Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-15T15:38:21.696Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  12 June 2019

Mahendra K. Verma
Affiliation:
Indian Institute of Technology, Kanpur
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Energy Transfers in Fluid Flows
Multiscale and Spectral Perspectives
, pp. 508 - 526
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adzhemyan, L., Ts, Nikolai V., Antonov, and Alexander N., Vasiliev. 1999. Field Theoretic Renormalization Group in Fully Developed Turbulence. CRC Press.Google Scholar
Ahlers, Guenter, Siegfried, Grossmann, and Detlef, Lohse. 2009. “Heat Transfer and Large-scale Dynamics in Turbulent Rayleigh-Bénard Convection.Reviews of Modern Physics 81 (2): 503.CrossRefGoogle Scholar
Alam, Shadab, Anirban, Guha, and Mahendra K., Verma. 2018. “Revisiting Bolgiano-Obukhov Scaling for Stably Stratiéd Turbulence.” arXiv preprint arXiv:1811.12848.
Alexakis, Alexandros, and Luca, Biferale. 2018. “Cascades and Transitions in Turbulent Flows.Physics Reports 767-769: 1.Google Scholar
Alexakis, Alexandros, Pablo D., Mininni, and Annick, Pouquet. 2005a. “Imprint of Large-scale Flows on Turbulence.Physical Review Letters 95 (26): 264503.CrossRefGoogle Scholar
Alexakis, Alexandros, Pablo D., Mininni, and Annick, Pouquet. 2005b. “Shell-toshell Energy Transfer in Magnetohydrodynamics. I. Steady State Turbulence.Physical Review E 72 (4): 046301.CrossRefGoogle Scholar
Alexakis, Alexandros, Pablo D., Mininni, and Annick, Pouquet. 2007. “Turbulent Cascades, Transfer, and Scale Interactions in Magnetohydrodynamics.New Journal of Physics 9 (8): 298.CrossRefGoogle Scholar
Amit, Hagay, and Peter, Olson. 2010. “A Dynamo Cascade Interpretation of the Geomagnetic Dipole Decrease.Geophysical Journal International 181 (3): 1411-27.Google Scholar
Arnold, Vladimir I. 1989. Mathematical Methods of Classical Mechanics. 2nd edn. New York: Springer-Verlag.CrossRefGoogle Scholar
Avinash, V., Mahendra K., Verma, and Amar V., Chandra. 2006. “Field-theoretic Calculation of Kinetic Helicity Flux.Pramana 66 (2): 447-53.CrossRefGoogle Scholar
Basu, Abhik, Anirban, Sain, Sujan K., Dhar, and Rahul, Pandit. 1998. “Multiscaling in Models of Magnetohydrodynamic Turbulence.Physical Review Letters 81 (13): 2687.CrossRefGoogle Scholar
Batchelor, George Keith. 1953. The Theory of Homogeneous Turbulence. Cambridge University Press.Google Scholar
Batchelor, George K. 1959. “Small-scale Variation of Convected Quantities Like Temperature in Turbulent Fluid Part 1. General Discussion and the Case of Small Conductivity.Journal of Fluid Mechanics 5 (1): 113-33.Google Scholar
Batchelor, G. K., I. D., Howells, and A. A., Townsend. 1959. “Small-scale Variation of Convected Quantities Like Temperature in Turbulent Fluid Part 2. The Case of Large Conductivity.Journal of Fluid Mechanics 5 (1): 134-39.Google Scholar
Benzi, SC Roberto, and Emily, Ching. 2018. “Polymers in Fluid Flows.Annual Review of Condensed Matter Physics 9: 163-181.CrossRefGoogle Scholar
Beresnyak, Andrey. 2011. “Spectral Slope and Kolmogorov Constant of MHD Turbulence.Physical Review Letters 106 (7): 075001.CrossRefGoogle ScholarPubMed
Berhanu, Michaél, Gautier, Verhille, Jean, Boisson, Basile, Gallet, Christophe, Gissinger, Stéphan, Fauve, Nicolas, Mordant et al. 2010. “Dynamo Regimes and Transitions in the VKS Experiment.The European Physical Journal B 77 (4): 459-468.CrossRefGoogle Scholar
Bhattacharya, Shashwat, Ambrish, Pandey, Abhishek, Kumar, and Mahendra K., Verma. 2018a. “Complexity of Viscous Dissipation in Turbulent Thermal convection.Physics of Fluids 30 (3): 031702.CrossRefGoogle Scholar
Bhattacharya, Shashwat, Shubhadeep, Sadhukhan, Anirban, Guha, and Mahendra K., Verma. 2018b. “Structure Functions of Turbulent Thermal Convection.” arXiv: 1903.00871.
Biferale, Luca. 2003. “Shell Models of Energy Cascade in Turbulence.Annual Review of Fluid Mechanics 35 (1): 441-68.CrossRefGoogle Scholar
Biferale, L., S., Musacchio, and F., Toschi. 2013. “Split Energy-Helicity Cascades in Three-dimensional Homogeneous and Isotropic Turbulence.Journal of Fluid Mechanics 730: 309-27.CrossRefGoogle Scholar
Biferale, Luca, Fabio, Bonaccorso, Irene M., Mazzitelli, Michel, AT van Hinsberg, Lanotte, Alessandra S., Stefano, Musacchio, Prasad, Perlekar, and Federico, Toschi. 2016. “Coherent Structures and Extreme Events in Rotating Multiphase Turbulent Flows.Physical Review X 6 (4): 041036.CrossRefGoogle Scholar
Biskamp, D., E., Schwarz, and James F., Drake. 1996. “Two-dimensional Electron Magnetohydrodynamic Turbulence.Physical Review Letters 76 (8): 1264.CrossRefGoogle ScholarPubMed
Biskamp, Dieter. 2003. Magnetohydrodynamic Turbulence. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Biskamp, Dieter, and Wolf-Christian, Müller. 2000. “Scaling Properties of Threedimensional Isotropic Magnetohydrodynamic Turbulence.Physics of Plasmas 7 (12): 4889-4900.CrossRefGoogle Scholar
Biskamp, D., E., Schwarz, A., Zeiler, A., Celani, and J. F., Drake. 1999. “Electron Magnetohydrodynamic Turbulence.Physics of Plasmas 6 (3): 751-58.CrossRefGoogle Scholar
Bodenschatz, Eberhard, Werner, Pesch, and Guenter, Ahlers. 2000. “Recent Developments in Rayleigh-Bénard Convection.Annual Review of Fluid Mechanics 32 (1): 709-78.CrossRefGoogle Scholar
Boffetta, Guido, and Robert E., Ecke. 2012. “Two-dimensional Turbulence.Annual Review of Fluid Mechanics 44 (1): 427-51.CrossRefGoogle Scholar
Boldyrev, Stanislav. 2006. “Spectrum of Magnetohydrodynamic Turbulence.Phys. Rev. Lett., 96: 115002.CrossRefGoogle ScholarPubMed
Bolgiano Jr, R. 1959. “Turbulent Spectra in a Stably Stratified Atmosphere.Journal of Geophysical Research 64 (12): 2226-29.CrossRefGoogle Scholar
Boyd, John P. 2003. Chebyshev and Fourier Spectral Methods. 2nd Revised edn. New York: Dover Publications.Google Scholar
Brachet, Marc. 2000. “A Primer in Classical Turbulence Theory.” In Instabilities and Nonequilibrium Structures VI, pp. 5-34. Dordrecht: Springer.Google Scholar
Brandenburg, Axel. 2001. “The Inverse Cascade and Nonlinear Alpha-effect in Simulations of Isotropic Helical Hydromagnetic Turbulence.The Astrophysical Journal 550 (2): 824.CrossRefGoogle Scholar
Brandenburg, Axel, and Tina, Kahniashvili. 2017. “Classes of Hydrodynamic and Magnetohydrodynamic Turbulent Decay.Physical Review Letters 118 (5): 055102.CrossRefGoogle ScholarPubMed
Brandenburg, Axel, and Kandaswamy, Subramanian. 2005. “Astrophysical Magnetic Fields and Nonlinear Dynamo Theory.Physics Reports 417 (1-4): 1-209.CrossRefGoogle Scholar
Brandenburg, Axel, Kandaswamy, Subramanian, André Balogh, and Melvyn L. Goldstein. 2011. “Scale Dependence of Magnetic Helicity in the Solar Wind.The Astrophysical Journal 734 (1): 9.CrossRefGoogle Scholar
Canuto, Claudio, Yousuff, Hussaini, Alfio, Quarteroni, and Thomas, Zang. 1988. Spectral Methods in Fluid Dynamics. Berlin Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
Cardin, Philippe, and L. G., Cugliandolo. 2011. Dynamos: Lecture Notes of the Les Houches Summer School 2007. Vol. 88. Elsevier.
Chakrabarti, Bikas K., Anirban, Chakraborti, Satya R., Chakravarty, and Arnab, Chatterjee. 2013. Econophysics of Income and Wealth Distributions. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Chandra, Mani, and Mahendra K., Verma. 2011. “Dynamics and Symmetries of Flow Reversals in Turbulent Convection.Physical Review E 83 (6): 067303.CrossRefGoogle ScholarPubMed
Chandra, Mani, and Mahendra K., Verma. 2013. “Flow Reversals in Turbulent Convection via Vortex Reconnections.Physical Review Letters 110 (11): 114503.CrossRefGoogle ScholarPubMed
Chandrasekhar, Subrahmanyan. 2013. Hydrodynamic and Hydromagnetic Stability. Oxford: Oxford University Press.Google Scholar
Chatterjee, Anando G., Mahendra K., Verma, Abhishek, Kumar, Ravi, Samtaney, Bilel, Hadri, and Rooh, Khurram. 2018. “Scaling of a Fast Fourier Transform and a Pseudo-spectral Fluid Solver up to 196608 cores.Journal of Parallel and Distributed Computing 113: 77-91.CrossRefGoogle Scholar
Chillà, F., and J., Schumacher. 2012. “New Perspectives in Turbulent Rayleigh- Bénard Convection.The European Physical Journal E 35 (7): 58.CrossRefGoogle ScholarPubMed
Cho, Jungyeon. 2016. “Forward and Inverse Cascades in EMHD Turbulence.In Journal of Physics: Conference Series, 719 (1): 012001. IOP Publishing.Google Scholar
Choudhuri, Arnab Rai. 1998. The Physics of Fluids and Plasmas: An Introduction for Astrophysicists. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Cowling, T. G. 1976. Magnetohydrodynamics. London: Adam Hilger.Google Scholar
Craya, Antoine. 1958. Contribution à l'analyse de la turbulence associée á des vitesses moyennes. Ph.D. thesis, Université de Granoble.
Cross, Michael, and Pierre C., Hohenberg. 1993. “Pattern Formation Outside of Equilibrium.Reviews of Modern Physics 65 (3): 851.CrossRefGoogle Scholar
Cross, Michael, and Henry, Greenside. 2009. Pattern Formation and Dynamics in Nonequilibrium Systems. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Dallas, Vassilios, Stephan, Fauve, and Alexandros, Alexakis. 2015. “Statistical Equilibria of Large Scales in Dissipative Hydrodynamic Turbulence.Physical Review Letters 115 (20): 204501.CrossRefGoogle ScholarPubMed
Dar, Gaurav, Mahendra K., Verma, and Vinayak, Eswaran. 2001. “Energy Transfer in Two-dimensional Magnetohydrodynamic Turbulence: Formalism and Numerical Results.Physica D: Nonlinear Phenomena 157 (3): 207-25.CrossRefGoogle Scholar
Das, Amita, Sharad K., Yadav, Predhiman, Kaw, and Sudip, Sengupta. 2011Collisionless Stopping of Electron Current in an Inhomogeneous Electron Magnetohydrodynamics Plasma.Pramana 77 (5): 949-57.CrossRefGoogle Scholar
Davidson, Peter Alan. 2004. Turbulence: An Introduction for Scientists and Engineers. Oxford: Oxford University Press.Google Scholar
Davidson, Peter Alan. 2013. Turbulence in Rotating, Stratified and Electrically Conducting Fluids. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Davidson, Peter Alan. 2017. An Introduction to Magnetohydrodynamics. Second edn. Cambridge: Cambridge University Press.Google Scholar
De Gennes, Pierre-Gilles. 1979. Scaling Concepts in Polymer Physics. Cornell University Press.Google Scholar
Debliquy, Olivier, Mahendra K., Verma, and Daniele, Carati. 2005. “Energy Fluxes and Shell-to-shell Transfers in Three-dimensional Decaying Magnetohydrodynamic Turbulence.Physics of Plasmas 12 (4): 042309.CrossRefGoogle Scholar
Ditlevsen, Peter D. 2010. Turbulence and Shell Models. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Dobrowolny, M., A., Mangeney, and P., Veltri. 1980. “Fully Developed Anisotropic Hydromagnetic Turbulence in Interplanetary Space.Physical Review Letters 45 (2): 144.CrossRefGoogle Scholar
Domaradzki, J. Andrzej. 1992. “Nonlocal Triad Interactions and the Dissipation Range of Isotropic Turbulence.Physics of Fluids A: Fluid Dynamics 4 (9): 2037-45.CrossRefGoogle Scholar
Domaradzki, J. Andrzej, and Robert S., Rogallo. 1990. “Local Energy Transfer and Nonlocal Interactions in Homogeneous, Isotropic Turbulence.Physics of Fluids A: Fluid Dynamics 2 (3): 413-26.CrossRefGoogle Scholar
Domaradzki, J. Andrzej, Bogdan, Teaca, and Daniele, Carati. 2009. “Locality Properties of the Energy Flux in Turbulence.Physics of Fluids 21 (2): 025106.CrossRefGoogle Scholar
Eyink, Gregory L., and Hussein, Aluie. 2009. “Localness of Energy Cascade in Hydrodynamic Turbulence. I. Smooth Coarse Graining.Physics of Fluids 21 (11): 115107.CrossRefGoogle Scholar
Falkovich, Gregory. 1994. “Bottleneck Phenomenon in Developed Turbulence.Physics of Fluids 6 (4): 1411-14.CrossRefGoogle Scholar
Falkovich, Gregory, K., Gawedzki, and Massimo, Vergassola. 2001. “Particles and Fields in Fluid Turbulence.Reviews of Modern Physics 73 (4): 913.CrossRefGoogle Scholar
Ferziger, Joel H, and Milovan, Peric. 2001. Computational Methods for Fluid Dynamics. 3 edn. Berlin Heidelberg: Springer-Verlag.Google Scholar
Fjørtoft, Ragnar. 1953. “On the Changes in the Spectral Distribution of Kinetic Energy for Two-dimensional, Nondivergent Flow.Tellus 5 (3): 225-30.CrossRefGoogle Scholar
Fournier, J. D., and Uriel, Frisch. 1978. “D-dimensional Turbulence.Phys. Rev. A, 17 (2): 747-62.CrossRefGoogle Scholar
Fouxon, A., and V., Lebedev. 2003. “Spectra of Turbulence in Dilute Polymer Solutions.Physics of Fluids 15 (7): 2060-72.CrossRefGoogle Scholar
Frisch, Uriel. 1995. Turbulence: The Legacy of A. N. Kolmogorov. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Frisch, Uriel, and G., Parisi. 1985. On the Singularity Structure of Fully Developed Turbulence. In Turbulence and Predictability in Geophysical uid Dynamics and Climate Dynamics.
Frisch, Uriel, Pierre-Louis, Sulem, and Mark, Nelkin. 1978. “A Simple Dynamical Model of Intermittent Fully Developed Turbulence.Journal of Fluid Mechanics 87 (4): 719-36.CrossRefGoogle Scholar
Gailitis, Agris, Gunter, Gerbeth, Thomas, Gundrum, Olgerts, Lielausis, Ernests, Platacis, and Frank, Stefani. 2008. “History and Results of the Riga Dynamo Experiments.C. R. Physique, 9 (7): 721-28.CrossRefGoogle Scholar
Galtier, Sébastien. 2003. “Weak Inertial-wave Turbulence Theory.Physical Review E 68 (1): 015301.CrossRefGoogle ScholarPubMed
Galtier, Sébastien, and Supratik, Banerjee. 2011. “Exact Relation for Correlation Functions in Compressible Isothermal Turbulence.Phys. Rev. Lett., 96, 134501.CrossRefGoogle Scholar
Galtier, Sébastien, Sergei V., Nazarenko, Alan C., Newell, and Annick G., Pouquet. 2000. “A Weak Turbulence Theory for Incompressible Magnetohydrodynamics.J. Plasma Phys., 63 (Jan.): 447-88.CrossRefGoogle Scholar
Getling, Alexander V. 1998. Rayleigh-Bnard Convection: Structures and Dynamics. Singapore: World Scientific.CrossRefGoogle Scholar
Girimaji, Sharath S, and Ye, Zhou. 1995. “Spectrum and Energy Transfer in Steady Burgers Turbulence.Phys. Lett. A, 202 (4): 279-87.CrossRefGoogle Scholar
Goldreich, P., and S., Sridhar. 1995. “Toward a Theory of Interstellar Turbulence. 2: Strong Alfvenic Turbulence.The Astrophysical Journal 438: 763-75.CrossRefGoogle Scholar
Goldstein, Melvyn L., D. Aaron, Roberts, and W. H., Matthaeus. 1995. “Magnetohydrodynamic Turbulence in the Solar Wind.Annual Review of Astronomy and Astrophysics 33 (1): 283-325.CrossRefGoogle Scholar
Gotoh, T., P. K., Yeung, P. A., Davidson, Y., Kaneda, and K. R., Sreenivasan. 2013. “Passive Scalar Transport in Turbulence: A Computational Perspective.” In Ten Chapters in Turbulence 87-131.CrossRef
Gotoh, Toshiyuki, Takeshi, Watanabe, and Hideaki, Miura. 2014. “Spectrum of Passive Scalar at Very High Schmidt Number in Turbulence.Plasma and Fusion Research, 9: 3401019.CrossRefGoogle Scholar
Greenspan, H. P. 1968. The Theory of Rotating Fluids. Cambridge: Cambridge University Press.Google Scholar
Gupta, Akansha, Rohith, Jayaram, Anando, Chatterjee, Shubhadeep, Shadhukhan, Ravi, Samtaney, and Mahendra K., Verma. 2019. “Energy and Enstrophy Spectra and Fluxes for the Inertial-dissipation Range of Two Dimensional Turbulence.” ArXiv: 1902.03572.
Herring, J. R. 1974. “Approach of Axisymmetric Turbulence to Isotropy.Physics of Fluids 17 (5): 859-72.Google Scholar
Hoyle, Rebecca. 2006. Pattern Formation: An Introduction to Methods. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Iovieno, M, Gallana, L, Fraternale, F, Richardson, J D, Opher, M, and Tordella, D. 2015. “Cross and Magnetic Helicity in the Outer Heliosphere from Voyager 2 Observations.Eur. J. Mech. B. Fluids, 55 (Part 2): 394-401.Google Scholar
Iroshnikov, P S. 1964. “Turbulence of a Conducting Fluid in a Strong Magnetic Field.Soviet Astronomy, 7: 566-71.Google Scholar
Jones, Chris A. 2008. “Dynamo theory.In Les Houches Vol. 88, Dynamo. Elsevier.CrossRefGoogle Scholar
Kalelkar, Chirag, Rama, Govindarajan, and Rahul, Pandit. 2005. “Drag Reduction by Polymer Additives in Decaying Turbulence.Physical Review E 72 (1): 017301.CrossRefGoogle ScholarPubMed
Kessar, Mouloud, Franck, Plunian, Rodion, Stepanov, and Guillaume, Balarac. 2015. “Non-Kolmogorov Cascade of Helicity-driven Turbulence.Physical Review E 92 (3): 031004.CrossRefGoogle ScholarPubMed
Kida, Shigeo. 1979. “Asymptotic Properties of Burgers Turbulence.Journal of Fluid Mechanics 93 (2): 337-77.CrossRefGoogle Scholar
Knaepen, Bernard, and René, Moreau. 2008. “Magnetohydrodynamic Turbulence at Low Magnetic Reynolds Number.Annu. Rev. Fluid Mech. 40: 25-45.CrossRefGoogle Scholar
Knobloch, E. 1992. “Onset of Zero Prandtl Number Convection.Journal de Physique II 2 (5): 995-99.CrossRefGoogle Scholar
Kolmogorov, Andrey Nikolaevich. 1941a. “Dissipation of Energy in Locally Isotropic Turbulence.Dokl Acad Nauk SSSR, 32 (1): 16-18.Google Scholar
Kolmogorov, Andrey Nikolaevich. 1941bOn the Degeneration of Isotropic Turbulence in an Incompressible Viscous Fluid.Dokl. Akad. Nauk SSSR, 31: 319-23.Google Scholar
Kolmogorov, Andrey Nikolaevich. 1941c. “The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Numbers.Dokl Acad Nauk SSSR, 30 (4): 301-05.Google Scholar
Kolmogorov, Andrey Nikolaevich. 1962. “A Refinement of Previous Hypotheses Concerning the Local Structure of Turbulence in a Viscous Incompressible Fluid at High Reynolds Number.Journal of Fluid Mechanics 13 (1): 82-85.CrossRefGoogle Scholar
Kraichnan, Robert H. 1959. “The Structure of Isotropic Turbulence at Very High Reynolds Numbers.Journal of Fluid Mechanics 5 (4): 497-543.CrossRefGoogle Scholar
Kraichnan, Robert H. 1964. “Kolmogorov's Hypotheses and Eulerian Turbulence Theory.Physics of Fluids 7 (11): 1723-34.Google Scholar
Kraichnan, Robert H. 1965. “Inertial-range Spectrum of Hydromagnetic Turbulence.Physics of Fluids 8 (7): 1385-87.Google Scholar
Kraichnan, Robert H. 1967. “Inertial Ranges in Two-dimensional Turbulence.Physics of Fluids 10 (7): 1417-23.Google Scholar
Kraichnan, Robert H. 1968. “Small-scale Structure of a Scalar Field Convected by Turbulence.Physics of Fluids 11 (5): 945-53.Google Scholar
Krause, F, and K.-H., Rädler. 1980. Mean-Field Magnetohydrodynamics and Dynamo Theory. Oxforc: Pergamon Press.Google Scholar
Kreyszig, Erwin, Herbert, Kreyszig, and Edward J., Norminton. 2011. Advanced Engineering Mathematics. 10th edn. New York: Wiley & Sons.Google Scholar
Krstulovic, G., P. D., Mininni, M. E., Brachet, and A., Pouquet. 2009. “Cascades, Thermalization, and Eddy Viscosity in Helical Galerkin Truncated Euler Flows.Physical Review E 79 (5): 056304.CrossRefGoogle ScholarPubMed
Kumar, Abhishek, and Mahendra K., Verma. 2015. “Shell Model for Buoyancydriven Turbulence.Physical Review E 91 (4): 043014.CrossRefGoogle ScholarPubMed
Kumar, Abhishek, and Mahendra K., Verma. 2018. “Applicability of Taylor's Hypothesis in Thermally Driven Turbulence.Royal Society Open Science 5 (4): 172152.CrossRefGoogle ScholarPubMed
Kumar, Abhishek, Anando G., Chatterjee, and Mahendra K., Verma. 2014a. “Energy Spectrum of Buoyancy-driven Turbulence.Physical Review E 90 (2): 023016.CrossRefGoogle Scholar
Kumar, Rohit, and Mahendra K., Verma. 2017. “Amplification of Large-scale Magnetic Field in Nonhelical Magnetohydrodynamics.Physics of Plasmas 24 (9): 092301.CrossRefGoogle Scholar
Kumar, Rohit, Mahendra K., Verma, and Ravi, Samtaney. 2014b. “Energy Transfers and Magnetic Energy Growth in Small-scale Dynamo.EPL (Europhysics Letters) 104 (5): 54001.CrossRefGoogle Scholar
Kumar, Rohit, Mahendra K., Verma, and Ravi, Samtaney. 2015. “Energy Transfers in Dynamos with Small Magnetic Prandtl Numbers.Journal of Turbulence 16 (11): 1114-34.CrossRefGoogle Scholar
Kundu, Pijush K, Ira M., Cohen, and David R., Dowling. 2015. Fluid Mechanics. 6th edn. San Diego: Academic Press.Google Scholar
Landau, Lev Davidovich, and Evgeny Mikhailovich, Lifshitz. 1976. Mechanics. 3rd edn. Course of Theoretical Physics. Oxford: Elsevier.Google Scholar
Landau, Lev Davidovich, and Evgeny Mikhailovich, Lifshitz. 1987. Fluid Mechanics. 2nd edn. Course of Theoretical Physics. Oxford: Elsevier.Google Scholar
Lesieur, Marcel. 2008. Turbulence in Fluids. Dordrecht: Springer-Verlag.CrossRefGoogle Scholar
Leslie, D. C. 1973. Developments in the Theory of Turbulence. Oxford: Clarendon Press.Google Scholar
Lin, Bin-Shei, Chien C., Chang, and Chi-Tzung, Wang. 2000. “Renormalization Group Analysis for Thermal Turbulent Transport.Physical Review E 63 (1): 016304.CrossRefGoogle ScholarPubMed
Lindborg, Erik. 2006. “The Energy Cascade in a Strongly Stratified Fluid.Journal of Fluid Mechanics 550: 207-42.CrossRefGoogle Scholar
Lohse, Detlef, and Ke-Qing, Xia. 2010. “Small-scale Properties of Turbulent Rayleigh-Bénard Convection.Annual Review of Fluid Mechanics 42: 335-64.CrossRefGoogle Scholar
L'vov, Victor S. 1991. “Spectra of Velocity and Temperature Fluctuations with Constant Entropy Flux of Fully Developed Free-convective Turbulence.Physical Review Letters 67 (6): 687.CrossRefGoogle ScholarPubMed
L'vov, Victor S., and Gregory E., Falkovich. 1992. “Conservation Laws and Two- ux Spectra of Hydrodynamic Convective Turbulence.Physica D: Nonlinear Phenomena 57 (1-2): 85-95.CrossRefGoogle Scholar
L'vov, Victor S., Evgenii, Podivilov, and Itamar, Procaccia. 1999. “Hamiltonian Structure of the Sabra Shell Model of Turbulence: Exact Calculation of an Anomalous Scaling Exponent.EPL (Europhysics Letters) 46 (5): 609.CrossRefGoogle Scholar
Ma, Shang-Keng. 1985. Statistical Mechanics. Singapore: World Scientific.CrossRefGoogle Scholar
Majumdar, Sayantan, and A. K., Sood. 2011. “Universality and Scaling Behavior of Injected Power in Elastic Turbulence in Wormlike Micellar Gel.Physical Review E 84 (1): 015302.CrossRefGoogle ScholarPubMed
Manneville, Paul. 2014. Dissipative Structures and Weak Turbulence. San Diego: Academic Press.Google Scholar
Marsch, Eckart. 1991. Turbulence in the Solar Wind. Pages 145-156 of: Klare, G. (ed), Reviews in Modern Astronomy. Berlin, Heidelberg: Springer.Google Scholar
Mason, Joanne, Fausto, Cattaneo, and Stanislav, Boldyrev. 2006. “Dynamic Alignment in Driven Magnetohydrodynamic Turbulence.Physical Review Letters 97 (25): 255002.CrossRefGoogle ScholarPubMed
Mathieu, Jean, and Julian, Scott. 2000. An Introduction to Turbulent Flow. Cambridge University Press.CrossRefGoogle Scholar
Matthaeus, William H., and Melvyn L., Goldstein. 1982. “Measurement of the Rugged Invariants of Magnetohydrodynamic Turbulence in the Solar Wind.Journal of Geophysical Research: Space Physics 87 (A8): 6011-28.CrossRefGoogle Scholar
McComb, William D., and V., Shanmugasundaram. 1983. “Fluid Turbulence and the Renormalization Group: A Preliminary Calculation of the Eddy Viscosity.Physical Review A 28 (4): 2588.CrossRefGoogle Scholar
McComb, William D., and V., Shanmugasundaram. 1984. “Numerical Calculation of Decaying Isotropic Turbulence Using the LET Theory.Journal of Fluid Mechanics 143: 95-123.CrossRefGoogle Scholar
McComb, William D., W. Roberts, and A. G. Watt. 1992. “Conditional-averaging Procedure for Problems with Mode-mode Coupling.Physical Review A 45 (6): 3507.CrossRefGoogle ScholarPubMed
McComb, William D. 1990. The Physics of Fluid Turbulence. Oxford University Press.Google Scholar
McComb, William D. 2014. Homogeneous, Isotropic Turbulence: Phenomenology. Renormalization and Statistical Closures. Oxford University Press.CrossRefGoogle Scholar
Meneveau, Charles, and Katepalli R., Sreenivasan. 1987. “Simple Multifractal Cascade Model for Fully Developed Turbulence.Physical review letters 59 (13): 1424.CrossRefGoogle ScholarPubMed
Mininni, Pablo, Alexandros, Alexakis, and Annick, Pouquet. 2005. “Shell-to-shell Energy Transfer in Magnetohydrodynamics. II. Kinematic Dynamo.Physical Review E 72 (4): 046302.CrossRefGoogle ScholarPubMed
Mininni, Pablo D., Alexandros, Alexakis, and Annick, Pouquet. 2009. “Scale Interactions and Scaling Laws in Rotating Flows at Moderate Rossby Numbers and Large Reynolds Numbers.Physics of Fluids 21 (1): 015108.CrossRefGoogle Scholar
Mishra, Pankaj Kumar, and Mahendra K., Verma. 2010. “Energy Spectra and Fluxes for Rayleigh-Bénard Convection.Physical Review E 81 (5): 056316.CrossRefGoogle ScholarPubMed
Moffatt, Henry K. 1978. Field Generation in Electrically Conducting Fluids. Cambridge University Press.Google Scholar
Moisy, F, C., Morize, M., Rabaud, and Jöel, Sommeria. 2010. “Decay Laws, Anisotropy and Cyclone-Anticyclone Ssymmetry in Decaying Rotating Turbulence.Journal Fluid Mech., 666 (Oct.): 5-35.Google Scholar
Monchaux, Romain, Michaël, Berhanu, Mickaël, Bourgoin, Marc, Moulin, Ph, Odier, J-F., Pinton, Romain, Volk et al. 2007. “Generation of a Magnetic Field by Dynamo Action in a Turbulent Flow of Liquid Sodium.Physical Review Letters 98 (4): 044502.CrossRefGoogle Scholar
Mondal, Sudipta, V., Narayanan, Wen Jun, Ding, Amit D., Lad, Biao, Hao, Saima, Ahmad, Wei Min, Wang et al. 2012. “Direct Observation of Turbulent Magnetic Fields in Hot, Dense Laser Produced Plasmas.Proceedings of the National Academy of Sciences 109 (21): 8011-15.CrossRefGoogle ScholarPubMed
Moreau, René J. 1990. Magnetohydrodynamics. Berlin: Springer.CrossRefGoogle Scholar
Morin, Vincent, and Emmanuel, Dormy. 2009. “The Dynamo Bifurcation in Rotating Spherical Shells.International Journal of Modern Physics B 23 (28n29): 5467-82.CrossRefGoogle Scholar
Morize, Cyprien, Frédéric, Moisy, and Marc, Rabaud. 2005. “Decaying Grid-generated Turbulence in a Rotating Tank.Physics of Fluids 17 (9): 095105.CrossRefGoogle Scholar
Müller, Wolf-Christian, and Dieter, Biskamp. 2000. “Scaling Properties of Threedimensional Magnetohydrodynamic Turbulence.Physical Review Letters 84 (3): 475.CrossRefGoogle Scholar
Nath, Dinesh, Ambrish, Pandey, Abhishek, Kumar, and Mahendra K., Verma. 2016. “Near Isotropic Behavior of Turbulent Thermal Convection.Physical Review Fluids 1 (6): 064302.CrossRefGoogle Scholar
Nazarenko, Sergey V. 2011. Wave Turbulence. Berlin: Springer.CrossRefGoogle Scholar
Nemirovskii, Sergey K. 2013. “Quantum Turbulence: Theoretical and Numerical Problems.Physics Reports 524 (3): 85-202.CrossRefGoogle Scholar
Newman, Mark E. J. 2005. “Power Laws, Pareto Distributions and Zipf's Law.Contemporary Physics 46 (5): 323-51.CrossRefGoogle Scholar
Obukhov, A. M. 1959. “Effect of Archimedean Forces on the Structure of the Temperature Field in a Turbulent Flow.Dokl. Akad. Nauk SSSR, 125 (6): 1246-48.Google Scholar
Obukhov, A. M. 1962. “Some Specific Features of Atmospheric Turbulence.Journal Geophysical Research, 13: 77-81.Google Scholar
Odier, P., J-F., Pinton, and Stephan, Fauve. 1998. “Advection of a Magnetic Field by a Turbulent Swirling Flow.Physical Review E 58 (6): 7397.CrossRefGoogle Scholar
Oughton, Sean, Eric R., Priest, and William H., Matthaeus. 1994. “The Inuence of a Mean Magnetic Field on Three-dimensional Magnetohydrodynamic Turbulence.Journal of Fluid Mechanics 280: 95-117.CrossRefGoogle Scholar
Pandey, Ambrish, and Mahendra K., Verma. 2016. “Scaling of Large-scale Quantities in Rayleigh-Bénard Convection.Physics of Fluids 28 (9): 095105.CrossRefGoogle Scholar
Pandey, Ambrish, Mahendra K., Verma, and Pankaj K., Mishra. 2014. “Scaling of Heat Flux and Energy Spectrum for Very Large Prandtl Number Convection.Physical Review E 89 (2): 023006.CrossRefGoogle ScholarPubMed
Pao, Yih-Ho. 1965. “Structure of Turbulent Velocity and Scalar Fields at Large Wavenumbers.Physics of Fluids 8 (6): 1063-75.Google Scholar
Pao, Yih-Ho. 1968. “Transfer of Turbulent Energy and Scalar Quantities at Large Wavenumbers.Physics of Fluids 11 (6): 1371-72.Google Scholar
Pareto, Vilfredo. 1964. Cours d'économie Politique. Vol. 1. Librairie Droz.CrossRef
Perlekar, Prasad, Dhrubaditya, Mitra, and Rahul, Pandit. 2006. “Manifestations of Drag Reduction by Polymer Additives in Decaying, Homogeneous, Isotropic Turbulence.Physical Review Letters 97 (26): 264501.CrossRefGoogle ScholarPubMed
Perlekar, Prasad, Nairita, Pal, and Rahul, Pandit. 2017. “Two-dimensional Turbulence in Symmetric Binary-uid Mixtures: Coarsening Arrest by the Inverse Cascade.Scientific Reports 7: 44589.CrossRefGoogle ScholarPubMed
Plunian, Franck, Rodion, Stepanov, and Peter, Frick. 2013. “Shell Models of Magnetohydrodynamic Turbulence.Physics Reports 523 (1): 1-60.CrossRefGoogle Scholar
Podesta, J. J. 2011. “On the Cross-helicity Dependence of the Energy Spectrum in Magnetohydrodynamic Turbulence.Physics of Plasmas 18 (1): 012907.CrossRefGoogle Scholar
Politano, H, and Annick G., Pouquet. 1995. “Model of Intermittency in Magnetohydrodynamic Turbulence.Physical Review E 52 (1): 636-41.CrossRefGoogle ScholarPubMed
Politano, H., and A. G., Pouquet. 1998. “von Kármán-Howarth Equation for Magnetohydrodynamics and its Consequences on Third-order Longitudinal Structure and Correlation Functions.Physical Review E 57 (1): R21.CrossRefGoogle Scholar
Pope, Stephen B. 2000. Turbulent ows. Cambridge University Press.Google Scholar
Pouquet, A., U., Frisch, and J., Léorat. 1976. “Strong MHD Helical Turbulence and the Nonlinear Dynamo Eéct.Journal of Fluid Mechanics 77 (2): 321-54.CrossRefGoogle Scholar
Ramaswamy, Sriram. 2010. “The Mechanics and Statistics of Active Matter.Annu. Rev. Condens. Matter Phys. 1 (1): 323-45.CrossRefGoogle Scholar
Ray, Samriddhi Sankar, and Dario, Vincenzi. 2016. “Elastic Turbulence in a Shell Model of Polymer Solution.EPL (Europhysics Letters) 114 (4): 44001.Google Scholar
Reddy, K. Sandeep. 2015. “Anisotropic Energy Spectrum, Flux and Transfers in Quasi-static Magnetohydrodynamic Turbulence.” PhD Thesis IIT, Kanpur.CrossRef
Reddy, K. Sandeep, and Mahendra K., Verma. 2014. “Strong Anisotropy in Quasi-static Magnetohydrodynamic Turbulence for High Interaction Parameters.Physics of Fluids 26 (2): 025109.CrossRefGoogle Scholar
Reddy, K. Sandeep, Raghwendra, Kumar, and Mahendra K., Verma. 2014. “Anisotropic Energy Transfers in Quasi-static Magnetohydrodynamic Turbulence.Physics of Plasmas 21 (10): 102310.CrossRefGoogle Scholar
Ristorcelli, J. R. 2018. “A Pseudo-sound Constitutive Relationship for the Dilatational Covariances in Compressible Turbulence.J. Fluid Mech., 347: 37-70.Google Scholar
Roberts, Gareth Owen. 1972. “Dynamo Action of Fluid Motions with Two-dimensional Periodicity.Phil. Trans. R. Soc. Lond. A 271 (1216): 411-54.CrossRefGoogle Scholar
Roberts, Paul H., and Gary A., Glatzmaier. 2000. “Geodynamo Theory and Simulations.Reviews of Modern Physics 72 (4): 1081.CrossRefGoogle Scholar
Ruiz, Ricardo, and David R., Nelson. 1981. “Turbulence in Binary Fluid Mixtures.Physical Review A 23 (6): 3224.CrossRefGoogle Scholar
Ruzmaikin, Alexander A, Dmitry D., Sokoloff, and A. M., Shukurov. 1988. Magnetic Fields of Galaxies. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
Sadhukhan, Shubhadeep, Mahendra K., Verma, Rodion, Stepanov, Franck, Plunian, and Ravi, Samtaney. 2018. Kinetic Helicity and Enstrophy Transfers in Helical Hydrodynamic Turbulence. Preprint.Google Scholar
Sagaut, Pierre, and Claude, Cambon. 2008. Homogeneous Turbulence Dynamics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Saha, Meghnad, and B. N., Srivastava. 1950. A Treatise on Heat. 5th edn. Kolkata: Indian Press.Google Scholar
Sahoo, Ganapati, and Luca, Biferale. 2018. “Energy Cascade and Intermittency in Helically Decomposed Navier-Stokes Equations.Fluid Dynamics Research 50 (1): 011420.CrossRefGoogle Scholar
Sakurai, J J. 1994. Modern Quantum Mechanics. Revised edn. San Francisco: Addison-Wesley.Google Scholar
Shaikh, Dastgeer. 2009. “Whistler Wave Cascades in Solar Wind Plasma.Monthly Notices of the Royal Astronomical Society 395 (4): 2292-98.CrossRefGoogle Scholar
Sharma, Manohar K., Mahendra K., Verma, and Sagar, Chakraborty. 2018a. “On the Energy Spectrum of Rapidly Rotating Forced Turbulence.Physics of Fluids 30 (11): 115102.CrossRefGoogle Scholar
Sharma, Manohar K., Abhishek, Kumar, Mahendra K., Verma, and Sagar, Chakraborty. 2018b. “Statistical Features of Rapidly Rotating Decaying Turbulence: Enstrophy and Energy Spectra and Coherent Structures.Physics of Fluids 30 (4): 045103.CrossRefGoogle Scholar
Sharma, Manohar K, Mahendra K., Verma, and Sagar, Chakraborty. 2019. Anisotropic Energy Transfer in Rapidly Rotating Forced and Decaying Turbulence. Preprint.Google Scholar
She, Zhen-Su, and Emmanuel, Leveque. 1994. “Universal Scaling Laws in Fully Developed Turbulence.Physical Review Letters 72 (3): 336.CrossRefGoogle ScholarPubMed
Smith, Leslie M., and Fabian, Waleffe. 1999. “Transfer of Energy to Two-dimensional Large Scales in Forced, Rotating Three-dimensional Turbulence.Physics of uids 11 (6): 1608-22.Google Scholar
Sorriso-Valvo, Luca, Raffaele, Marino, Vincenzo, Carbone, A., Noullez, F., Lepreti, P., Veltri, Roberto, Bruno, Bruno, Bavassano, and Ermanno, Pietropaolo. 2007. “Observation of Inertial Energy Cascade in Interplanetary Space Plasma.” Physical Review Letters 99 (11): 115001.CrossRefGoogle ScholarPubMed
Spandan,, Vamsi, Roberto, Verzicco, and Detlef, Lohse. 2018. “Physical Mechanisms Governing Drag Reduction in Turbulent Taylor-Couette Flow with Finite-size Deformable Bubbles.J. Fluid Mech., 849: 143-13.CrossRefGoogle Scholar
Spiegel, Edward A., ed. 2010. The Theory of Turbulence: Subrahmanyan Chandrasekhar's 1954 Lectures. Springer.Google Scholar
Sreenivasan, Katepalli R. 1991. “Fractals and Multifractals in Fluid Turbulence.Annual Review of Fluid Mechanics 23 (1): 539-604.CrossRefGoogle Scholar
Sreenivasan, Katepalli R., and Christopher M., White. 2000. “The Onset of Drag Reduction by Dilute Polymer Additives, and the Maximum Drag Reduction Asymptote.Journal of Fluid Mechanics 409: 149-64.CrossRefGoogle Scholar
Stanisic, M. M. 1984. The Mathematical Theory of Turbulence. New York: Springer- Verlag.Google Scholar
Stepanov, Rodion, and Franck, Plunian. 2018. “Kinematic Dynamo in a Tetrahedron of Fourier Modes.Fluid Dynamics Research, 50 (5): 051409.CrossRefGoogle Scholar
Stepanov, Rodion, Ephim, Golbraikh, Peter, Frick, and Alexander, Shestakov. 2015. “Hindered Energy Cascade in Highly Helical Isotropic Turbulence.Physical Review Letters 115 (23): 234501.CrossRefGoogle ScholarPubMed
Stieglitz, Robert, and Ulrich, Müller. 2001. “Experimental Demonstration of a Homogeneous Two-scale Dynamo.Physics of Fluids 13 (3): 561-64.CrossRefGoogle Scholar
Sundar, Sita, Mahendra K., Verma, Alexandros, Alexakis, and Anando G., Chatterjee. 2017. “Dynamic Anisotropy in MHD Turbulence Induced by Mean Magnetic Field.Physics of Plasmas 24 (2): 022304.CrossRefGoogle Scholar
Tabeling, Patrick. 2002. “Two-dimensional Turbulence: a Physicist Approach.Physics Reports 362 (1): 1-62.CrossRefGoogle Scholar
Tabor, M., and P. G. De, Gennes. 1986. “A Cascade Theory of Drag Reduction.EPL (Europhysics Letters) 2 (7): 519.CrossRefGoogle Scholar
Taylor, Geoffrey Ingram. 1954. “The Dispersion of Matter in Turbulent Flow Through a Pipe.Proc. R. Soc. Lond. A 223 (1155): 446-68.Google Scholar
Teaca, Bogdan, Mahendra K., Verma, Bernard, Knaepen, and Daniele, Carati. 2009. “Energy Transfer in Anisotropic Magnetohydrodynamic Turbulence.Physical Review E 79 (4): 046312.CrossRefGoogle ScholarPubMed
Teaca, Bogdan, Alejandro Banón, Navarro, and Frank, Jenko. 2014. “The Energetic Coupling of Scales in Gyrokinetic Plasma Turbulence.Physics of Plasmas 21 (7): 072308.CrossRefGoogle Scholar
Teimurazov, A. S., R. A., Stepanov, Mahendra K., Verma, S., Barman, A., Kumar, and S., Sadhukhan. 2018. “Direct Numerical Simulation of Homogeneous Isotropic Helical Turbulence with the TARANG Code.Journal of Applied Mechanics and Technical Physics 59 (7): 1279-87.CrossRefGoogle Scholar
Tennekes, Hendrik, and John, Lumley. 1972. A First Course in Turbulence. MIT press.Google Scholar
Thais, Laurent, Thomas B., Gatski, and Gilmar, Mompean. 2013. “Analysis of Polymer Drag Reduction Mechanisms from Energy Budgets.International Journal of Heat and Fluid Flow (43): 52-61.CrossRefGoogle Scholar
Tritton, D. J. 1988. Physical Fluid Dynamics. Oxord: Clarendon Press.Google Scholar
Tu, C-Y., and Eckart, Marsch. 1995. “MHD Structures, Waves and Turbulence in the Solar Wind: Observations and Theories.Space Science Reviews 73 (1-2): 1-210.CrossRefGoogle Scholar
Tzeferacos, P., A., Rigby, A. F. A., Bott, A., Bell, R., Bingham, R., Casner, et al. 2018. “Laboratory Evidence of Dynamo Amplification of Magnetic Fields in a Turbulent Plasma.” Nature Communications, 1-8.
Vashishtha, Sumit, Mahendra K., Verma, and Roshan, Samuel. 2018. “Large-eddy Simulations of Turbulent Thermal Convection Using Renormalized Viscosity and Thermal Diffusivity.Physical Review E 98 (4): 043109.CrossRefGoogle Scholar
Verma, Mahendra K. 1996. “Nonclassical Viscosity and Resistivity of the Solar Wind Plasma.Journal of Geophysical Research: Space Physics 101 (A12): 27543-27548.CrossRefGoogle Scholar
Verma, Mahendra K. 1999. “Mean Magnetic Field Renormalization and Kolmogorovs Energy Spectrum in Magnetohydrodynamic Turbulence.Physics of Plasmas 6 (5): 1455-60.CrossRefGoogle Scholar
Verma, Mahendra K. 2000. “Intermittency Exponents and Energy Spectrum of the Burgers and KPZ Equations with Correlated Noise.Physica A 277 (3-4): 359-88.CrossRefGoogle Scholar
Verma, Mahendra K. 2001a. “Field Theoretic Calculation of Renormalized Viscosity, Renormalized Resistivity, and Energy Fluxes of Magnetohydrodynamic Turbulence.Physical Review E 64 (2): 026305.CrossRefGoogle Scholar
Verma, Mahendra K. 2001b. “Field Theoretic Calculation of Scalar Turbulence.International Journal of Modern Physics B 15 (26): 3419-28.CrossRefGoogle Scholar
Verma, Mahendra K. 2002. “On Generation of Magnetic Field in Astrophysical Bodies.Current Science, 83 (5): 620-22.Google Scholar
Verma, Mahendra K. 2003a. “Energy Fluxes in Helical Magnetohydrodynamics and Dynamo Action.Pramana 61 (4): 707-24.CrossRefGoogle Scholar
Verma, Mahendra K. 2003b. “Field Theoretic Calculation of Energy Cascade Rates in Non-helical Magnetohydrodynamic Turbulence.Pramana 61 (3): 577-94.CrossRefGoogle Scholar
Verma, Mahendra K. 2004. “Statistical Theory of Magnetohydrodynamic Turbulence: Recent Results.Physics Reports 401 (5-6): 229-380.CrossRefGoogle Scholar
Verma, Mahendra K. 2012. “Variable Enstrophy Flux and Energy Spectrum in Twodimensional Turbulence with Ekman Friction.EPL (Europhysics Letters) 98 (1): 14003.CrossRefGoogle Scholar
Verma, Mahendra K. 2016. Introduction to Mechanics. 2nd edn. Hyderabad: Universities Press.Google Scholar
Verma, Mahendra K. 2017. “Anisotropy in Quasi-static Magnetohydrodynamic Turbulence.Reports on Progress in Physics 80 (8): 087001.CrossRefGoogle ScholarPubMed
Verma, Mahendra K. 2018. Physics of Buoyant Flows: From Instabilities to Turbulence. Singapore: World Scientific.CrossRefGoogle Scholar
Verma, Mahendra K. 2019. “Hierarchical Financial Structures with Money Cascade.” In: Abergel, F, Chakrabarti, B., Chakraborti, Anirban, Deo, Nivedita, and Sharma, Kiran (eds), New Perspectives and Challenges in Econophysics and Sociophysics.Google Scholar
Verma, Mahendra K., and Diego, Donzis. 2007. “Energy Transfer and Bottleneck Effect in Turbulence.Journal of Physics A: Mathematical and Theoretical 40 (16): 4401.CrossRefGoogle Scholar
Verma, Mahendra K., and Rohit, Kumar. 2016. “Dynamos at Extreme Magnetic Prandtl Numbers: Insights from Shell Models.Journal of Turbulence 17 (12): 1112-41.CrossRefGoogle Scholar
Verma, Mahendra K., and K. Sandeep, Reddy. 2015. “Modeling Quasi-static Magnetohydrodynamic Turbulence with Variable Energy Flux.Physics of Fluids 27 (2): 025114.CrossRefGoogle Scholar
Verma, Mahendra K., and Rakesh K., Yadav. 2013. “Supercriticality to Subcriticality in Dynamo Transitions.Physics of Plasmas 20 (7): 072307.CrossRefGoogle Scholar
Verma, Mahendra K., D. A., Roberts, and M. L., Goldstein. 1995. “Turbulent Heating and Temperature Evolution in the Solar Wind Plasma.Journal of Geophysical Research: Space Physics 100 (A10): 19839-50.CrossRefGoogle Scholar
Verma, Mahendra K., D. A., Roberts, M. L., Goldstein, S., Ghosh, and W. T., Stribling. 1996. “A Numerical Study of the Nonlinear Cascade of Energy in Magnetohydrodynamic Turbulence.Journal of Geophysical Research: Space Physics 101 (A10): 21619-625.CrossRefGoogle Scholar
Verma, Mahendra K., Arvind, Ayyer, Olivier, Debliquy, Shishir, Kumar, and Amar V., Chandra. 2005. “Local shell-to-shell Energy Transfer via Nonlocal Interactions in Fluid Turbulence.Pramana 65 (2): 297.CrossRefGoogle Scholar
Verma, Mahendra K., Thomas, Lessinnes, Daniele, Carati, Ioannis, Sarris, Krishna, Kumar, and Meenakshi, Singh. 2008. “Dynamo Transition in Low-dimensional Models.Physical Review E 78 (3): 036409.CrossRefGoogle ScholarPubMed
Verma, Mahendra K., Anando, Chatterjee, K. Sandeep, Reddy, Rakesh K., Yadav, Supriyo, Paul, Mani, Chandra, and Ravi, Samtaney. 2013. “Benchmarking and Scaling Studies of Pseudospectral Code Tarang for Turbulence Simulations.Pramana 81 (4): 617-29.CrossRefGoogle Scholar
Verma, Mahendra K., Bidya Binay, Karak, and Rohit, Kumar. 2013. “Dynamo in Protostars.Pramana 81 (6): 1037-43.CrossRefGoogle Scholar
Verma, Mahendra K., Abhishek, Kumar, and Ambrish, Pandey. 2017. “Phenomenology of Buoyancy-driven Turbulence: Recent Results.New Journal of Physics 19 (2): 025012.CrossRefGoogle Scholar
Verma, Mahendra K., Abhishek, Kumar, Praveen, Kumar, Satyajit, Barman, Anando G., Chatterjee, Ravi, Samtaney, and Rodion, Stepanov. 2018. “Energy Spectra and Fluxes in Dissipation Range of Turbulent and Laminar Flows.Fluid Dyn., 53: 728-39.CrossRefGoogle Scholar
Waleffe, Fabian. 1992. “The Nature of Triad Interactions in Homogeneous Turbulence.Physics of Fluids A: Fluid Dynamics 4 (2): 350-63.CrossRefGoogle Scholar
Wang, Jianchun, Minping, Wan, Song, Chen, and Shiyi, Chen. 2018. “Kinetic Energy Transfer in Compressible Isotropic Turbulence.Journal of Fluid Mechanics 841: 581-613.CrossRefGoogle Scholar
Yadav, R., M., Chandra, Mahendra K., Verma, S., Paul, and P., Wahi. 2010. “Dynamo Transition Under Taylor-Green Forcing.EPL (Europhysics Letters) 91 (6): 69001.CrossRefGoogle Scholar
Yadav, Rakesh K., Mahendra K., Verma, and Pankaj, Wahi. 2012. “Bistability and Chaos in the Taylor-Green Dynamo.Physical Review E 85 (3): 036301.CrossRefGoogle ScholarPubMed
Yaglom, A. M. 1949. “On the Local Structure of a Temperature Field in a Turbulent Flow.In Dokl. Akad. Nauk SSSR, 69 (6): 743-46.Google Scholar
Yakhot, Victor, and Steven A., Orszag. 1986. “Renormalization Group Analysis of Turbulence. I. Basic Theory.Journal of scientific computing 1 (1): 3-51.CrossRefGoogle Scholar
Yeung, P. K., and K. R., Sreenivasan. 2013. “Spectrum of Passive Scalars of High Molecular Diffusivity in Turbulent Mixing.Journal of Fluid Mechanics 716.
Yeung, P. K., S., Xu, D. A., Donzis, and K. R., Sreenivasan. 2004. “Simulations of Three-dimensional Turbulent Mixing for Schmidt Numbers of the Order 1000.Flow, turbulence and combustion 72 (2-4): 333-47.CrossRefGoogle Scholar
Yeung, P. K., D. A., Donzis, and K. R., Sreenivasan. 2005. “High-Reynolds-number Simulation of Turbulent Mixing.Physics of Fluids 17 (8): 081703.CrossRefGoogle Scholar
Zank, G. P., and W. H., Matthaeus. 1991. “The Equations of Nearly Incompressible Fluids. I. Hydrodynamics, Turbulence, and Waves.Physics of Fluids A: Fluid Dynamics 3 (1): 69-82.CrossRefGoogle Scholar
Zank, G. P., and W. H., Matthaeus. 1993. “Nearly Incompressible Fluids. II: Magnetohydrodynamics, Turbulence, and Waves.Physics of Fluids A: Fluid Dynamics 5 (1): 257-73.CrossRefGoogle Scholar
Zeman, O. 1994. “A Note on the Spectra and Decay of Rotating Homogeneous Turbulence.Physics of Fluids 6 (10): 3221-23.CrossRefGoogle Scholar
Zhou, Ye. 1993. “Degrees of Locality of Energy Transfer in the Inertial Range.Physics of Fluids A: Fluid Dynamics 5 (5): 1092-94.CrossRefGoogle Scholar
Zhou, Ye. 1995. “A Phenomenological Treatment of Rotating Turbulence.Physics of Fluids 7 (8): 2092-94.CrossRefGoogle Scholar
Zhou, Ye. 2010. “Renormalization Group Theory for Fluid and Plasma Turbulence.Physics Reports 488 (1): 1-49.CrossRefGoogle Scholar
Zhou, Ye, and George, Vahala. 1993. “Renormalization-group Estimates of Transport Coeficients in the Advection of a Passive Scalar by Incompressible Turbulence.Physical Review E 48 (6): 4387.CrossRefGoogle Scholar
Zhou, Ye, George, Vahala, and Murshed, Hossain. 1988. “Renormalization-group Theory for the Eddy Viscosity in Subgrid Modeling.Physical Review A 37 (7): 2590.CrossRefGoogle ScholarPubMed
Zhou, Ye, W. David, McComb, and George, Vahala. 1997. “Renormalization Group (RG) in Turbulence: Historical and Comparative Perspective.” NASA Technical Report ICAS-97-36
Zikanov, Oleg, Dmitry, Krasnov, Thomas, Boeck, , Thess, and Maurice, Rossi. 2014. “Laminar-turbulent Transition in Magnetohydrodynamic Duct, Pipe, and Channel Flows.Applied Mechanics Reviews 66 (3): 030802.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Mahendra K. Verma, Indian Institute of Technology, Kanpur
  • Book: Energy Transfers in Fluid Flows
  • Online publication: 12 June 2019
  • Chapter DOI: https://doi.org/10.1017/9781316810019.037
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Mahendra K. Verma, Indian Institute of Technology, Kanpur
  • Book: Energy Transfers in Fluid Flows
  • Online publication: 12 June 2019
  • Chapter DOI: https://doi.org/10.1017/9781316810019.037
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Mahendra K. Verma, Indian Institute of Technology, Kanpur
  • Book: Energy Transfers in Fluid Flows
  • Online publication: 12 June 2019
  • Chapter DOI: https://doi.org/10.1017/9781316810019.037
Available formats
×