Book contents
- Frontmatter
- Contents
- Editor, Associate Editors, Artistic Consultant, and Contributors
- Preface
- PART I CONTEXT
- PART II ENDOTHELIAL CELL AS INPUT-OUTPUT DEVICE
- PART III VASCULAR BED/ORGAN STRUCTURE AND FUNCTION IN HEALTH AND DISEASE
- 121 Introductory Essay: The Endothelium in Health and Disease
- 122 Hereditary Hemorrhagic Telangiectasia: A Model to Probe the Biology of the Vascular Endothelium
- 123 Blood–Brain Barrier
- 124 Brain Endothelial Cells Bridge Neural and Immune Networks
- 125 The Retina and Related Hyaloid Vasculature: Developmental and Pathological Angiogenesis
- 126 Microheterogeneity of Lung Endothelium
- 127 Bronchial Endothelium
- 128 The Endothelium in Acute Respiratory Distress Syndrome
- 129 The Central Role of Endothelial Cells in Severe Angioproliferative Pulmonary Hypertension
- 130 Emphysema: An Autoimmune Vascular Disease?
- 131 Endothelial Mechanotransduction in Lung: Ischemia in the Pulmonary Vasculature
- 132 Endothelium and the Initiation of Atherosclerosis
- 133 The Hepatic Sinusoidal Endothelial Cell
- 134 Hepatic Macrocirculation: Portal Hypertension As a Disease Paradigm of Endothelial Cell Significance and Heterogeneity
- 135 Inflammatory Bowel Disease
- 136 The Vascular Bed of Spleen in Health and Disease
- 137 Adipose Tissue Endothelium
- 138 Renal Endothelium
- 139 Uremia
- 140 The Influence of Dietary Salt Intake on Endothelial Cell Function
- 141 The Role of the Endothelium in Systemic Inflammatory Response Syndrome and Sepsis
- 142 The Endothelium in Cerebral Malaria: Both a Target Cell and a Major Player
- 143 Hemorrhagic Fevers: Endothelial Cells and Ebola-Virus Hemorrhagic Fever
- 144 Effect of Smoking on Endothelial Function and Cardiovascular Disease
- 145 Disseminated Intravascular Coagulation
- 146 Thrombotic Microangiopathy
- 147 Heparin-Induced Thrombocytopenia
- 148 Sickle Cell Disease Endothelial Activation and Dysfunction
- 149 The Role of Endothelial Cells in the Antiphospholipid Syndrome
- 150 Diabetes
- 151 The Role of the Endothelium in Normal and Pathologic Thyroid Function
- 152 Endothelial Dysfunction and the Link to Age-Related Vascular Disease
- 153 Kawasaki Disease
- 154 Systemic Vasculitis Autoantibodies Targeting Endothelial Cells
- 155 High Endothelial Venule-Like Vessels in Human Chronic Inflammatory Diseases
- 156 Endothelium and Skin
- 157 Angiogenesis
- 158 Tumor Blood Vessels
- 159 Kaposi's Sarcoma
- 160 Endothelial Mimicry of Placental Trophoblast Cells
- 161 Placental Vasculature in Health and Disease
- 162 Endothelialization of Prosthetic Vascular Grafts
- 163 The Endothelium's Diverse Roles Following Acute Burn Injury
- 164 Trauma-Hemorrhage and Its Effects on the Endothelium
- 165 Coagulopathy of Trauma: Implications for Battlefield Hemostasis
- 166 The Effects of Blood Transfusion on Vascular Endothelium
- 167 The Role of Endothelium in Erectile Function and Dysfunction
- 168 Avascular Necrosis: Vascular Bed/Organ Structure and Function in Health and Disease
- 169 Molecular Control of Lymphatic System Development
- 170 High Endothelial Venules
- 171 Hierarchy of Circulating and Vessel Wall–Derived Endothelial Progenitor Cells
- PART IV DIAGNOSIS AND TREATMENT
- PART V CHALLENGES AND OPPORTUNITIES
- Index
- Plate section
128 - The Endothelium in Acute Respiratory Distress Syndrome
from PART III - VASCULAR BED/ORGAN STRUCTURE AND FUNCTION IN HEALTH AND DISEASE
Published online by Cambridge University Press: 04 May 2010
- Frontmatter
- Contents
- Editor, Associate Editors, Artistic Consultant, and Contributors
- Preface
- PART I CONTEXT
- PART II ENDOTHELIAL CELL AS INPUT-OUTPUT DEVICE
- PART III VASCULAR BED/ORGAN STRUCTURE AND FUNCTION IN HEALTH AND DISEASE
- 121 Introductory Essay: The Endothelium in Health and Disease
- 122 Hereditary Hemorrhagic Telangiectasia: A Model to Probe the Biology of the Vascular Endothelium
- 123 Blood–Brain Barrier
- 124 Brain Endothelial Cells Bridge Neural and Immune Networks
- 125 The Retina and Related Hyaloid Vasculature: Developmental and Pathological Angiogenesis
- 126 Microheterogeneity of Lung Endothelium
- 127 Bronchial Endothelium
- 128 The Endothelium in Acute Respiratory Distress Syndrome
- 129 The Central Role of Endothelial Cells in Severe Angioproliferative Pulmonary Hypertension
- 130 Emphysema: An Autoimmune Vascular Disease?
- 131 Endothelial Mechanotransduction in Lung: Ischemia in the Pulmonary Vasculature
- 132 Endothelium and the Initiation of Atherosclerosis
- 133 The Hepatic Sinusoidal Endothelial Cell
- 134 Hepatic Macrocirculation: Portal Hypertension As a Disease Paradigm of Endothelial Cell Significance and Heterogeneity
- 135 Inflammatory Bowel Disease
- 136 The Vascular Bed of Spleen in Health and Disease
- 137 Adipose Tissue Endothelium
- 138 Renal Endothelium
- 139 Uremia
- 140 The Influence of Dietary Salt Intake on Endothelial Cell Function
- 141 The Role of the Endothelium in Systemic Inflammatory Response Syndrome and Sepsis
- 142 The Endothelium in Cerebral Malaria: Both a Target Cell and a Major Player
- 143 Hemorrhagic Fevers: Endothelial Cells and Ebola-Virus Hemorrhagic Fever
- 144 Effect of Smoking on Endothelial Function and Cardiovascular Disease
- 145 Disseminated Intravascular Coagulation
- 146 Thrombotic Microangiopathy
- 147 Heparin-Induced Thrombocytopenia
- 148 Sickle Cell Disease Endothelial Activation and Dysfunction
- 149 The Role of Endothelial Cells in the Antiphospholipid Syndrome
- 150 Diabetes
- 151 The Role of the Endothelium in Normal and Pathologic Thyroid Function
- 152 Endothelial Dysfunction and the Link to Age-Related Vascular Disease
- 153 Kawasaki Disease
- 154 Systemic Vasculitis Autoantibodies Targeting Endothelial Cells
- 155 High Endothelial Venule-Like Vessels in Human Chronic Inflammatory Diseases
- 156 Endothelium and Skin
- 157 Angiogenesis
- 158 Tumor Blood Vessels
- 159 Kaposi's Sarcoma
- 160 Endothelial Mimicry of Placental Trophoblast Cells
- 161 Placental Vasculature in Health and Disease
- 162 Endothelialization of Prosthetic Vascular Grafts
- 163 The Endothelium's Diverse Roles Following Acute Burn Injury
- 164 Trauma-Hemorrhage and Its Effects on the Endothelium
- 165 Coagulopathy of Trauma: Implications for Battlefield Hemostasis
- 166 The Effects of Blood Transfusion on Vascular Endothelium
- 167 The Role of Endothelium in Erectile Function and Dysfunction
- 168 Avascular Necrosis: Vascular Bed/Organ Structure and Function in Health and Disease
- 169 Molecular Control of Lymphatic System Development
- 170 High Endothelial Venules
- 171 Hierarchy of Circulating and Vessel Wall–Derived Endothelial Progenitor Cells
- PART IV DIAGNOSIS AND TREATMENT
- PART V CHALLENGES AND OPPORTUNITIES
- Index
- Plate section
Summary
The pulmonary endothelium, poised at the interface between air, blood, and tissue, provides both rapid and sustained responses to local and systemic perturbations. This complex vascular structure occupies a surface area of 120m2 and forms the intimal lining of the pulmonary arterial, venous, and capillary beds with a single continuous layer of endothelial cells (ECs) linked to each other by specialized junctions (1). The alveolar endothelium is intimately related to the alveolar epithelium both in terms of anatomic location and functions that include oxygen (O2), carbon dioxide, water and solute transport, and barrier regulation; disruption of barrier functions of the alveolar capillary membrane is an early and critical event in the pathogenesis of acute respiratory distress syndrome (ARDS) (see later and Box 128.1). Alveolar epithelial function, which is beyond the scope of this chapter, has recently been reviewed (2).
Once thought of as passive, semipermeable conduits for nutrient and O2 delivery – and in the lungs, contributing to separation of blood from air (1) (Box 128.1) – ECs were dismissed as structural bystanders with little or no capacity to respond to activating signals with changes in phenotype or function (3). During the 1950s, electron microscopic observations that ECs contain secretory granules, together with ongoing physiological studies of EC–leukocyte interactions, implicated the endothelium as an active participant in both physiological and pathophysiological responses to injury and inflammation (4–6). Subsequent studies clearly demonstrated that, even under normal physiological conditions, the “quiescent” endothelium is far from inactive and is involved in multiple homeostatic functions. These include, but are not limited to, cellular and nutrient trafficking, angiogenesis and vasculogenesis, regulation of vascular tone, and maintenance of blood fluidity and vascular barrier function (3–7).
- Type
- Chapter
- Information
- Endothelial Biomedicine , pp. 1178 - 1192Publisher: Cambridge University PressPrint publication year: 2007
- 1
- Cited by