Book contents
- Frontmatter
- Contents
- Editor, Associate Editors, Artistic Consultant, and Contributors
- Preface
- PART I CONTEXT
- PART II ENDOTHELIAL CELL AS INPUT-OUTPUT DEVICE
- PART III VASCULAR BED/ORGAN STRUCTURE AND FUNCTION IN HEALTH AND DISEASE
- PART IV DIAGNOSIS AND TREATMENT
- PART V CHALLENGES AND OPPORTUNITIES
- 187 Introductory Essay: Complexity and the Endothelium
- 188 Agent-Based Modeling and Applications to Endothelial Biomedicine
- 189 Scale-Free Networks in Cell Biology
- 190 Cell Fates as Attractors: Stability and Flexibility of Cellular Phenotypes
- 191 Equation-Based Models of Dynamic Biological Systems
- 192 Vascular Control through Tensegrity-Based Integration of Mechanics and Chemistry
- 193 Simulating the Impact of Angiogenesis on Multiscale Tumor Growth Dynamics Using an Agent-Based Model
- 194 New Educational Tools for Understanding Complexity in Medical Science
- 195 Endothelial Biomedicine: The Public Health Challenges and Opportunities
- 196 Conclusion
- Index
- Plate section
187 - Introductory Essay: Complexity and the Endothelium
from PART V - CHALLENGES AND OPPORTUNITIES
Published online by Cambridge University Press: 04 May 2010
- Frontmatter
- Contents
- Editor, Associate Editors, Artistic Consultant, and Contributors
- Preface
- PART I CONTEXT
- PART II ENDOTHELIAL CELL AS INPUT-OUTPUT DEVICE
- PART III VASCULAR BED/ORGAN STRUCTURE AND FUNCTION IN HEALTH AND DISEASE
- PART IV DIAGNOSIS AND TREATMENT
- PART V CHALLENGES AND OPPORTUNITIES
- 187 Introductory Essay: Complexity and the Endothelium
- 188 Agent-Based Modeling and Applications to Endothelial Biomedicine
- 189 Scale-Free Networks in Cell Biology
- 190 Cell Fates as Attractors: Stability and Flexibility of Cellular Phenotypes
- 191 Equation-Based Models of Dynamic Biological Systems
- 192 Vascular Control through Tensegrity-Based Integration of Mechanics and Chemistry
- 193 Simulating the Impact of Angiogenesis on Multiscale Tumor Growth Dynamics Using an Agent-Based Model
- 194 New Educational Tools for Understanding Complexity in Medical Science
- 195 Endothelial Biomedicine: The Public Health Challenges and Opportunities
- 196 Conclusion
- Index
- Plate section
Summary
This medical textbook is unusual in that it includes a section devoted to the endothelium and “complex systems.” What may at first appear an editorial eccentricity will, upon further inspection, hopefully be seen as a useful addition and perhaps even as a template for future texts in other clinical fields. Indeed, the endothelium presents a compelling case study of the wide and deep potential interconnections between biomedicine and the contemporary study of complexity (1).
What makes a system complex, and not just complicated? The endothelium exemplifies two key features of complex systems (2). First, such systems function over a broad range of time and space scales (3,4) ranging from picoseconds to minutes, months, and longer, and from the quantum to the cellular to the organismic and even up to the level of social networks. Second, such multiscale systems display dynamics that are nonstationary and nonlinear and, therefore, defy analysis using traditional tools used by biostatisticians (1). Nonstationarity refers to the finding that the statistical properties (e.g., the mean and the variance) of fluctuations generated by a system change over time. Nonlinearity means that the components interact in nonadditive ways, so that the output will not be consistently proportional to the input. Indeed, in nonlinear systems, small changes can have huge or anomalous consequences, a phenomenon sometimes referred to as the butterfly effect.
Nonlinear systems cannot be understood by the traditional reductionist strategy of dissecting out their components, studying them in isolation, and then “recompiling” the system. Instead, the nonlinear interactions can lead to qualitatively novel structures and dynamics, so-called emergent properties. Thus, nonlinear systems cannot be characterized using a “modular” type of approach.
- Type
- Chapter
- Information
- Endothelial Biomedicine , pp. 1749 - 1753Publisher: Cambridge University PressPrint publication year: 2007