliation:
Texas Christian University
Get access

Summary

This chapter offers a selective review of the spatial cognitive abilities of amphibians as manifested under natural conditions and in the laboratory, and the importance of the medial pallium, the hippocampus homologue in amphibians, for those abilities. In the field, amphibians display extraordinary navigational abilities associated with breeding behavior. In the lab, amphibians are capable of navigating to goal locations using either an egocentric turn strategy or a beacon-guidance strategy. More importantly, amphibians learn map-like representations of goal locations that resemble so-called cognitive maps, an ability supported by the medial pallium. Assuming similarity between the medial pallium of extant amphibians and the medial pallial-hippocampal homologue of the stem tetrapods, the ancestors of modern amniotes, we hypothesize that the evolution of the amniote hippocampus began with a medial pallium characterized by a relatively undifferentiated cytoarchitecture and a broad role in associative learning and memory processes, which included the map-like representation of space.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, K. (1980). Individuality in the use of orientation cues by green frogs. Animal Behaviour, 28, 413425. http://dx.doi.org/10.1016/S0003-3472(80)80050-9CrossRefGoogle Scholar
Anderson, J. S., Reisz, R. R., Scott, D., Fröbisch, N. B., & Sumida, S. S. (2008). A stem batrachian from the Early Permian of Texas and the origin of frogs and salamanders. Nature, 453, 515518. http://dx.doi.org/10.1038/nature06865Google Scholar
Bingman, V. P. (1990). Spatial navigation in birds. In Olton, D. and Kesner, R. P. (Eds.), Neurobiology of comparative cognition (pp. 423447). Erlbaum Press.Google Scholar
Bingman, V. P., Bagnoli, P., Ioalé, P., & Casini, G. (1989). Behavioral and anatomical studies of the avian hippocampus. In Chanpalay, V. and Kohler, C. (Eds.), The hippocampus: New vistas (pp. 379394). Alan R. Liss.Google Scholar
Bingman, V. P., Jechura, T., & Kahn, M. C. (2006). Behavioral and neural mechanisms of homing and migration in birds. In Brown, M. F. and Cook, R. G. (Eds.), Animal spatial cognition: Comparative, neural, and computational approaches [Online]. www.pigeon.psy.tufts.edu/asc/BingmanGoogle Scholar
Bingman, V. P., & Muzio, R. N. (2017). Reflections on the structural-functional evolution of the hippocampus: What is the big deal about a dentate gyrus? Brain, Behavior and Evolution, 90, 5361. http://dx.doi.org/10.1159/000475592Google Scholar
Bingman, V. P., Rodríguez, F., & Salas, C. (2017). The hippocampus in nonmammalian vertebrates. In Kaas, J. (Ed.), Evolution of nervous systems (pp. 479489). Academic Press.Google Scholar
Bingman, V. P., Salas, C., & Rodriguez, F. (2009). Evolution of the hippocampus. In Binder, M. D., Hirokawa, N. and Windhorst, U. (Eds.), Encyclopaedia of neuroscience (pp. 13561360). Springer-Verlag.Google Scholar
Boland, C. R. J. (2004). Introduced cane toads Bufo marinus are active nest predators and competitors of rainbow bee-eaters Merops ornatus: Observational and experimental evidence. Biological Conservation, 120, 5362. http://dx.doi.org/10.1016/j.biocon.2004.01.025Google Scholar
Brattstrom, B. H. (1990). Maze learning in the fire-bellied toad, Bombina orientalis. Journal of Herpetology, 24, 4447. http://dx.doi.org/10.2307/1564288Google Scholar
Bruce, L. L., & Neary, T. J. (1995). The limbic system of tetrapods: A comparative analysis of cortical and amygdalar populations. Brain, Behavior and Evolution, 46, 224234. http://dx.doi.org/10.1159/000113276Google Scholar
Carroll, R. L. (2009). The rise of amphibians: 365 million years of evolution. Johns Hopkins University Press.CrossRefGoogle Scholar
Cheng, K. (1986). A purely geometric module in the rat’s spatial representation. Cognition, 23, 149178. http://dx.doi.org/10.1016/0010-0277(86)90041-7CrossRefGoogle ScholarPubMed
Chivers, D. P., McCormick, M. I., Mitchell, M. D., Ramasamy, R. A., & Ferrari, M. C. O. (2014). Background level of risk determines how prey categorize predators and non-predators. Proceedings of the Royal Society B, 281, 20140355. http://dx.doi.org/10.1098/rspb.2014.0355Google Scholar
Daneri, M. F., Casanave, E. B., & Muzio, R. N. (2011). Control of spatial orientation in terrestrial toads (Rhinella arenarum). Journal of Comparative Psychology, 125, 296307. http://dx.doi.org/10.1037/a0024242Google Scholar
Daneri, M. F., Casanave, E. B., & Muzio, R. N. (2015). Use of local visual cues for spatial orientation in toads (Rhinella arenarum): The role of distance to a goal. Journal of Comparative Psychology, 129, 247255. http://dx.doi.org/10.1037/a0039461CrossRefGoogle ScholarPubMed
Daneri, M. F., Casanave, E. B., & Muzio, R. N. (In prep.) Blocking, Overshadowing and Latent Inhibition in terrestrial toads (Rhinella arenarum): Use of visual cues for orientation.Google Scholar
Daneri, M. F., & Muzio, R. N. (2013a). El aprendizaje espacial y su relevancia en anfibios [Spatial learning and its relevance in amphibians]. Revista Argentina de Ciencias del Comportamiento, 5, 3849.Google Scholar
Daneri, M. F., & Muzio, R. N. (2013b). Fenómenos de Bloqueo y Ensombrecimiento en un grupo filogenéticamente antiguo. Los anfibios [Phenomena of Blocking and Overshadowing in a phylogenetically ancient group. The amphibians]. Revista Latinoamericana de Psicología, 45, 185200.Google Scholar
Daneri, M. F., & Muzio, R. N. (In prep.). Medial Pallium lesion affects both turn and cue spatial learning in terrestrial toads (Rhinella arenarum).Google Scholar
Fischer, E. K., Roland, A. B., Moskowitz, N. A., Tapia, E. E., Summers, K., Coloma, L. A., & O’Connell, L. A. (2019). The neural basis of tadpole transport in poison frogs. Proceedings of the Royal Society B, 286, 20191084. http://dx.doi.org/10.1098/rspb.2019.1084CrossRefGoogle ScholarPubMed
Fischer, J. H., Freake, M. J., Borland, S. C., & Phillips, J. B. (2001). Evidence for the use of magnetic map information by an amphibian. Animal Behaviour, 62, 110. http://dx.doi.org/10.1006/anbe.2000.1722CrossRefGoogle Scholar
Gallistel, C. R. (1990). The organization of learning. MIT Press.Google Scholar
González, A., & López, J. M. (2002). A forerunner of septohippocampal cholinergic system is present in amphibians. Neuroscience Letters, 327, 111114. http://dx.doi.org/10.1016/S0304-3940(02)00397-XGoogle Scholar
González, A., López, J. M., Morona, R., & Moreno, N. (2017). The organization of the central nervous system of amphibians. In Kaas, J. (Ed.), Evolution of nervous systems (pp. 141167). Academic Press.Google Scholar
González, A., López, J. M., Sánchez‐Camacho, C., & Marín, O. (2002). Localization of choline acetyltransferase (ChAT) immunoreactivity in the brain of a caecilian amphibian, Dermophis mexicanus (Amphibia: Gymnophiona). Journal of Comparative Neurology, 448, 249267. http://dx.doi.org/10.1002/cne.10233Google Scholar
Grant, D., Anderson, O., & Twitty, V. (1968). Homing orientation by olfaction in newts (Taricha rivularis). Science, 160, 13541356. http://dx.doi.org/10.1126/science.160.3834.1354CrossRefGoogle ScholarPubMed
Greding, E. J. (1971). Comparative rates of learning in frogs (Ranidae) and toads (Bufonidae). Caribbean Journal of Science, 11, 203208.Google Scholar
Grisham, W., & Powers, A. (1990). Effects of dorsal and medial cortex lesions on reversal in turtles. Physiology and Behavior, 47, 4349. http://dx.doi.org/10.1016/0031-9384(90)90040-BGoogle Scholar
Herold, C., Coppola, V. J., & Bingman, V. P. (2015). The maturation of research into the avian hippocampal formation: Recent discoveries from one of the nature’s foremost navigators. Hippocampus, 25, 11931211. http://dx.doi.org/10.1002/hipo.22463CrossRefGoogle ScholarPubMed
Hodos, W., & Campbell, C. B. G. (1969). Scala naturae: Why there is no theory in comparative psychology. Psychological Review, 76, 337350. http://dx.doi.org/10.1037/h0027523Google Scholar
Ingle, D., & Sahagian, D. (1973). Solution of a spatial constancy problem by goldfish. Physiological Psychology, 1, 8384. http://dx.doi.org/10.3758/BF03326873Google Scholar
Landler, L., & Gollmann, G. (2011). Magnetic orientation of the Common Toad: Establishing an arena approach for adult anurans. Frontiers in Zoology, 8, 6. http://dx.doi.org/10.1186/1742-9994-8-6Google Scholar
Liu, Y., Day, L. B., Summers, K., & Burmeister, S. S. (2019). A cognitive map in a poison frog. Journal of Experimental Biology, 222, jeb197467. http://dx.doi.org/10.1242/jeb.197467Google Scholar
Liu, Y., Jones, C. D., Day, L. B., Summers, K., & Burmeister, S. S. (2020). Cognitive phenotype and differential gene expression in a hippocampal homologue in two species of frog. Integrative and Comparative Biology, 60(4), 10071023. https://doi.org/10.1093/icb/icaa032CrossRefGoogle Scholar
López, J. C., Broglio, C., Rodríguez, F., Thinus-Blanc, C., & Salas, C. (1999). Multiple spatial learning strategies in goldfish (Carassius auratus). Animal Cognition, 2, 109120. https://doi.org/10.1007/s100710050031Google Scholar
López, J. C., Gómez, Y., Rodríguez, F., Broglio, C., Vargas, J. P., & Salas, C. (2001). Spatial learning in turtles. Animal Cognition, 4, 4959. https://doi.org/10.1007/s100710100091Google Scholar
López, J. C., Vargas, J. P., Gomez, Y., & Salas, C. (2003). Spatial and non-spatial learning in turtles: The role of medial cortex. Behavioral Brain Research, 143, 109120. http://dx.doi.org/10.1016/S0166-4328(03)00030-5CrossRefGoogle ScholarPubMed
Lüddecke, H. (2003). Space use, cave choice and spatial learning in the dendrobatid frog Colostethus palmatus. Amphibia-Reptilia, 24, 3746. http://dx.doi.org/10.1163/156853803763806920CrossRefGoogle Scholar
MacDonald, C. J., Carrow, S., Place, R., & Eichenbaum, H. (2013). Distinct hippocampal time cell sequences represent odor memories in immobilized rats. Journal of Neuroscience, 33, 1460714616. http://dx.doi.org/10.1523/JNEUROSCI.1537-13.2013Google Scholar
Mackintosh, N. J. (2002). Do not ask whether they have a cognitive map, but how they find their way about. Psicológica, 23, 165185.Google Scholar
Marín, O., Smeets, W. J., & González, A. (1997). Distribution of choline acetyltransferase immunoreactivity in the brain of anuran (Rana perezi, Xenopus laevis) and urodele (Pleurodeles waltl) amphibians. Journal of Comparative Neurology, 382, 499534. http://dx.doi.org/10.1002/(SICI)1096-9861(19970616)382:4%3C499::AID-CNE6%3E3.0.CO;2-YGoogle Scholar
Mitchell, M. D., McCormick, M. I., Ferrari, M. C. O., & Chivers, D. P. (2011). Friend or foe? The role of latent inhibition in predator and non-predator labelling by coral reef fishes. Animal Cognition, 14, 707714. http://dx.doi.org/10.1007/s10071-011-0405-6CrossRefGoogle ScholarPubMed
Muzio, R. N., Segura, E. T., & Papini, M. R. (1993). Effects of lesions in the medial pallium on instrumental learning in the toad (Bufo arenarum). Physiology and Behavior, 54, 185188. http://dx.doi.org/10.1016/0031-9384(93)90064-MGoogle Scholar
Muzio, R. N., Segura, E. T., & Papini, M. R. (1994). Learning under partial reinforcement in the toad (Bufo arenarum): Effects of lesions in the medial pallium. Behavioral and Neural Biology, 61, 3646.CrossRefGoogle ScholarPubMed
Nadel, L. (1991). The hippocampus and space revisited. Hippocampus, 1, 221229. http://dx.doi.org/10.1002/hipo.450010302Google Scholar
Nardi, D., & Bingman, V. P. (2007). Asymmetrical participation of the left and right hippocampus for representing environmental geometry in homing pigeons. Behavioural Brain Research, 178, 160171. http://dx.doi.org/10.1016/j.bbr.2006.12.010CrossRefGoogle ScholarPubMed
Neary, T. J. (1990). The pallium of anuran amphibians. In Jones, E. G. and Peters, A. (Eds.), Cerebral cortex. Comparative structure and evolution of cerebral cortex (part 1, vol. 8A, pp. 107138). Plenum Press.Google Scholar
Newcombe, N. S., Ratliff, K. R., Shallcross, W. L., & Twyman, A. D. (2010). Young children’s use of features to reorient is more than just associative: Further evidence against a modular view of spatial processing. Developmental Science, 13, 213220. http://dx.doi.org/10.1111/j.1467-7687.2009.00877.xGoogle Scholar
Northcutt, R. G., & Kicliter, E. (1980). Organization of the amphibian telencephalon. In Ebbesson, S. O. E. (Ed.), Comparative neurology of the telencephalon (pp. 203225). Plenum.Google Scholar
Northcutt, R. G., & Ronan, M, (1992). Afferent and efferent connections of the bullfrog medial pallium. Brain Behavior and Evolution, 40, 116. http://dx.doi.org/10.1159/000113898Google Scholar
O’Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Clarendon Press.Google Scholar
Papini, M. R.; Muzio, R. N., & Segura, E. T. (1995). Instrumental learning in toads (Bufo arenarum): Reinforcer magnitude and the medial pallium. Brain, Behavior and Evolution, 46, 6171. http://dx.doi.org/10.1159/000113259Google Scholar
Pašukonis, A., Loretto, M. C., & Hödl, W. (2018). Map-like navigation from distances exceeding routine movements in the Three-striped poison frog (Ameerega trivittata). Journal of Experimental Biology, 221, jeb169714. http://dx.doi.org/10.1242/jeb.169714Google ScholarPubMed
Pašukonis, A., Trenkwalder, K., Ringler, M., Ringler, E., Mangione, R., Steininger, J., & Hödl, W. (2016). The significance of spatial memory for water finding in a tadpole-transporting frog. Animal Behaviour, 116, 8998. http://dx.doi.org/10.1016/j.anbehav.2016.02.023Google Scholar
Pašukonis, A., Warrington, I., Ringler, M., & Hödl, W. (2014). Poison frogs rely on experience to find the way home in the rainforest. Biology letters, 10, 20140642. http://dx.doi.org/10.1098/rsbl.2014.0642Google Scholar
Pecchia, T., & Vallortigara, G. (2010). Reorienting strategies in a rectangular array of landmarks by domestic chicks (Gallus gallus). Journal of Comparative Psychology, 124, 147158. http://dx.doi.org/10.1037/a0019145Google Scholar
Phillips, J. B. (1987). Laboratory studies of homing orientation in the eastern red-spotted newt, Notophthalmus viridescens. Journal of Experimental Biology, 131, 215229.Google Scholar
Phillips, J. B., Adler, K., & Borland, S. C. (1995). True navigation by an amphibian. Animal Behaviour, 50, 855858. http://dx.doi.org/10.1016/0003-3472(95)80146-4Google Scholar
Rodríguez, R., López, J. C., Vargas, J. P., Gómez, Y., Broglio, C., & Salas, C. (2002). Conservation of spatial memory function in the pallial forebrain of reptiles and ray-finned fishes. Journal of Neuroscience, 22, 28942903. http://dx.doi.org/10.1523/JNEUROSCI.22-07-02894.2002CrossRefGoogle ScholarPubMed
Sakimoto, Y., & Sakata, S. (2018). The role of the hippocampal theta rhythm in non-spatial discrimination and associative learning task. Neuroscience and Biobehavioral Reviews, 110, 9299. https://doi.org/10.1016/j.neubiorev.2018.09.016CrossRefGoogle ScholarPubMed
Salas, C., Rodríguez, F., Vargas, J. P., Durán, E., & Torres, B. (1996). Spatial learning and memory deficits alter telencephalic ablation in goldfish trained in place and turn maze procedures. Behavioral Neuroscience, 110, 965980. http://dx.doi.org/10.1037/0735-7044.110.5.965CrossRefGoogle Scholar
San Mauro, D. (2010). A multilocus timescale for the origin of extant amphibians. Molecular Phylogenetics and Evolution, 56, 554561. http://dx.doi.org/10.1016/j.ympev.2010.04.019Google Scholar
Schoch, R. R. (2014). Amphibian evolution: The life of early land vertebrates. John Wiley & Sons.Google Scholar
Sherry, D. F. (2017). Food storing and memory. In ten Cate, C. and Healy, S. D. (Eds.), Avian cognition (pp. 5274). Cambridge University Press.Google Scholar
Shishimi, A. (1985). Latent inhibition experiments with goldfish (Carassius auratus). Journal of Comparative Psychology, 99(3), 316327. https://doi.org/10.1037/0735-7036.99.3.316Google Scholar
Sinsch, U. (1987). Orientation behaviour of toads (Bufo bufo) displaced from the breeding site. Journal of Comparative Physiology A, 161, 715727. http://dx.doi.org/10.1007/BF00605013Google Scholar
Sinsch, U. (1990). Migration and orientation in anuran amphibians. Ethology Ecology & Evolution, 2, 6579. http://dx.doi.org/10.1080/08927014.1990.9525494Google Scholar
Sinsch, U. (2014). Movement ecology of amphibians: From individual migratory behaviour to spatially structured populations in heterogeneous landscapes. Canadian Journal of Zoology, 92, 491502. http://dx.doi.org/10.1139/cjz-2013-0028Google Scholar
Sinsch, U., & Kirst, C. (2016). Homeward orientation of displaced newts (Triturus cristatus, Lissotriton vulgaris) is restricted to the range of routine movements. Ethology Ecology & Evolution, 28, 312328. http://dx.doi.org/10.1080/03949370.2015.1059893CrossRefGoogle Scholar
Sotelo, M. I., Alcalá Martín, J. A., Bingman, V. P., & Muzio, R. N. (2020). On the transfer of spatial learning between geometrically different shaped environments in the terrestrial toad, Rhinella arenarum. Animal Cognition, 23, 5570. https://dx.doi.org/10.1007/s10071-019-01315-9CrossRefGoogle ScholarPubMed
Sotelo, M. I., Bingman, V. P., & Muzio, R. N. (2015). Goal orientation by geometric and feature cues: Spatial learning in the terrestrial toad Rhinella arenarum. Animal Cognition, 18, 315323. http://dx.doi.org/10.1007/s10071-014-0802-8Google Scholar
Sotelo, M. I., Bingman, V. P., & Muzio, R. N. (2017). Slope-based and geometric encoding of a goal location by the terrestrial toad (Rhinella arenarum). Journal of Comparative Psychology, 131, 362369. https://dx.doi.org/10.1037/com0000084Google Scholar
Sotelo, M. I., Bingman, V. P., & Muzio, R. N. (In prep.). The medial pallium and the spatial encoding of geometric and visual cues in the terrestrial toad, Rhinella arenarum.Google Scholar
Sotelo, M. I., Daneri, M. F., Bingman, V. P., & Muzio, R. N. (2016). Telencephalic neuronal activation associated with spatial memory in the terrestrial toad, Rhinella arenarum: Participation of the medial pallium in navigation by geometry. Brain, Behavior and Evolution, 88, 149160. https://dx.doi.org/10.1159/000447441Google Scholar
Sturz, B. R., Gurley, T., & Bodily, K. D. (2011). Orientation in trapezoid-shaped enclosures: Implications for theoretical accounts of geometry learning. Journal of Experimental Psychology: Animal Behavior Processes, 37, 246253. http://dx.doi.org/10.1037/a0021215Google Scholar
Stynoski, J. L. (2009). Discrimination of offspring by indirect recognition in an egg-feeding dendrobatid frog, Oophaga pumilio. Animal Behaviour, 78, 13511356. http://dx.doi.org/10.1016/j.anbehav.2009.09.002Google Scholar
Summers, K., & Tumulty, J. (2013). Parental care, sexual selection, and mating systems in neotropical poison frogs. In Macedo, R. H. and Machado, G. (Eds.), Sexual selection: Perspectives and models from the neotropics (pp. 289320). Elsevier Academic Press.Google Scholar
Tennant, W. A., & Bitterman, M. E. (1975). Blocking and overshadowing in two species of fish. Journal of Experimental Psychology: Animal Behavior Processes, 1, 2229. https://doi.org/10.1037/0097-7403.1.1.22Google Scholar
Twitty, V., Grant, D., & Anderson, O. (1964). Long distance homing in the newt Taricha rivularis. Proceedings of the National Academy of Sciences of the United States of America, 51, 5158. http://dx.doi.org/10.1073/pnas.51.1.51Google Scholar
Vargas, J. P., Bingman, V. P., Portavella, M., & López, J. C. (2006). Telencephalon and geometric space in goldfish. European Journal of Neuroscience, 24, 28702878. http://dx.doi.org/10.1111/j.1460-9568.2006.05174.xGoogle Scholar
Vargas, J. P., López, J. C., Salas, C., & Thinus-Blanc, C. (2004). Encoding of geometrical and featural spatial information by goldfish (Carassius auratus). Journal of Comparative Psychology, 118, 206216. http://dx.doi.org/10.1037/0735-7036.118.2.206Google Scholar
Wang, H. H., Li, L. Y., Wang, L. W., & Liang, C. C. (2007). Morphological and histological studies on the telencephalon of the salamander Onychodactylus fischeri. Neuroscience Bulletin, 23, 170174. http://dx.doi.org/10.1007/s12264-007-0025-yGoogle Scholar
Westhoff, G., & Roth, G. (2002). Morphology and projection pattern of medial and dorsal pallial neurons in the frog Discoglossus pictus and the salamander Plethodon jordani. Journal of Comparative Neurology, 445, 97121. http://dx.doi.org/10.1002/cne.10136Google Scholar
Wolach, A. H., Breuning, S. E., Roccaforte, P., & Solhkhan, N. (1977). Overshadowing and blocking in a Goldfish (Carassius auratus) respiratory conditioning situation. The Psychological Record, 27(4), 693702. https://doi.org/10.1007/bf03394492Google Scholar
Yoshida, K., Drew, M. R., Mimura, M., & Tanaka, K. F. (2019). Serotonin-mediated inhibition of ventral hippocampus required for goal-directed behavior. Nature Neuroscience, 22, 770777. http://dx.doi.org/10.1038/s41593-019-0376-5CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×