Book contents
- Frontmatter
- Contents
- Group photograph
- List of participants
- Preface
- Reviews
- 1 Equations of state in stellar structure and evolution
- 2 Equation of state of stellar plasmas
- 3 Statistical mechanics of quantum plasmas. Path integral formalism
- 4 Onsager-molecule approach to screening potentials in strongly coupled plasmas
- 5 Astrophysical consequences of the screening of nuclear reactions
- 6 Crystallization of dense binary ionic mixtures. Application to white dwarf cooling theory
- 7 Non crystallized regions of White dwarfs. Thermodynamics. Opacity. Turbulent convection
- 8 White dwarf crystallization
- 9 Gravitational collapse versus thermonuclear explosion of degenerate stellar cores
- 10 Neutron star crusts with magnetic fields
- 11 High pressure experiments for astrophysics
- 12 Equation of state of dense hydrogen and the plasma phase transition; A microscopic calculational model for complex fluids
- 13 The equation of state of fluid hydrogen at high density
- 14 A comparative study of hydrogen equations of state
- 15 Strongly coupled ionic mixtures and the H/He equation of state
- 16 White dwarf seismology: Influence of the constitutive physics on the period spectra
- 17 Helioseismology: the Sun as a strongly-constrained, weakly-coupled plasma
- 18 Transport processes in dense stellar plasmas
- 19 Cataclysmic variables: structure and evolution
- 20 Giant planet, brown dwarf, and low-mass star interiors
- 21 Searches for brown dwarfs
- 22 Jovian seismology
- Observational projects
- Posters
7 - Non crystallized regions of White dwarfs. Thermodynamics. Opacity. Turbulent convection
from Reviews
Published online by Cambridge University Press: 07 September 2010
- Frontmatter
- Contents
- Group photograph
- List of participants
- Preface
- Reviews
- 1 Equations of state in stellar structure and evolution
- 2 Equation of state of stellar plasmas
- 3 Statistical mechanics of quantum plasmas. Path integral formalism
- 4 Onsager-molecule approach to screening potentials in strongly coupled plasmas
- 5 Astrophysical consequences of the screening of nuclear reactions
- 6 Crystallization of dense binary ionic mixtures. Application to white dwarf cooling theory
- 7 Non crystallized regions of White dwarfs. Thermodynamics. Opacity. Turbulent convection
- 8 White dwarf crystallization
- 9 Gravitational collapse versus thermonuclear explosion of degenerate stellar cores
- 10 Neutron star crusts with magnetic fields
- 11 High pressure experiments for astrophysics
- 12 Equation of state of dense hydrogen and the plasma phase transition; A microscopic calculational model for complex fluids
- 13 The equation of state of fluid hydrogen at high density
- 14 A comparative study of hydrogen equations of state
- 15 Strongly coupled ionic mixtures and the H/He equation of state
- 16 White dwarf seismology: Influence of the constitutive physics on the period spectra
- 17 Helioseismology: the Sun as a strongly-constrained, weakly-coupled plasma
- 18 Transport processes in dense stellar plasmas
- 19 Cataclysmic variables: structure and evolution
- 20 Giant planet, brown dwarf, and low-mass star interiors
- 21 Searches for brown dwarfs
- 22 Jovian seismology
- Observational projects
- Posters
Summary
Abstract
The evolution of White Dwarf stars along their cooling sequences is governed not only by their thermal content, but also by the rate at which heat flows through the external, partially degenerate and non-isothermal layers. In particular, cooling is found to be largely influenced both by the optical atmosphere, and by the convective envelope. The first one, in fact, determines the internal density stratification, down to the point at which electron degeneracy takes over, while the second one affects the temperature stratification in the same layers. The reliability of the present generation of models of White Dwarf envelopes is discussed, on the grounds of the main physical inputs (thermodynamics, opacity, convection theory), for both H-rich and He-rich surface chemical compositions. The conclusion is that, below LogL/L⊙ ≤ –3, we can build little more than test models.
L'évolution des naines blanches le long de leur séquence de refroidissement est gouvernée non seulement pas leur contenu thermique, mais aussi par la vitesse à laquelle la chaleur s'échappe à travers les couches externes, non-isothermes et partiellement dégénérées. En particulier, le refroidissement est largement influencé à la fois par l'atmosphére optique et par l'enveloppe convective. La premiére détermine la stratification interne en densité jusqu'à ce que la dégénérescence électronique prenne le dessus, alors que la seconde affecte la stratification en température dans les mêmes couches.
- Type
- Chapter
- Information
- The Equation of State in AstrophysicsIAU Colloquium 147, pp. 144 - 160Publisher: Cambridge University PressPrint publication year: 1994
- 1
- Cited by