Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-03T13:39:36.114Z Has data issue: false hasContentIssue false

2 - Estimation of Environmental Releases of Radioactive Materials

from Part I - Transport of Radioactive Materials in the Environment

Published online by Cambridge University Press:  16 August 2019

Teruyuki Nakajima
Affiliation:
University of Tokyo
Toshimasa Ohara
Affiliation:
National Institute for Environmental Studies, Japan
Mitsuo Uematsu
Affiliation:
University of Tokyo
Yuichi Onda
Affiliation:
University of Tsukuba, Japan
Get access

Summary

The Fukushima Daiichi Nuclear Power Station (FDNPS) accident in Japan on 11 March 2011, which was triggered by a magnitude 9.0 earthquake that resulted in a tsunami, caused a month-long discharge of radioactive materials into the atmosphere. However, in the first stage of the accident, only monitoring cars near the FDNPS could collect monitoring data because of damage to the monitoring posts and stack monitor. The limited survey data from the monitoring cars from 12–13 March 2011 (NISA, 2011) showed that radioactive caesium and iodine were already detected at Okuma-machi and Namie-machi, close to the FDNPS around 8:00 JST on 12 March due to leakage from the containment vessel. In addition, increased air dose rates due to the deposition of radionuclides discharged by a hydrogen explosion at unit 1 were observed north of the FDNPS on 13 March.

Type
Chapter
Information
Environmental Contamination from the Fukushima Nuclear Disaster
Dispersion, Monitoring, Mitigation and Lessons Learned
, pp. 50 - 61
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aoyama, M., Kajino, M., Tanaka, T., et al. (2015). 134Cs and 137Cs in the North Pacific Ocean derived from the March 2011 TEPCO Fukushima Dai‑ichi Nuclear Power Plant accident, Japan. Part two: estimation of 134Cs and 137Cs inventories in the North Pacific Ocean. J. Oceanogr., 72, 5365, doi:10.1007/s10872-015-0332-2.CrossRefGoogle Scholar
Bailly du Bois, P., Laguionie, P., Boust, D., et al. (2012). Estimation of marine source-term following Fukushima Dai-ichi accident. J. Environ. Radioact., 114, 29, doi:10.1016/j.jenvrad.2011.11.015.CrossRefGoogle ScholarPubMed
Buesseler, K., Aoyama, M. and Fukasawa, M. (2011). Impacts of the Fukushima nuclear power plants on marine radioactivity. Environ. Sci. Technol., 45, 9931–5, doi:10.1021/es202816c.Google Scholar
Chino, M., Nakayama, H., Nagai, H., et al. (2011). Preliminary estimation of release amounts of 131I and 137Cs accidentally discharged from the Fukushima Daiichi nuclear power plant into atmosphere. J. Nucl. Sci. Technol., 48(7), 1129–34.CrossRefGoogle Scholar
Chino, M., Terada, H., Nagai, H., et al. (2016). Utilization of 134Cs/137Cs in the environment to identify the reactor units that caused atmospheric releases during the Fukushima Daiichi accident. Sci. Rep., 6, 31376, doi:10.1038/srep31376.Google Scholar
Dietze, H. and Kriest, I. (2012). 137Cs off Fukushima Dai-ichi, Japan: model based estimates of dilution and fate. Ocean Sci., 8, 319–32, doi:10.5194/os-8-319-2012.CrossRefGoogle Scholar
Estournel, C., Bosc, E., Bocquet, M., et al. (2012). Assessment of the amount of Cesium-137 released into the Pacific Ocean after the Fukushima accident and analysis of its dispersion in Japanese coastal waters. J. Geophys. Res. Oceans, 117, C11014, doi:10.1029/2012JC007933.Google Scholar
JAEA (2012). ‘Reconstruction of Atmospheric Release and Dispersion Processes’, JAEA workshop, Tokyo (6 March 2012). http://bit.ly/2Vo00Lf (accessed 19 September 2018).Google Scholar
Japanese Government (2011). Report of Japanese Government to the IAEA Ministerial Conference on Nuclear Safety: the accident at TEPCO’s Fukushima nuclear power stations. http://bit.ly/2VkB4nU (accessed 19 September 2018).Google Scholar
Kanda, J. (2013). Continuing 137Cs release to the sea from the Fukushima Dai-ichi Nuclear Power Plant through 2012. Biogeosciences, 10(9), 6107–13, doi:10.5194/bg-10-6107-2013.Google Scholar
Katata, G., Ota, M., Terada, H., Chino, M. and Nagai, H. (2012). Atmospheric discharge and dispersion of radionuclides during the Fukushima Dai-ichi Nuclear Power Plant accident, Part I: source term estimation and local-scale atmospheric dispersion in early phase of the accident. J. Environ. Radioact., 109, 103–13.Google Scholar
Katata, G., Chino, M., Kobayashi, T., et al. (2015). Detailed source term estimation of the atmospheric release for the Fukushima Daiichi Nuclear Power Station accident by coupling simulations of an atmospheric dispersion model with an improved deposition scheme and oceanic dispersion model. Atmos. Chem. Phys., 15, 1029–70.CrossRefGoogle Scholar
Kawamura, H., Kobayashi, T., Furuno, A., et al. (2011). Preliminary numerical experiments on oceanic dispersion of 131I and 137Cs discharged into the ocean because of the Fukushima Daiichi nuclear power plant disaster. J. Nucl. Sci. Technol., 48(11), 1349–56, doi:80/18811248.2011.9711826.CrossRefGoogle Scholar
Kobayashi, T., Nagai, H., Chino, M. and Kawamura, H. (2013). Source term estimation of atmospheric release due to the Fukushima Dai-ichi Nuclear Power Plant accident by atmospheric and oceanic dispersion simulations. J. Nucl. Sci. Technol., 50, 255–64.Google Scholar
Miyazawa, Y., Masumoto, Y., Varlamov, S. M., et al. (2013). Inverse estimation of source parameters of oceanic radioactivity dispersion models associated with the Fukushima accident. Biogeosciences, 10, 2349–63, doi:10.5194/bg-10-2349-2013.CrossRefGoogle Scholar
NISA (2011). Results of the emergency environmental monitoring around TEPCO’s Fukushima Daiichi Nuclear Power Station and Fukushima Daini Nuclear Power Station. http://bit.ly/2VpUyHJ (accessed 19 September 2018).Google Scholar
Rypina, I. I., Jayne, S. R., Yoshida, S., et al. (2013). Short-term dispersal of Fukushima-derived radionuclides off Japan: modeling efforts and model–data intercomparison. Biogeosciences, 10(7), 4973–90, doi:10.5194/bg-10-4973-2013.Google Scholar
Saunier, O., Mathieu, A., Didier, D., et al. (2013). An inverse modeling method to assess the source term of the Fukushima Nuclear Power Plant accident using gamma dose rate observations. Atmos. Chem. Phys., 13, 11403–21.CrossRefGoogle Scholar
Stohl, A., Seibert, P., Wotawa, G., et al. (2012). Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant: determination of the source term, atmospheric dispersion, and deposition. Atmos. Chem. Phys., 12, 2313–43.CrossRefGoogle Scholar
TEPCO (2012). The Fukushima Nuclear Accidents Investigation Report. http://bit.ly/2VxgfWH (accessed 19 September 2018).Google Scholar
Terada, H. and Chino, M. (2008). Development of an atmospheric dispersion model for accidental discharge of radionuclides with the function of simultaneous prediction for multiple domains and its evaluation by application to the Chernobyl nuclear accident. J. Nucl. Sci. Technol., 45, 920–31.CrossRefGoogle Scholar
Terada, H., Katata, G., Chino, M. and Nagai, H. (2012). Atmospheric discharge and dispersion of radionuclides during the Fukushima Dai-ichi Nuclear Power Plant accident, Part II: verification of the source term and analysis of regional-scale atmospheric dispersion. J. Environ. Radioactiv., 112, 141–54.CrossRefGoogle ScholarPubMed
Tsumune, D., Tsubono, T., Aoyama, M. and Hirose, K. (2012). Distribution of oceanic 137Cs from the Fukushima Dai-ichi Nuclear Power Plant simulated numerically by a regional ocean model. J. Environ. Radioact., 111, 100–8, doi:10.1016/j.jenvrad.2011.10.007.Google Scholar
Tsumune, D., Tsubono, T., Aoyama, M., et al. (2013). One-year, regional-scale simulation of 137Cs radioactivity in the ocean following the Fukushima Dai-ichi Nuclear Power Plant accident. Biogeosciences, 10(8), 5601–17, doi:10.5194/bg-10-5601-2013.Google Scholar
UNSCEAR (2014). Levels and effects of radiation exposure due to the nuclear accident after the 2011 great east-Japan earthquake and tsunami. In Effects and Risks of Ionizing Radiation. UNSCEAR 2013 Report, Vol. 1. New York: United Nations.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×