Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-17T14:08:12.533Z Has data issue: false hasContentIssue false

Part II - Role of Endophytes in Growth and Biotic and Abiotic Stress Resistance

Published online by Cambridge University Press:  01 April 2019

Trevor R. Hodkinson
Affiliation:
Trinity College Dublin
Fiona M. Doohan
Affiliation:
University College Dublin
Matthew J. Saunders
Affiliation:
Trinity College Dublin
Brian R. Murphy
Affiliation:
Trinity College Dublin
Get access

Summary

There are increasing efforts aiming to utilise endophytes as biological control agents (BCAs) to improve crop production. However, reliability remains a major practical constraint for the development of novel BCAs. Many organisms are adapted to their specific habitat; it is optimistic to expect that a new organism added can find a niche or even out-compete those adapted and already present. Our approach for isolating novel BCAs for specific plant diseases is therefore to look in healthy plants in a habitat where disease is a problem, since we predict that it is more likely to find competitive strains among those present and adapted. In vitro inhibitory activities often do not correlate with in planta efficacy, especially since endophytes rely on intimate plant contact. They can, however, be useful to indicate modes of action. We therefore screen for in planta biological activity as early as possible in the process in order to minimise the risk of discarding valuable strains. Finally, some fungi are endophytic in one situation and pathogenic in another (the mutualism–parasitism continuum). This depends on their biology, environmental conditions, the formulation of inoculum, the health, developmental stage and cultivar of the host plant, and the structure of the plant microbiome.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Abdelfattah, A., Wisniewski, M., Droby, S. and Schena, L. (2016). Spatial and compositional variation in the fungal communities of organic and conventionally grown apple fruit at the consumer point-of-purchase. Horticulture Research, 3, 16047.CrossRefGoogle ScholarPubMed
Aguiar-Pulido, V., Huang, W., Suarez-Ulloa, V. et al. (2016). Metagenomics, metatranscriptomics, and metabolomics approaches for microbiome analysis. Evolutionary Bioinformatics Online, 12, 516.Google ScholarPubMed
Ahmed, A. A., McLellan, H., Aguilar, G. B. et al. (2016). Engineering barriers to infection by undermining pathogen effector function or by gaining effector recognition. In Plant Pathogen Resistance Biotechnology, ed. Collinge, D. B. New York and London: Wiley-Blackwell, pp. 2350.Google Scholar
Alabouvette, C., Heilig, U. and Cordier, C. (2012). Microbial Control of Plant Diseases. In Beneficial Microorganisms in Agriculture, Food and the Environment: Safety Assessment and Regulation, ed. Sundh, I, Wilcks, A and Goettel, M. Oxfordshire, UK: CAB International, pp. 96111.Google Scholar
Alonso–Ramírez, A., Poveda, J., Martín, I. et al. (2014). Salicylic acid prevents Trichoderma harzianum from entering the vascular system of roots. Molecular Plant Pathology, 15, 823831.CrossRefGoogle ScholarPubMed
Anon. (2009). Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC. Official Journal of the European Union, 52, 1.Google Scholar
Anon. (2016). Guidance on active micro-organisms and biocidal products. ECHA, doi: 10.2823/82218.Google Scholar
Berger, S., El Chazli, Y., Babu, A. F. and Coste, A. T. (2017). Azole resistance in Aspergillus fumigatus: a consequence of antifungal use in agriculture? Frontiers in Microbiology, 8, 1024.CrossRefGoogle ScholarPubMed
Bulgarelli, D., Rott, M., Schlaeppi, K. et al. (2012). Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature, 488, 9195.CrossRefGoogle ScholarPubMed
Busby, P. E., Peay, K. G. and Newcombe, G. (2016a). Common foliar fungi of Populus trichocarpa modify Melampsora rust disease severity. New Phytologist, 209 , 16811692.CrossRefGoogle ScholarPubMed
Busby, P. E., Ridout, M. and Newcombe, G. (2016b). Fungal endophytes: modifiers of plant disease. Plant Molecular Biology, 90, 645655.CrossRefGoogle ScholarPubMed
Card, S., Johnson, L. E. B., Teasdale, S. and Caradus, J. (2016). Deciphering endophyte behaviour: the link between endophyte biology and efficacious biological control agents. FEMS Microbiology Ecology, 92, fiw114.CrossRefGoogle ScholarPubMed
Carter, J. P., Spink, J., Cannon, P. F., Daniels, M. J. and Osbourn, A. E. (1999). Isolation, characterization, and avenacin sensitivity of a diverse collection of cereal-root-colonizing fungi. Applied and Environmental Microbiology, 65, 33643372.CrossRefGoogle ScholarPubMed
Chagas, F. O., Dias, L. G. and Pupo, M. T. (2013). A mixed culture of endophytic fungi increases production of antifungal polyketides. Journal of Chemical Ecology, 39, 13351342.CrossRefGoogle ScholarPubMed
Coleman-Derr, D. and Tringe, S. G. (2014). Building the crops of tomorrow: advantages of symbiont-based approaches to improving abiotic stress tolerance. Frontiers in Microbiology, 5, 283.CrossRefGoogle ScholarPubMed
Collinge, D. B. (2018). Transgenic crops and beyond: how can biotechnology contribute to the sustainable control of plant diseases? European Journal of Plant Pathology, 152, 977–986.CrossRefGoogle Scholar
Collinge, D. B., Jørgensen, H. J. L., Lund, O. S. and Lyngkjær, M. F. (2010). Engineering pathogen resistance in crop plants – current trends and future prospects. Annual Review of Phytopathology, 48, 269291.CrossRefGoogle ScholarPubMed
Collinge, D. B., Mullins, E., Jensen, B. and Jørgensen, H. J. L. (2016). The status and prospects for biotechnological approaches to attaining sustainable disease resistance. In Plant Pathogen Resistance Biotechnology, ed. Collinge, D. B. New York and London: Wiley-Blackwell, pp. 120.CrossRefGoogle Scholar
Comby, M., Lacoste, S., Baillieul, F., Profizi, C. and Dupont, J. (2016). Spatial and temporal variation of cultivable communities of co-occurring endophytes and pathogens in wheat. Frontiers in Microbiology, 7, 403.CrossRefGoogle ScholarPubMed
de Jonge, R., Peter van Esse, H., Kombrink, A. et al. (2010). Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants. Science, 329, 953.CrossRefGoogle ScholarPubMed
De Silva, D. D., Crous, P. W., Ades, P. K., Hyde, K. D. and Taylor, P. W. J. (2017). Life styles of Colletotrichum species and implications for plant biosecurity. Fungal Biology Reviews, 31, 155168.CrossRefGoogle Scholar
De Vleesschauwer, D., Gheysen, G. and Hofte, M. (2013). Hormone defense networking in rice: tales from a different world. Trends in Plant Science, 18, 555565.CrossRefGoogle ScholarPubMed
Diaz, P. L., Hennell, J. R. and Sucher, N. J. (2012). Genomic DNA extraction and barcoding of endophytic fungi. In Plant DNA Fingerprinting and Barcoding: Methods and Protocols, ed. Sucher, N. J, Hennell, J. R and Carles, M. C. Totowa, NJ: Humana Press, pp. 171179.CrossRefGoogle Scholar
Dupont, P.-Y., Eaton, C. J., Wargent, J. J. et al. (2015). Fungal endophyte infection of ryegrass reprograms host metabolism and alters development. New Phytologist, 208, 12271240.CrossRefGoogle ScholarPubMed
Eevers, N., Gielen, M., Sánchez-López, A. et al. (2015). Optimization of isolation and cultivation of bacterial endophytes through addition of plant extract to nutrient media. Microbial Biotechnology, 8, 707715.CrossRefGoogle ScholarPubMed
Ehlers, R.-U. (2011). Regulation of biological control agents and the EU policy support action REBECA. In Regulation of Biological Control Agents, ed. Ehlers, R.-U. Dordrecht, The Netherlands: Springer, pp. 323.CrossRefGoogle Scholar
Evangelisti, E., Rey, T. and Schornack, S. (2014). Cross-interference of plant development and plant–microbe interactions. Current Opinion in Plant Biology, 20, 118126.CrossRefGoogle ScholarPubMed
Finkel, O. M., Castrillo, G., Herrera Paredes, S., Salas González, I. and Dangl, J. L. (2017). Understanding and exploiting plant beneficial microbes. Current Opinion in Plant Biology, 38, 155163.CrossRefGoogle ScholarPubMed
Franken, P. (2012). The plant strengthening root endophyte Piriformospora indica: potential application and the biology behind. Applied Microbiology and Biotechnology, 96, 14551464.CrossRefGoogle ScholarPubMed
Fravel, D., Olivain, C. and Alabouvette, C. (2003). Fusarium oxysporum and its biocontrol. New Phytologist, 157, 493502.CrossRefGoogle ScholarPubMed
Furnkranz, M., Lukesch, B., Muller, H. et al. (2012). Microbial diversity inside pumpkins: microhabitat-specific communities display a high antagonistic potential against phytopathogens. Microbial Ecology, 63, 418428.CrossRefGoogle ScholarPubMed
Gdanetz, K. and Trail, F. (2017). The wheat microbiome under four management strategies, and potential for endophytes in disease protection. Phytobiomes, 1, 158168.CrossRefGoogle Scholar
Giraud, T., Gladieux, P. and Gavrilets, S. (2010). Linking the emergence of fungal plant diseases with ecological speciation. Trends in Ecology & Evolution, 25, 387395.CrossRefGoogle ScholarPubMed
Großkinsky, D. K., van der Graaff, E. E. and Roitsch, T. (2016). Regulation of abiotic and biotic stress responses by plant hormones. In Plant Pathogen Resistance Biotechnology, ed. Collinge, D. B. New York and London: Wiley-Blackwell, pp. 131154.CrossRefGoogle Scholar
Guimil, S., Chang, H. S., Zhu, T. et al. (2005). Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization. Proceedings of the National Academy of Sciences of the United States of America, 102, 80668070.CrossRefGoogle ScholarPubMed
Gutjahr, C. (2014). Phytohormone signaling in arbuscular mycorhiza development. Current Opinion in Plant Biology, 20, 2634.CrossRefGoogle ScholarPubMed
Hardoim, P. R., van Overbeek, L. S., Berg, G. et al. (2015). The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology and Molecular Biology Reviews, 79, 293320.CrossRefGoogle ScholarPubMed
Hertz, M., Jensen, I. R., Jensen, L. Ø. et al. (2016). The fungal community changes over time in developing wheat heads. International Journal of Food Microbiology, 222, 3039.CrossRefGoogle ScholarPubMed
Hilbert, M., Voll, L. M., Ding, Y. et al. (2012). Indole derivative production by the root endophyte Piriformospora indica is not required for growth promotion but for biotrophic colonization of barley roots. New Phytologist, 196, 520534.CrossRefGoogle Scholar
Houterman, P. M., Cornelissen, B. J. C. and Rep, M. (2008). Suppression of plant resistance gene-based immunity by a fungal effector. PLoS Pathogens, 4, e1000061.CrossRefGoogle ScholarPubMed
Howlett, B. J. (2006). Secondary metabolite toxins and nutrition of plant pathogenic fungi. Current Opinion in Plant Biology, 9, 371375.CrossRefGoogle ScholarPubMed
Ionescu, I. A., López-Ortega, G., Burow, M. et al. (2017). Transcriptome and metabolite changes during hydrogen cyanamide-induced floral bud break in sweet cherry. Frontiers in Plant Science, 8, 1233.CrossRefGoogle ScholarPubMed
Jacobs, S., Zechmann, B., Molitor, A. et al. (2011). Broad-spectrum suppression of innate immunity is required for colonization of Arabidopsis roots by the fungus Piriformospora indica. Plant Physiology, 156, 726740.CrossRefGoogle ScholarPubMed
Jensen, B., Knudsen, I. M. B. and Jensen, D. F. (2000). Biological seed treatment of cereals with fresh and long-term stored formulations of Clonostachys rosea: biocontrol efficacy against Fusarium culmorum. European Journal of Plant Pathology, 106, 233242.CrossRefGoogle Scholar
Jensen, B., Knudsen, I. M. B., Madsen, M. and Jensen, D. F. (2004). Biopriming of infected carrot seed with an antagonist, Clonostachys rosea, selected for control of seedborne Alternaria spp. Phytopathology, 94, 551560.CrossRefGoogle ScholarPubMed
Jensen, B., Lübeck, P. S. and Jørgensen, H. J. L. (2016a). Clonostachys rosea reduces spot blotch in barley by inhibiting prepenetration growth and sporulation of Bipolaris sorokiniana without inducing resistance. Pest Management Science, 72, 22312239.CrossRefGoogle ScholarPubMed
Jensen, D. F., Karlsson, M., Sarrocco, S. and Vannacci, G. (2016b). Biological control using microorganisms as an alternative to disease resistance. In Plant Pathogen Resistance Biotechnology, ed. Collinge, D. B. New York and London: Wiley-Blackwell, pp. 341363.CrossRefGoogle Scholar
Kapongo, J. P., Shipp, L., Kevan, P. and Sutton, J. C. (2008). Co-vectoring of Beauveria bassiana and Clonostachys rosea by bumble bees (Bombus impatiens) for control of insect pests and suppression of grey mould in greenhouse tomato and sweet pepper. Biological Control, 46, 508514.CrossRefGoogle Scholar
Kaul, S., Sharma, T. and Dhar, M. K. (2016). ‘Omics’ tools for better understanding the plant–endophyte interactions. Frontiers in Plant Science, 7, 955.CrossRefGoogle ScholarPubMed
Kernaghan, G., Mayerhofer, M. and Griffin, A. (2017). Fungal endophytes of wild and hybrid Vitis leaves and their potential for vineyard biocontrol. Canadian Journal of Microbiology, 63, 583595.CrossRefGoogle ScholarPubMed
Keyser, C. A., Jensen, B. and Meyling, N. V. (2016). Dual effects of Metarhizium spp. and Clonostachys rosea against an insect and a seed-borne pathogen in wheat. Pest Management Science, 72, 517526.CrossRefGoogle Scholar
Khan, A. L., Hamayun, M., Kang, S.-M. et al. (2012). Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of Paecilomyces formosus LHL10. BMC Microbiology, 12, 3.CrossRefGoogle ScholarPubMed
Khatabi, B., Molitor, A., Lindermayr, C. (2012). Ethylene supports colonization of plant roots by the mutualistic fungus Piriformospora indica. PLoS One, 7, e35502.CrossRefGoogle ScholarPubMed
Knudsen, I. M. B., Hockenhull, J. and Jensen, D. F. (1995). Biocontrol of seedling diseases of barley and wheat caused by Fusarium culmorum and Bipolaris sorokiniana: effects of selected fungal antagonists on growth and yield components. Plant Pathology, 44, 467477.CrossRefGoogle Scholar
Knudsen, I. M. B., Thomsen, K. A., Jensen, B. and Poulsen, K. M. (2004). Effects of hot water treatment, biocontrol agents, disinfectants and a fungicide on storability of English oak acorns and control of the pathogen, Ciboria batschiana. Forest Pathology, 34, 4764.CrossRefGoogle Scholar
Koch, E., Schmitt, A., Stephan, D. et al. (2010). Evaluation of non-chemical seed treatment methods for the control of Alternaria dauci and A. radicina on carrot seeds. European Journal of Plant Pathology, 127, 99112.CrossRefGoogle Scholar
Köhl, J., Postma, J., Nicot, P., Ruocco, M. and Blum, B. (2011). Stepwise screening of microorganisms for commercial use in biological control of plant-pathogenic fungi and bacteria. Biological Control, 57, 112.CrossRefGoogle Scholar
Köhl, J., Scheer, C., Holb, I. J., Masny, S. and Molhoek, W. (2014). Toward an integrated use of biological control by Cladosporium cladosporioides H39 in apple scab (Venturia inaequalis) management. Plant Disease, 99, 535543.CrossRefGoogle Scholar
Kojima, M., Kamada-Nobusada, T., Komatsu, H. et al. (2009). Highly sensitive and high-throughput analysis of plant hormones using MS-probe modification and liquid chromatography–tandem mass spectrometry: an application for hormone profiling in Oryza sativa. Plant and Cell Physiology, 50, 12011214.CrossRefGoogle ScholarPubMed
Kosawang, C., Amby, D. B., Bussaban, B. et al. (2018). Fungal communities associated with species of Fraxinus tolerant to ash dieback, and their potential for biological control. Fungal Biology, 122, 21102120.CrossRefGoogle Scholar
Kroll, S., Agler, M. T. and Kemen, E. (2017). Genomic dissection of host–microbe and microbe–microbe interactions for advanced plant breeding. Current Opinion in Plant Biology, 36, 7178.CrossRefGoogle ScholarPubMed
Kurose, D., Furuya, N., Tsuchiya, K., Tsushima, S. and Evans, H. C. (2012). Endophytic fungi associated with Fallopia japonica (Polygonaceae) in Japan and their interactions with Puccinia polygoni-amphibii var. tovariae, a candidate for classical biological control. Fungal Biology, 116, 785791.CrossRefGoogle ScholarPubMed
Kusari, S., Hertweck, C. and Spiteller, M. (2012). Chemical ecology of endophytic fungi: origins of secondary metabolites. Chemistry & Biology, 19, 792798.CrossRefGoogle ScholarPubMed
Lahiri, A., Douglas, G. C., Murphy, B. R. and Hodkinson, T. R. (2019). In vitro methods for plant–microbe interaction and biocontrol studies in European ash (Fraxinus excelsior L.). In Endophytes for a Growing World, ed. T. R. Hodkinson, F. M. Doohan, M. J. Saunders and B. R. Murphy. Cambridge: Cambridge University Press, Chapter 15.Google Scholar
Latz, M. A. C., Jensen, B., Collinge, D. B. and Jørgensen, H. J. L. (2018). Endophytic fungi as biocontrol agents: elucidating mechanisms in disease suppression. Plant Ecology and Diversity, doi: 10.1080/17550874.2018.1534146.CrossRefGoogle Scholar
Lo Presti, L., Lanver, D., Schweizer, G. et al. (2015). Fungal effectors and plant susceptibility. Annual Review of Plant Biology, 66, 513545.CrossRefGoogle ScholarPubMed
Lofgren, L. A., LeBlanc, N. R., Certano, A. K. et al. (2018). Fusarium graminearum: pathogen or endophyte of North American grasses? New Phytologist, 217, 12031212.CrossRefGoogle ScholarPubMed
Louarn, S., Nawrocki, A., Thorup-Kristensen, K. et al. (2013). Proteomic changes and endophytic micromycota during storage of organically and conventionally grown carrots. Postharvest Biology and Technology, 76, 2633.CrossRefGoogle Scholar
Lucas, J. A., Hawkins, N. J. and Fraaije, B. A. (2015). The evolution of fungicide resistance. Advances in Applied Microbiology, 90, 2992.CrossRefGoogle ScholarPubMed
Ludwig-Müller, J. (2015). Plants and endophytes: equal partners in secondary metabolite production? Biotechnology Letters, 37, 13251334.CrossRefGoogle ScholarPubMed
Lugtenberg, B. J. J., Caradus, J. R. and Johnson, L. J. (2016). Fungal endophytes for sustainable crop production. FEMS Microbiology Ecology, 92, fiw194.CrossRefGoogle ScholarPubMed
Lundberg, D. S., Lebeis, S. L., Paredes, S. H. et al. (2012). Defining the core Arabidopsis thaliana root microbiome. Nature, 488, 8690.CrossRefGoogle ScholarPubMed
Ma, K. W. and Ma, W. B. (2016). Phytohormone pathways as targets of pathogens to facilitate infection. Plant Molecular Biology, 91, 713725.CrossRefGoogle ScholarPubMed
Ma, L. J., van der Does, H. C., Borkovich, K. A. et al. (2010). Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature, 464, 367373.CrossRefGoogle ScholarPubMed
Malinovsky, F. G., Fangel, J. U. and Willats, W. G. T. (2014). The role of the cell wall in plant immunity. Frontiers in Plant Science, 5, 178.CrossRefGoogle ScholarPubMed
Mamarabadi, M., Jensen, B., Jensen, D. F. and Lübeck, M. (2008). Real-time RT-PCR expression analysis of chitinase and endoglucanase genes in the three-way interaction between the biocontrol strain Clonostachys rosea IK726, Botrytis cinerea and strawberry. FEMS Microbiology Letters, 285, 101110.CrossRefGoogle ScholarPubMed
McGrann, G. R. D., Stavrinides, A., Russell, J. et al. (2014). A trade off between mlo resistance to powdery mildew and increased susceptibility of barley to a newly important disease, Ramularia leaf spot. Journal of Experimental Botany, 65, 10251037.CrossRefGoogle ScholarPubMed
McGrann, G. R. D., Andongabo, A., Sjökvist, E. et al. (2016). The genome of the emerging barley pathogen Ramularia collo-cygni. Bmc Genomics, 17, 584.CrossRefGoogle ScholarPubMed
McKinney, L. V., Nielsen, L. R., Collinge, D. B. et al. (2014). The ash dieback crisis; genetic variation in resistance can prove a long-term solution. Plant Pathology, 63, 485499.CrossRefGoogle Scholar
Moissl-Eichinger, C., Pausan, M., Taffner, J. et al. (2018). Archaea are interactive components of complex microbiomes. Trends in Microbiology, 26, 7085.CrossRefGoogle ScholarPubMed
Møller, K., Jensen, B., Andersen, H. P., Stryhn, H. and Hockenhull, J. (2003). Biocontrol of Pythium tracheiphilum in Chinese cabbage by Clonostachys rosea under field conditions. Biocontrol Science and Technology, 13, 171182.CrossRefGoogle Scholar
Mukherjee, M., Mukherjee, P. K., Horwitz, B. A. et al. (2012). Trichoderma-plant-pathogen interactions: advances in genetics of biological control. Indian Journal of Microbiology, 52, 522529.CrossRefGoogle ScholarPubMed
Müller, C. B. and Krauss, J. (2005). Symbiosis between grasses and asexual fungal endophytes. Current Opinion in Plant Biology, 8, 450456.CrossRefGoogle ScholarPubMed
Murphy, B. R., Batke, S. P., Doohan, F. M. and Hodkinson, T. R. (2015). Media manipulations and the culture of beneficial fungal root endophytes. International Journal of Biology, 7, 94–102.CrossRefGoogle Scholar
Newsham, K. K. (2011). A meta-analysis of plant responses to dark septate root endophytes. New Phytologist, 190, 783793.CrossRefGoogle ScholarPubMed
Nicolaisen, M., Justesen, A. F., Knorr, K., Wang, J. and Pinnschmidt, H. O. (2014). Fungal communities in wheat grain show significant co-existence patterns among species. Fungal Ecology, 11, 145153.CrossRefGoogle Scholar
Nowara, D., Gay, A. P., Lacomme, C. et al. (2010). HIGS: Host-Induced Gene Silencing in the obligate biotrophic fungal pathogen Blumeria graminis. The Plant Cell, 22, 31303141.CrossRefGoogle ScholarPubMed
OEDC (2012). OECD guidance to the environmental safety evaluation of microbial biocontrol agents. OECD Environment, Health and Safety Publications, Series on Pesticides and Biocides, No. 67, Paris: OECD Publishing, pp. 63.Google Scholar
Peskan-Berghöfer, T., Vilches-Barro, A., Müller, T. M. et al. (2015). Sustained exposure to abscisic acid enhances the colonization potential of the mutualist fungus Piriformospora indica on Arabidopsis thaliana roots. New Phytologist, 208, 873886.CrossRefGoogle ScholarPubMed
Pieterse, C. M. J., Van der Does, D., Zamioudis, C., Leon-Reyes, A. and van Wees, S. C. M. (2012). Hormonal modulation of plant immunity. Annual Review of Cell and Developmental Biology, 28, 489521.CrossRefGoogle ScholarPubMed
Ploch, S. and Thines, M. (2011). Obligate biotrophic pathogens of the genus Albugo are widespread as asymptomatic endophytes in natural populations of Brassicaceae. Molecular Ecology, 20, 36923699.Google ScholarPubMed
Rafiqi, M., Jelonek, L., Akum, N., Zhang, F. and Kogel, K.-H. (2013). Effector candidates in the secretome of Piriformospora indica, a ubiquitous plant-associated fungus. Frontiers in Plant Science, 4, 228.CrossRefGoogle ScholarPubMed
Rodriguez, R. J., White Jr, J. F., Arnold, A. E. and Redman, R. S. (2009). Fungal endophytes: diversity and functional roles. New Phytologist, 182, 314330.CrossRefGoogle ScholarPubMed
Rojas, E. C., Jørgensen, H. J. L., Jensen, B. and Collinge, D. B. (2018). Fusarium diseases: biology and management perspectives. In Integrated Disease Management of Wheat and Barley, ed. Oliver, R. P. Cambridge, UK: Burleigh Dodds Science Publishing. doi: 10.19103/AS.2018.0039.02Google Scholar
Rook, F. (2016). Metabolic engineering of chemical defence pathways in plant disease control. In Plant Pathogen Resistance Biotechnology, ed. Collinge, D. B. New York and London: Wiley-Blackwell, pp. 7189.CrossRefGoogle Scholar
Rovenich, H., Boshoven, J. C. and Thomma, B. P. H. J. (2014). Filamentous pathogen effector functions: of pathogens, hosts and microbiomes. Current Opinion in Plant Biology, 20, 96103.CrossRefGoogle ScholarPubMed
Sánchez-Vallet, A., Saleem-Batcha, R., Kombrink, A. et al. (2013). Fungal effector Ecp6 outcompetes host immune receptor for chitin binding through intrachain LysM dimerization. eLife, 2, e00790.CrossRefGoogle ScholarPubMed
Sánchez-Vallet, A., McDonald, M. C., Solomon, P. S. and McDonald, B. A. (2015). Is Zymoseptoria tritici a hemibiotroph? Fungal Genetics and Biology, 79, 2932.CrossRefGoogle ScholarPubMed
Sapkota, R., Jørgensen, L. N. and Nicolaisen, M. (2017). Spatiotemporal variation and networks in the mycobiome of the wheat canopy. Frontiers in Plant Science, 8, 1357.CrossRefGoogle ScholarPubMed
Schäfer, P., Pfiffi, S., Voll, L. M. et al. (2009). Manipulation of plant innate immunity and gibberellin as factor of compatibility in the mutualistic association of barley roots with Piriformospora indica. The Plant Journal, 59, 461474.CrossRefGoogle ScholarPubMed
Schardl, C. L. and Phillips, T. D. (1997). Protective grass endophytes: where are they from and where are they going? Plant Disease, 81, 430438.CrossRefGoogle ScholarPubMed
Schisler, D. A. and Slininger, P. J. (1997). Microbial selection strategies that enhance the likelihood of developing commercial biological control products. Journal of Industrial Microbiology and Biotechnology, 19, 172179.CrossRefGoogle Scholar
Schulz, B. and Boyle, C. (2005). The endophytic continuum. Mycological Research, 109, 661686.CrossRefGoogle ScholarPubMed
Shetty, N. P., Kristensen, B. K., Newman, M. A. et al. (2003). Association of hydrogen peroxide with restriction of Septoria tritici in resistant wheat. Physiological and Molecular Plant Pathology, 62, 333346.CrossRefGoogle Scholar
Stein, E., Molitor, A., Kogel, K. H. and Waller, F. (2008). Systemic resistance in Arabidopsis conferred by the mycorrhizal fungus Piriformospora indica requires Jasmonic Acid signaling and the cytoplasmic function of NPR1. Plant and Cell Physiology, 49, 17471751.CrossRefGoogle ScholarPubMed
Tenenboim, H. and Brotman, Y. (2016). Omic relief for the biotically stressed: metabolomics of plant biotic interactions. Trends in Plant Science, 21, 781791.CrossRefGoogle ScholarPubMed
Tian, B.-Y., Cao, Y. and Zhang, K.-Q. (2015). Metagenomic insights into communities, functions of endophytes, and their associates with infection by root-knot nematode, Meloidogyne incognita, in tomato roots. Scientific Reports, 5, 17087.CrossRefGoogle ScholarPubMed
Toju, H., Tanabe, A. S., Yamamoto, S. and Sato, H. (2012). High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS One, 7, e40863.CrossRefGoogle Scholar
van den Burg, H. A., Harrison, S. J., Joosten, M. H. A. J., Vervoort, J. and de Wit, P. J. G. M. (2006). Cladosporium fulvum Avr4 protects fungal cell walls against hydrolysis by plant chitinases accumulating during infection. Molecular Plant–Microbe Interactions, 19, 14201430.CrossRefGoogle ScholarPubMed
Villaverde, J. J., Sevilla-Morán, B., Sandín-España, P., López-Goti, C. and Alonso-Prados, J. L. (2014). Biopesticides in the framework of the European Pesticide Regulation (EC) No. 1107/2009. Pest Management Science, 70, 25.CrossRefGoogle ScholarPubMed
Waller, F., Mukherjee, K., Deshmukh, S. D. et al. (2008). Systemic and local modulation of plant responses by Piriformospora indica and related Sebacinales species. Journal of Plant Physiology, 165, 6070.CrossRefGoogle ScholarPubMed
Wani, Z. A., Ashraf, N., Mohiuddin, T. and Riyaz-Ul-Hassan, S. (2015). Plant-endophyte symbiosis, an ecological perspective. Applied Microbiology and Biotechnology, 99, 29552965.CrossRefGoogle ScholarPubMed
Waqas, M., Khan, A. L., Kamran, M. et al. (2012). Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules, 17, 1075410773.CrossRefGoogle ScholarPubMed
Waqas, M., Khan, A. L., Shahzad, R., Ullah, I., Khan, A. R. and Lee, I. J. (2015). Mutualistic fungal endophytes produce phytohormones and organic acids that promote japonica rice plant growth under prolonged heat stress. Journal of Zhejiang University Science B, 16, 10111018.CrossRefGoogle ScholarPubMed
Weiß, M., Waller, F., Zuccaro, A. and Selosse, M.-A. (2016). Sebacinales: one thousand and one interactions with land plants. New Phytologist, 211, 2040.CrossRefGoogle ScholarPubMed
Woolhouse, M. E. J., Haydon, D. T. and Antia, R. (2005). Emerging pathogens: the epidemiology and evolution of species jumps. Trends in Ecology & Evolution, 20, 238244.CrossRefGoogle ScholarPubMed
Xu, X., Wang, C., Li, S. et al. (2015). Friend or foe: differential responses of rice to invasion by mutualistic or pathogenic fungi revealed by RNAseq and metabolite profiling. Nature Reports, 5(13624), 1–14.Google ScholarPubMed
Xu, X. M., Jeffries, P., Pautasso, M. and Jeger, M. J. (2011). A numerical study of combined use of two biocontrol agents with different biocontrol mechanisms in controlling foliar pathogens. Phytopathology, 101, 10321044.CrossRefGoogle ScholarPubMed
Ye, W., Shen, C.-H., Lin, Y. et al. (2014). Growth promotion-related miRNAs in Oncidium orchid roots colonized by the endophytic fungus Piriformospora indica. PLoS One, 9, e84920.CrossRefGoogle ScholarPubMed
Zachow, C., Tilcher, R. and Berg, G. (2008). Sugar beet-associated bacterial and fungal communities show a high indigenous antagonistic potential against plant pathogens. Microbial Ecology, 55, 119129.CrossRefGoogle ScholarPubMed
Zamioudis, C. and Pieterse, C. M. J. (2011). Modulation of host immunity by beneficial microbes. Molecular Plant–Microbe Interactions, 25, 139150.CrossRefGoogle Scholar
Zeilinger, S., Gupta, V. K., Dahms, T. E. S. et al. (2016). Friends or foes? Emerging insights from fungal interactions with plants. FEMS Microbiology Reviews, 40, 182207.CrossRefGoogle ScholarPubMed
Zhao, Y., Gao, Z., Tian, B. et al. (2017). Endosphere microbiome comparison between symptomatic and asymptomatic roots of Brassica napus infected with Plasmodiophora brassicae. PLoS One, 12, e0185907.CrossRefGoogle ScholarPubMed
Zuccaro, A., Basiewicz, M., Zurawska, M., Biedenkopf, D. and Kogel, K.-H. (2009). Karyotype analysis, genome organization, and stable genetic transformation of the root colonizing fungus Piriformospora indica. Fungal Genetics and Biology, 46, 543550.CrossRefGoogle ScholarPubMed
Zuccaro, A., Lahrmann, U., Güldener, U. et al. (2011). Endophytic life strategies decoded by genome and transcriptome analyses of the mutualistic root symbiont Piriformospora indica. PLoS Pathogens, 7, e1002290.CrossRefGoogle ScholarPubMed

References

Adamek, A. (1965). Submerse cultivation of the fungus Metarhizium anisopliae. Folia Microbiologica, 4, 255257.CrossRefGoogle Scholar
Adams, A. J., Chappie, A. and Hall, F. R. (1990). Droplet spectra for some agricultural fan nozzles, with respect to drift and biological efficiency. In Pesticide Formulations and Application Systems, ed. L. E. Bode, J. L. Hazen and D. G. Chasin. West Conshohocken, PA: ASTM International, pp. 156169.CrossRefGoogle Scholar
Akello, J., Dubois, T., Coyne, D. and Kyamanywa, S. (2008). Effect of endophytic Beauveria bassiana on populations of the banana weevil, Cosmopolites sordidus, and their damage in tissue-cultured banana plants. Entomologia Experimentalis et Applicata, 129, 157165.CrossRefGoogle Scholar
Andersch, W., Hartwig, J., Reinecke, P. and Stenzel, K. (1990). Production of mycelial granules of the entomopathogenic fungus Metarhizium anisopliae for biological control of soil pests. In 5th International Colloquium on Invertebrate Pathology and Microbial Control: incorporating the 23rd Annual Meeting of the Society for Invertebrate Pathology: Proceedings and Abstracts. Adelaide: Society for Invertebrate Pathology, pp. 25.Google Scholar
Arnold, A. E. and Lutzoni, F. (2007). Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology, 88, 541549.CrossRefGoogle ScholarPubMed
Barelli, L., Moonjely, S., Behie, S. W. and Bidochka, M. J. (2016). Fungi with multifunctional lifestyles: endophytic insect pathogenic fungi. Plant Molecular Biology, 90, 657664.CrossRefGoogle ScholarPubMed
Bashan, Y., De-Bashan, L. E., Prabhu, S. and Hernandez, J.-P. (2014). Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant and Soil, 378, 133.CrossRefGoogle Scholar
Bateman, R. and Chapple, A. (2001). The spray application of mycopesticide formulations. In Fungi as Biocontrol Agents: Progress Problems and Potential, ed. T. M. Butt, C. Jackson and N. Magan. Wallingford: CABI Publishing, pp. 289309.CrossRefGoogle Scholar
Bejarano, A., Sauer, U. and Preininger, C. (2017). Design and development of a workflow for microbial spray formulations including decision criteria. Applied Microbiology and Biotechnology, 101, 73357346.CrossRefGoogle ScholarPubMed
Bernhard, K., Holloway, P. J. and Burges, H. D. (1998). A catalogue of formulation additives: Function, nomenclature, properties and suppliers. In Formulation of Microbial Biopesticides: Beneficial Microorganisms, Nematodes and Seed Treatments, ed. H. D. Burges. Dordrecht, The Netherlands: Kluwer Academic Publishers, pp. 333365.Google Scholar
Bidochka, M. J., Pfeifer, T. A. and Khachatourians, G. G. (1987). Development of the entomopathogenic fungus Beauveria bassiana in liquid cultures. Mycopathologia, 99, 7783.CrossRefGoogle Scholar
Bing, L. A. and Lewis, L. C. (1991). Suppression of Ostrinia nubilalis (Huebner) (Lepidoptera: Pyralidae) by endophytic Beauveria bassiana (Balsamo) Vuillemin. Environmental Entomology, 20, 12071211.CrossRefGoogle Scholar
Boeger, P., Wakabayashi, K. and Hirai, K., (2012). Herbicide Classes in Development: Mode of Action, Targets, Genetic Engineering, Chemistry. Heidelberg, Germany: Springer.Google Scholar
Brownbridge, M., Reay, S. D., Nelson, T. L. and Glare, T. R. (2012). Persistence of Beauveria bassiana (Ascomycota: Hypocreales) as an endophyte following inoculation of radiata pine seed and seedlings. Biological Control, 61, 194200.CrossRefGoogle Scholar
Burges, H. D. (2012). Formulation of mycoinsecticides. In Formulation of Microbial Biopesticides: Beneficial Microorganisms, Nematodes and Seed Treatments, ed. H. D. Burges. Dordrecht, The Netherlands: Kluwer Academic Publishers, pp. 131–186.Google Scholar
Clay, K. (1989). Clavicipitaceous endophytes of grasses: their potential as biocontrol agents. Mycological Research, 92, 112.CrossRefGoogle Scholar
De Bary, A. (1866). Morphologie und Physiologie der Pilze, Flechten und Myxomyceten. Leipzig: W. Engelmann.Google Scholar
De Faria, M. R. and Wraight, S. P. (2007). Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biological Control, 43, 237256.CrossRefGoogle Scholar
Gómez-Vidal, S., Lopez-Llorca, L., Jansson, H.-B. and Salinas, J. (2006). Endophytic colonization of date palm (Phoenix dactylifera L.) leaves by entomopathogenic fungi. Micron, 37, 624632.CrossRefGoogle ScholarPubMed
Greenfield, M., Gómez-Jiménez, M. I., Ortiz, V., Vega, F. E., Kramer, M. and Parsa, S. (2016). Beauveria bassiana and Metarhizium anisopliae endophytically colonize cassava roots following soil drench inoculation. Biological Control, 95, 4048.CrossRefGoogle ScholarPubMed
Guesmi-Jouini, J., Garrido-Jurado, I., López-Díaz, C., Halima-Kamel, M. B. and Quesada-Moraga, E. (2014). Establishment of fungal entomopathogens Beauveria bassiana and Bionectria ochroleuca (Ascomycota: Hypocreales) as endophytes on artichoke Cynara scolymus. Journal of Invertebrate Pathology, 119, 14.CrossRefGoogle ScholarPubMed
Gurulingappa, P., Sword, G. A., Murdoch, G. and McGee, P. A. (2010). Colonization of crop plants by fungal entomopathogens and their effects on two insect pests when in planta. Biological Control, 55, 3441.CrossRefGoogle Scholar
Hardoim, P. R., Van Overbeek, L. S., Berg, G. et al. (2015). The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology and Molecular Biology Reviews, 79, 293320.CrossRefGoogle ScholarPubMed
Hazen, J. L. (2000). Adjuvants – terminology, classification, and chemistry. Weed Technology, 14, 773784.CrossRefGoogle Scholar
Hegedus, D. D., Bidochka, M. J. and Khachatourians, G. G. (1990). Beauveria bassiana submerged conidia production in a defined medium containing chitin, two hexosamines or glucose. Applied Microbiology and Biotechnology, 33, 641647.CrossRefGoogle Scholar
Hegedus, D. D., Bidochka, M. J., Miranpuri, G. S. and Khachatourians, G. G. (1992). A comparison of the virulence, stability and cell-wall-surface characteristics of three spore types produced by the entomopathogenic fungus Beauveria bassiana. Applied Microbiology and Biotechnology, 36, 785789.CrossRefGoogle Scholar
Hodgkinson, M. C., Johnson, D., Smith, G. et al. (2002). Causes of phytotoxicity induced by petroleum-derived spray oil. In Spray Oils -Beyond 2000, ed. Beattie, G. A. C., D. M. Watson, M. L. Stevens, D. J. Rae and R. N. Spooner-Hart. Sydney, Australia: University of Western Sydney, pp. 170178.Google Scholar
Holder, D. J., Kirkland, B. H., Lewis, M. W. and Keyhani, N. O. (2007). Surface characteristics of the entomopathogenic fungus Beauveria (Cordyceps) bassiana. Microbiology, 153, 34483457.CrossRefGoogle ScholarPubMed
Humphreys, A. M., Matewele, P., Trinci, A. P. and Gillespie, A. T. (1989). Effects of water activity on morphology, growth and blastospore production of Metarhizium anisopliae, Beauveria bassiana and Paecilomyces farinosus in batch and fed-batch culture. Mycological Research, 92, 257264.CrossRefGoogle Scholar
Inglis, G. D., Goettel, M. and Johnson, D. (1995). Influence of ultraviolet light protectants on persistence of the entomopathogenic fungus, Beauveria bassiana. Biological Control, 5, 581590.CrossRefGoogle Scholar
Inglis, G. D., Goettel, M. S., Butt, T. M. and Strasser, H. (2001). Use of hyphomycetous fungi for managing insect pests. In Fungi as Biocontrol Agents: Progress Problems and Potential, ed. T. M. Butt, C. Jackson and N. Magan. Wallingford: CABI Publishing, pp. 2370.CrossRefGoogle Scholar
Issaly, N., Chauveau, H., Aglevor, F., Fargues, J. and Durand, A. (2005). Influence of nutrient, pH and dissolved oxygen on the production of Metarhizium flavoviride Mf189 blastospores in submerged batch culture. Process Biochemistry, 40, 14251431.CrossRefGoogle Scholar
Jaber, L. R. and Enkerli, J. (2016). Effect of seed treatment duration on growth and colonization of Vicia faba by endophytic Beauveria bassiana and Metarhizium brunneum. Biological Control, 103, 187195.CrossRefGoogle Scholar
Jaber, L. R. and Enkerli, J. (2017). Fungal entomopathogens as endophytes: can they promote plant growth? Biocontrol Science and Technology, 27, 2841.CrossRefGoogle Scholar
Jackson, M. A. and Jaronski, S. T. (2009a). Composition of entomopathogenic fungus and method of production and application for insect control. USA patent application 11/901,547. 19th March, 2009.Google Scholar
Jackson, M. A. and Jaronski, S. T. (2009b). Production of microsclerotia of the fungal entomopathogen Metarhizium anisopliae and their potential for use as a biocontrol agent for soil-inhabiting insects. Mycological Research, 113, 842850.CrossRefGoogle ScholarPubMed
Jackson, M. A. and Schisler, D. A. (1995). Liquid culture production of microsclerotia of Colletotrichum truncatum for use as bioherbicidal propagules. Mycological Research, 99, 879884.CrossRefGoogle Scholar
Jaronski, S. T. and Mascarin, G. M. (2016). Mass production of fungal entomopathogens. In Microbial Control of Insect and Mite Pests: From Theory to Practice, ed. L. A. Lacey. London: Elsevier Science, pp. 141156.Google Scholar
Jenkins, N. E. and Goettel, M. S. (1997). Methods for mass-production of microbial control agents of grasshoppers and locusts. Memoirs of the Entomological Society of Canada, 129, 3748.CrossRefGoogle Scholar
Jenkins, N. and Prior, C. (1993). Growth and formation of true conidia by Metarhizium flavoviride in a simple liquid medium. Mycological Research, 97, 14891494.CrossRefGoogle Scholar
Johnson, L. J., De Bonth, A. C., Briggs, L. R. et al. (2013). The exploitation of epichloae endophytes for agricultural benefit. Fungal Diversity, 60, 171188.CrossRefGoogle Scholar
Kassa, A., Stephan, D., Vidal, S. and Zimmermann, G. (2004). Production and processing of Metarhizium anisopliae var. acridum submerged conidia for locust and grasshopper control. Mycological Research, 108, 93100.CrossRefGoogle ScholarPubMed
Kleespies, R. and Zimmermann, G. (1992). Production of blastospores by three strains of Metarhizium anisopliae (Metch.) Sorokin in submerged culture. Biocontrol Science and Technology, 2, 127135.CrossRefGoogle Scholar
Krell, V., Jakobs-Schoenwandt, D., Hettlage, L., Vidal, S. and Patel, A. V. (2017a). Exoenzymes improve penetration and colonization of potato plants by endophytic entomopathogenic Metarhizium brunneum. In 16th meeting of the IOBC-WPRS Working Group Microbial and Nematode Control of Invertebrate Pests, ed. Tarasco, E., Jehle, J. A, Burjanadze, M, L. Ruiu, V. Půža, E. Quesada-Moraga, M. Lopez-Ferber and D. Stephan. Tbilisi, Georgia: IOBC-WPRS, 65–69.Google Scholar
Krell, V., Jakobs-Schoenwandt, D., Vidal, S. and Patel, A. V. (2017b). Encapsulation of Metarhizium brunneum enhances endophytism in tomato plants. Biological Control, 116, 6273.CrossRefGoogle Scholar
Krell, V., Jakobs-Schoenwandt, D., Vidal, S. and Patel, A. V. (2018). Cellulase enhances endophytism of encapsulated Metarhizium brunneum in potato plants. Fungal Biology, 122, 373378.CrossRefGoogle ScholarPubMed
Leckie, B. M., Ownley, B. H., Pereira, R. M. et al. (2008). Mycelia and spent fermentation broth of Beauveria bassiana incorporated into synthetic diets affect mortality, growth and development of larval Helicoverpa zea (Lepidoptera: Noctuidae). Biocontrol Science and Technology, 18, 697710.CrossRefGoogle Scholar
Leland, J. E., Mullins, D. E., Vaughan, L. J. and Warren, H. L. (2005). Effects of media composition on submerged culture spores of the entomopathogenic fungus, Metarhizium anisopliae var. acridum, part 1: comparison of cell wall characteristics and drying stability among three spore types. Biocontrol Science and Technology, 15, 379392.CrossRefGoogle Scholar
Lohse, R., Jakobs-Schönwandt, D. and Patel, A. V. (2014). Screening of liquid media and fermentation of an endophytic Beauveria bassiana strain in a bioreactor. AMB Express, 4, 47.CrossRefGoogle Scholar
Lohse, R., Jakobs-Schönwandt, D., Vidal, S. and Patel, A. V. (2015). Evaluation of new fermentation and formulation strategies for a high endophytic establishment of Beauveria bassiana in oilseed rape plants. Biological Control, 88, 2636.CrossRefGoogle Scholar
Magalhäes, B. P., Dias, J. M. C. D. S. and Ferreira, C. M. (1994). Mycelial production of Metarhizium anisopliae in liquid culture using different sources of carbon and nitrogen. Revista de Microbiologia, 25, 181187.Google Scholar
Marques, E. J., Alves, S. B. and Marques, I. M. (1999). Effects of the temperature and storage on formulations with mycelia of Beauveria bassiana (Bals.) Vuill and Metarhizium anisopliae (Metschn.) Sorok. Brazilian Archives of Biology and Technology, 42, 153160.CrossRefGoogle Scholar
Mascarin, G. M., Kobori, N. N., De Jesus Vital, R. C., Jackson, M. A. and Quintela, E. D. (2014). Production of microsclerotia by Brazilian strains of Metarhizium spp. using submerged liquid culture fermentation. World Journal of Microbiology and Biotechnology, 30, 15831590.CrossRefGoogle ScholarPubMed
Mayerhofer, J., Eckard, S., Hartmann, M. et al. (2017). Assessing effects of the entomopathogenic fungus Metarhizium brunneum on soil microbial communities in Agriotes spp. biological pest control. FEMS Microbiology Ecology, 93, fix117, 115.CrossRefGoogle ScholarPubMed
Mckinnon, A. C., Saari, S., Moran-Diez, M. E. et al. (2017). Beauveria bassiana as an endophyte: a critical review on associated methodology and biocontrol potential. BioControl, 62, 117.CrossRefGoogle Scholar
Moonjely, S., Barelli, L. and Bidochka, M. (2016). Insect pathogenic fungi as endophytes. Advances in Genetics, 94, 107135.CrossRefGoogle ScholarPubMed
Moore, D., Bridge, P., Higgins, P., Bateman, R. and Prior, C. (1993). Ultra-violet radiation damage to Metarhizium flavoviride conidia and the protection given by vegetable and mineral oils and chemical sunscreens. Annals of Applied Biology, 122, 605616.CrossRefGoogle Scholar
Ownley, B. H., Gwinn, K. D. and Vega, F. E. (2010). Endophytic fungal entomopathogens with activity against plant pathogens: ecology and evolution. BioControl, 55, 113128.CrossRefGoogle Scholar
Parsa, S., Ortiz, V. and Vega, F. E. (2013). Establishing fungal entomopathogens as endophytes: towards endophytic biological control. Journal of Visualized Experiments, 74 , 50360.Google Scholar
Pedrini, S., Merritt, D. J., Stevens, J. and Dixon, K. (2017). Seed coating: science or marketing spin? Trends in Plant Science, 22, 106116.CrossRefGoogle ScholarPubMed
Pereira, R. M. and Roberts, D. W. (1990). Dry mycelium preparations of entomopathogenic fungi, Metarhizium anisopliae and Beauveria bassiana. Journal of Invertebrate Pathology, 56, 3946.CrossRefGoogle Scholar
Pereira, R. M. and Roberts, D. W. (1991). Alginate and cornstarch mycelial formulations of entomopathogenic fungi, Beauveria bassiana and Metarhizium anisopliae. Journal of Economic Entomology, 84, 16571661.CrossRefGoogle Scholar
Posada, F. and Vega, F. E. (2005). Establishment of the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales) as an endophyte in cocoa seedlings (Theobroma cacao). Mycologia, 97, 11951200.CrossRefGoogle ScholarPubMed
Posada, F., Aime, M. C., Peterson, S. W., Rehner, S. A. and Vega, F. E. (2007). Inoculation of coffee plants with the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales). Mycological research, 111, 748757.CrossRefGoogle ScholarPubMed
Powell, W. A., Klingeman, W. E., Ownley, B. H. and Gwinn, K. D. (2009). Evidence of endophytic Beauveria bassiana in seed-treated tomato plants acting as a systemic entomopathogen to larval Helicoverpa zea (Lepidoptera: Noctuidae). Journal of Entomological Science, 44, 391396.CrossRefGoogle Scholar
Przyklenk, M., Vemmer, M., Hanitzsch, M. and Patel, A. (2017). A bioencapsulation and drying method increases shelf life and efficacy of Metarhizium brunneum conidia. Journal of Microencapsulation, 34, 498512.CrossRefGoogle ScholarPubMed
Quesada-Moraga, E., Landa, B., Muñoz-Ledesma, J., Jiménez-Diáz, R. and Santiago-Alvarez, C. (2006). Endophytic colonisation of opium poppy, Papaver somniferum, by an entomopathogenic Beauveria bassiana strain. Mycopathologia, 161, 323329.CrossRefGoogle ScholarPubMed
Quesada-Moraga, E., Munoz-Ledesma, F. and Santiago-Alvarez, C. (2009). Systemic protection of Papaver somniferum L. against Iraella luteipes (Hymenoptera: Cynipidae) by an endophytic strain of Beauveria bassiana (Ascomycota: Hypocreales). Environmental Entomology, 38, 723730.CrossRefGoogle ScholarPubMed
Ravensberg, W. J. (2011). A Roadmap to the Successful Development and Commercialization of Microbial Pest Control Products for Control of Arthropods. Luxembourg: Springer Science & Business Media.CrossRefGoogle Scholar
Raya-Díaz, S., Sánchez-Rodríguez, A. R., Segura-Fernández, J. M., Del Campillo, M. D. C. and Quesada-Moraga, E. (2017). Entomopathogenic fungi-based mechanisms for improved Fe nutrition in sorghum plants grown on calcareous substrates. PloS One, 12, e0185903.CrossRefGoogle ScholarPubMed
Reay, S., Brownbridge, M., Gicquel, B., Cummings, N. and Nelson, T. (2010). Isolation and characterization of endophytic Beauveria spp. (Ascomycota: Hypocreales) from Pinus radiata in New Zealand forests. Biological Control, 54, 5260.CrossRefGoogle Scholar
Resquín-Romero, G., Garrido-Jurado, I., Delso, C., Ríos-Moreno, A. and Quesada-Moraga, E. (2016). Transient endophytic colonizations of plants improve the outcome of foliar applications of mycoinsecticides against chewing insects. Journal of Invertebrate Pathology, 136, 2331.CrossRefGoogle ScholarPubMed
Ríos-Moreno, A., Garrido-Jurado, I., Resquín-Romero, G., Arroyo-Manzanares, N., Arce, L. and Quesada-Moraga, E. (2016). Destruxin A production by Metarhizium brunneum strains during transient endophytic colonisation of Solanum tuberosum. Biocontrol Science and Technology, 26, 15741585.CrossRefGoogle Scholar
Rodriguez, R., White Jr, J., Arnold, A. and Redman, A. R. A. (2009). Fungal endophytes: diversity and functional roles. New Phytologist, 182, 314330.CrossRefGoogle ScholarPubMed
Rombach, M., Aguda, R. and Roberts, D. W. (1988). Production of Beauveria bassiana [Deuteromycotina: Hyphomycetes] in different liquid media and subsequent conidiation of dry mycelium. Entomophaga, 33, 315324.CrossRefGoogle Scholar
Sánchez-Rodríguez, A. R., Del Campillo, M. C. and Quesada-Moraga, E. (2015). Beauveria bassiana: An entomopathogenic fungus alleviates Fe chlorosis symptoms in plants grown on calcareous substrates. Scientia Horticulturae, 197, 193202.CrossRefGoogle Scholar
Schulz, B. and Boyle, C. (2005). The endophytic continuum. Mycological Research, 109, 661686.CrossRefGoogle ScholarPubMed
Shah, P., Douro-Kpindou, O.-K., Sidibe, A., Daffe, C., Van Der Pauuw, H. and Lomer, C. (1998). Effects of the sunscreen oxybenzone on field efficacy and persistence of Metarhizium flavoviride conidia against Kraussella amabile (Orthoptera: Acrididae) in Mali, West Africa. Biocontrol Science and Technology, 8, 357364.CrossRefGoogle Scholar
Shanmugam, S. (2015). Granulation techniques and technologies: recent progresses. BioImpacts, 5, 5563.CrossRefGoogle ScholarPubMed
Shearer, J. F. and Jackson, M. A. (2006). Liquid culturing of microsclerotia of Mycoleptodiscus terrestris, a potential biological control agent for the management of hydrilla. Biological Control, 38, 298306.CrossRefGoogle Scholar
Singh, M., Orsenigo, J. and Shah, D. (1984). Surface tension and contact angle of herbicide solutions affected by surfactants. Journal of the American Oil Chemists’ Society, 61, 596600.CrossRefGoogle Scholar
Tefera, T. and Vidal, S. (2009). Effect of inoculation method and plant growth medium on endophytic colonization of sorghum by the entomopathogenic fungus Beauveria bassiana. BioControl, 54, 663669.CrossRefGoogle Scholar
Thomas, K., Khachatourians, G. and Ingledew, W. (1987). Production and properties of Beauveria bassiana conidia cultivated in submerged culture. Canadian Journal of Microbiology, 33, 1220.CrossRefGoogle Scholar
Vega, F. E. (2008). Insect pathology and fungal endophytes. Journal of Invertebrate Pathology, 98, 277279.CrossRefGoogle ScholarPubMed
Vemmer, M. and Patel, A. V. (2013). Review of encapsulation methods suitable for microbial biological control agents. Biological Control, 67, 380389.CrossRefGoogle Scholar
Vidal, S. and Jaber, L. R. (2015). Entomopathogenic fungi as endophytes: plant–endophyte–herbivore interactions and prospects for use in biological control. Current Science, 109, 4654.Google Scholar
Wagner, B. L. and Lewis, L. C. (2000). Colonization of corn, Zea mays, by the entomopathogenic fungus Beauveria bassiana. Applied and Environmental Microbiology, 66, 34683473.Google ScholarPubMed
Wraight, S. P., Jackson, M. A. and De Kock, S. L. (2001). Production, stabilization and formulation of fungal biocontrol agents. In Fungi as Biocontrol Agents: Progress Problems and Potential, ed. T. M. Butt, C. Jackson and N. Magan. Wallingford: CABI Publishing, pp. 253288.CrossRefGoogle Scholar
Yuan, Y. and Lee, T. R. (2013). Contact angle and wetting properties. In Surface Science Techniques, ed. B. Holst and G. Bracco. Heidelberg, Germany: Springer, pp. 334.CrossRefGoogle Scholar
Zimmermann, G. (1982). Effect of high temperatures and artificial sunlight on the viability of conidia of Metarhizium anisopliae. Journal of Invertebrate Pathology, 40, 3640.CrossRefGoogle Scholar

References

Aly, A. H., Debbab, A., Kjer, J. and Proksch, P. (2010). Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products. Fungal Diversity, 41, 116.CrossRefGoogle Scholar
Akello, J. and Sikora, R. (2012). Systemic acropedal influence of endophyte seed treatment on Acyrthosiphon pisum and Aphis fabae offspring development and reproductive fitness. Biological Control, 61, 215221.CrossRefGoogle Scholar
Akello, J., Dubois, T., Coyne, D. and Hillnhutter, C. (2007). Beauveria bassiana as an endophyte in tissue-cultured banana plants: a novel way to combat the banana weevil Cosmopolites sordidus. In III International Symposium on Banana: ISHS-ProMusa Symposium on Recent Advances in Banana Crop Protection for Sustainable Production and Improved Livelihoods, ed. D. Jones and I. Van den Bergh. Acta Horticulturae, 828, 129138.Google Scholar
Akello, J., Dubois, T., Coyne, D. and Kyamanywa, S. (2008). Endophytic Beauveria bassiana in banana (Musa spp.) reduces banana weevil (Cosmopolites sordidus) fitness and damage. Crop Protection, 27, 14371441.CrossRefGoogle Scholar
Akello, J., Dubois, T., Coyne, D. and Kyamanywa, S. (2009). The effects of Beauveria bassiana dose and exposure duration on colonization and growth of tissue cultured banana (Musa sp.) plants. Biological Control, 49, 610.CrossRefGoogle Scholar
Akutse, K. S., Maniania, N. K., Fiaboe, K. K. M., Van den Berg, J. and Ekesi, S. (2013). Endophytic colonization of Vicia faba and Phaseolus vulgaris (Fabaceae) by fungal pathogens and their effects on the life-history parameters of Liriomyza huidobrensis (Diptera: Agromyzidae). Fungal Ecology, 6, 293301.CrossRefGoogle Scholar
Arnold, A., Maynard, Z., Gilbert, G., Coley, P. and Kursar, T. (2000). Are tropical endophytic fungi hyper diverse? Ecology Letters, 3, 267274.CrossRefGoogle Scholar
Arnold, A., Mejía, L., Kyllo, D. et al. (2003). Fungal endophytes limit pathogen damage in a tropical tree. Proceedings of the National Academy of Sciences of the United States of America, 100, 1564915654.CrossRefGoogle Scholar
Barelli, L., Moonjely, S., Behie, S. W. and Bidochka, M. J. (2016). Fungi with multifunctional lifestyles: endophytic insect pathogenic fungi. Plant Molecular Biology, 90, 657664.CrossRefGoogle ScholarPubMed
Behie, S. W. and Bidochka, M. J. (2014). Ubiquity of insect-derived nitrogen transfer to plants by endophytic insect-pathogenic fungi: an additional branch of the soil nitrogen cycle. Applied and Environmental Microbiology, 80, 15531560.CrossRefGoogle ScholarPubMed
Behie, S. W., Zelisko, P. M. and Bidochka, M. J. (2012). Endophytic insect-parasitic fungi translocate nitrogen directly from insects to plants. Science, 336, 15761577.CrossRefGoogle ScholarPubMed
Behie, S. W., Jones, S. J. and Bidochka, M. J. (2015). Plant tissue localization of the endophytic insect pathogenic fungi Metarhizium and Beauveria. Fungal Ecology, 13, 112119.CrossRefGoogle Scholar
Benhamou, N. and Brodeur, J. (2001). Pre-inoculation of Ri T-DNA transformed cucumber roots with the mycoparasite, Verticillium lecanii, induces host defense reactions against Pythium ultimum infection. Physiological and Molecular Plant Pathology, 58, 133146.CrossRefGoogle Scholar
Bernardini, M., Carilli, A., Pacioni, G. and Santurbano, B. (1975). Isolation of beauvericin from Paecilomyces fumoso-roseus. Phytochemistry, 14, 1865.CrossRefGoogle Scholar
Bidochka, M. and Khachatourians, C. (1991). The implication of metabolic acids produced by Beauveria bassiana in pathogenesis of the migratory grasshopper, Melanoplus sanguinipes. Journal of Invertebrate Pathology, 58, 106117.CrossRefGoogle Scholar
Bing, L. and Lewis, L. (1992). Endophytic Beauveria bassiana in corn, the influence of the plant growth stage and Ostrimia nubilalis. Biocontrol Science and Technology, 2, 3947.CrossRefGoogle Scholar
Boucias, D. G. and Pendland, J. C. (1998). Entomopathogenic fungi: fungi imperfecti. In Principles of Insect Pathology, ed. D. Boucias and Jacquelyn C. Pendland. Boston, MA: Springer, pp. 321364.CrossRefGoogle Scholar
Brownbridge, M., Reay, S. D., Nelson, T. L. and Glare, T. R. (2012). Persistence of Beauveria bassiana (Ascomycota: Hypocreales) as an endophyte following inoculation of radiata pine seed and seedlings. Biological Control, 61, 194200.CrossRefGoogle Scholar
Bruck, D. J. and Lewis, L. C. (2002). Rainfall and crop residue effects on soil dispersion and Beauveria bassiana spread to corn. Applied Soil Ecology, 20, 183190.CrossRefGoogle Scholar
Bultman, T. L. and Bell, G. D. (2003). Interaction between fungal endophytes and environmental stressors influences plant resistance to insects. Oikos, 103, 182190.CrossRefGoogle Scholar
Card, S., Johnson, L., Teasdale, S. and Caradus, J. (2016). Deciphering endophyte behaviour: the link between endophyte biology and efficacious biological control agents. FEMS Microbiology Ecology, 92, fiw114.CrossRefGoogle ScholarPubMed
Carroll, G. (1988). Fungal endophytes in stems and leaves: from latent pathogens to mutualistic symbiont. Ecology, 69, 29.CrossRefGoogle Scholar
Clayton, W., Eaton, C. J., Dupont, P.-Y. et al. (2017). Analysis of simple sequence repeat (SSR) structure and sequence within Epichloë endophyte genomes reveals impacts on gene structure and insights into ancestral hybridization events. PLoS One 12, e0183748.CrossRefGoogle ScholarPubMed
Craven, K. D., Hsiau, P. T. W., Leuchtmann, A., Hollin, W. and Schardl, C. L. (2001). Multigene phylogeny of Epichloë species, fungal symbionts of grasses. Annals of the Missouri Botanical Garden, 88, 14–34.CrossRefGoogle Scholar
De Bary, A. (1884). Vergleichende Morphologie und Biologie der Pilze, Mycetozoen und Bacterien. Leipzig: Wilhelm Engelmann.Google Scholar
De Faria, M. R. and Wraight, S. P. (2007). Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biological Control, 43, 237256.CrossRefGoogle Scholar
Elena, G. J., Beatriz, P. J., Alejandro, P. and Lecuona, R. E. (2011). Metarhizium anisopliae (Metschnikoff) Sorokin promotes growth and has endophytic activity in tomato plants. Advances in Biological Research, 5, 2227.Google Scholar
Fargues, J., Goettel, M. S., Smits, N. et al. (1996). Variability in susceptibility to simulated sunlight of conidia among isolates of entomopathogenic Hyphomycetes. Mycopathologia, 135, 171181.CrossRefGoogle ScholarPubMed
Feng, M. G., Chen, C. and Chen, B. (2004). Wide dispersal of aphid pathogenic Entomophthorales among aphids relies upon migratory alates. Environmental Microbiology, 6, 510516.CrossRefGoogle ScholarPubMed
Feng, P., Shang, Y., Cen, K. and Wang, C. (2015). Fungal biosynthesis of the bibenzoquinone oosporein to evade insect immunity. Proceedings of the National Academy of Sciences of the United States of America, 112, 1136511370.CrossRefGoogle ScholarPubMed
Fenice, M. and Gooday, G. W. (2006). Mycoparasitic actions against fungi and oomycetes by a strain (CCFEE 5003) of the fungus Lecanicillium muscarium isolated in Continental Antarctica. Annals of Microbiology, 56, 1.CrossRefGoogle Scholar
Ferron, P. (1978). Biological control of insect pests by entomogenous fungi. Annual Review of Entomology, 23, 409442.CrossRefGoogle Scholar
Fisher, P. J. and Petrini, O. (1987). Location of fungal endophytes in tissues of Suaeda fruticosa: a preliminary study. Transactions of the British Mycological Society, 89, 246249.CrossRefGoogle Scholar
France, I., Gerding, G., Gerding, M. and Sandoval, A. (2000). Patogenicidad de una colección de cepas nativas de Metarhizium spp. y Beauveria spp. en Aegorhinus superciliosus, Asynonychus cervinus y Otiorhynchus sulcatus. Agricultura Técnica, 60, 205215.CrossRefGoogle Scholar
Gao, F. K., Dai, C. C. and Liu, X. Z. (2010). Mechanisms of fungal endophytes in plant protection against pathogens. African Journal of Microbiology Research, 4, 13461351.Google Scholar
Garrido-Jurado, I., Landa, B. B. and Quesada-Moraga, E. (2016). Detection and quantification of the entomopathogenic fungal endophyte Beauveria bassiana in plants by nested and quantitative PCR. Microbial-Based Biopesticides: Methods and Protocols, pp. 161166.CrossRefGoogle ScholarPubMed
Glare, T., Caradus, J., Gelernter, W. et al. (2012). Have biopesticides come of age? Trends in Biotechnology, 30, 250258.CrossRefGoogle ScholarPubMed
Greenfield, M., Gómez-Jiménez, M. I., Ortiz, V. et al. (2016). Beauveria bassiana and Metarhizium anisopliae endophytically colonize cassava roots following soil drench inoculation. Biological Control, 95, 4048.CrossRefGoogle ScholarPubMed
Griffin, M. R. (2007). Beauveria bassiana, a cotton endophyte with biocontrol activity against seedling disease. PhD Dissertation. The University of Tennessee, Knoxville, TN.Google Scholar
Grille, G., Pascal, C., Franco, J. and Basso, C. (2001). Distribución espacial de Trialeurodes vaporariorum (Homoptera: Aleyrodidae) en plantas de tomate. Boletín de Sanidad Vegetal. Plagas, 27, 475488.Google Scholar
Gómez-Vidal, S., Lopez-Lorca, L., Jansson, H. and Salinas, J. (2006). Endophytic colonization of date palm (Phoenix dactylifera L.) leaves by entomopathogenic fungi. Micron, 37, 624632.CrossRefGoogle ScholarPubMed
Gurulingappa, P., McGee, P. A. and Sword, G. (2011). Endophytic Lecanicillium lecanii and Beauveria bassiana reduce the survival and fecundity of Aphis gossypii following contact with conidia and secondary metabolites. Crop Protection, 30, 349353.CrossRefGoogle Scholar
Hajek, A. and St. Leger, F. (1994). Interactions between fungal pathogens and insect hosts. Annual Review of Entomology, 39, 293322.CrossRefGoogle Scholar
Hajek, A. E. (1997). Ecology of terrestrial fungal entomopathogens. In Advances in Microbial Ecology, Vol. 15, ed. J. G. Jones. Boston, MA: Springer, pp. 193249.CrossRefGoogle Scholar
Hamil, R., Higgens, C., Boaz, H. and Gorman, M. (1969). The structure of beauvericin, a new depsipeptide antibiotic toxic to Artemia salina. Tetrahedron Letters, 49, 42554258.CrossRefGoogle Scholar
Hardoim, P. R., Van Overbeek, L. S., Berg, G. et al. (2015). The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology and Molecular Biology Reviews, 79, 293320.CrossRefGoogle ScholarPubMed
Herre, E. A., Mejía, L. C., Kyllo, D. A. et al. (2007). Ecological implications of antipathogen effects of tropical fungal endophytes and mycorrhizae. Ecology, 88, 550558.CrossRefGoogle ScholarPubMed
Hirano, E., Koike, M., Aiuchi, D. and Tani, M. (2008). Pre-inoculation of cucumber roots with Verticillium lecanii (Lecanicillium muscarium) induces resistance to powdery mildew. Research Bulletin of Obihiro University, 29, 8294.Google Scholar
Holt, R. D. and Hochberg, M. E. (1997). When is biological control evolutionarily stable (or is it)? Ecology, 78, 16731683.CrossRefGoogle Scholar
Hoffmann, M. and Frodsham, A. (1993). Los Enemigos Naturales de las Plagas de Insectos Vegetales. Ithaca, New York: Extensión Cooperativa de la Universidad de Cornell.Google Scholar
Hu, Q., Li, F. and Zhang, Y. (2016). Risks of mycotoxins from mycoinsecticides to humans. BioMed Research International, 2016, ID 3194321, 113.Google ScholarPubMed
Hyde, K. D. and Soytong, K. (2008). The fungal endophyte dilemma. Fungal Diversity, 33, e173.Google Scholar
Jaber, L. R. (2015). Grapevine leaf tissue colonization by the fungal entomopathogen Beauveria bassiana s. l. and its effect against downy mildew. BioControl, 60, 103112.CrossRefGoogle Scholar
Jaber, L. R. and Enkerli, J. (2016). Effect of seed treatment duration on growth and colonization of Vicia faba by endophytic Beauveria bassiana and Metarhizium brunneum. Biological Control, 103, 187195.CrossRefGoogle Scholar
Jaber, L. R. and Ownley, B. H. (2017). Can we use entomopathogenic fungi as endophytes for dual biological control of insect pests and plant pathogens? Biological Control, 116, 35–45.Google Scholar
Jaber, L. R. and Salem, N. M. (2014). Endophytic colonisation of squash by the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales) for managing Zucchini yellow mosaic virus in cucurbits. Biocontrol Science and Technology, 24, 10961109.CrossRefGoogle Scholar
Jaber, L. R. and Vidal, S. (2010). Fungal endophyte negative effects on herbivory are enhanced on intact plants and maintained in a subsequent generation. Ecological Entomology, 35, 2536.CrossRefGoogle Scholar
Karthiba, L., Saveetha, K., Suresh, S. et al. (2010). PGPR and entomopathogenic fungus bioformulation for the synchronous management of leaffolder pest and sheath blight disease of rice. Pest Management Science, 66, 555564.CrossRefGoogle ScholarPubMed
Kauppinen, M., Saikkonen, K., Helander, M., Pirttilä, A. M. and Wäli, P. R. (2016). Epichloë grass endophytes in sustainable agriculture. Nature Plants, 2, 15224.CrossRefGoogle ScholarPubMed
Kavroulakis, N., Ntougias, S., Zervakis, G. I. et al. (2007). Role of ethylene in the protection of tomato plants against soil-borne fungal pathogens conferred by an endophytic Fusarium solani strain. Journal of Experimental Botany, 58, 38533864.CrossRefGoogle ScholarPubMed
Kepler, R. M. and Rehner, S. A. (2013). Genome-assisted development of nuclear intergenic sequence markers for entomopathogenic fungi of the Metarhizium anisopliae species complex. Molecular Ecology Resources, 13, 210217.CrossRefGoogle ScholarPubMed
Kim, J. J., Goettel, M. S. and Gillespie, D. R. (2007). Potential of Lecanicillium species for dual microbial control of aphids and the cucumber powdery mildew fungus, Sphaerotheca fuliginea. Biological Control, 40, 327332.CrossRefGoogle Scholar
Kim, K. H., Kabir, E. and Jahan, S. A. (2017). Exposure to pesticides and the associated human health effects. Science of The Total Environment, 575, 525535.CrossRefGoogle ScholarPubMed
Kolattukudy, P. (1984). Biochemistry and function of cutin and suberin. Canadian Journal of Botany, 62, 29182933.CrossRefGoogle Scholar
Kumar, V. (2015). A review on efficacy of biopesticides to control the agricultural insect’s pest. International Journal of Agricultural Science Research, 4, 168179.Google Scholar
Krell, V., Jakobs-Schoenwandt, D., Vidal, S. and Patel, A. V. (2017). Encapsulation of Metarhizium brunneum enhances endophytism in tomato plants. Biological Control, 116, 6273.CrossRefGoogle Scholar
Kwak, M. J., Song, J. Y., Kim, S. Y. et al. (2012). Complete genome sequence of the endophytic bacterium Burkholderia sp. strain KJ006. Journal of Bacteriology, 194, 44324433.CrossRefGoogle ScholarPubMed
Lacey, L. A., Grzywacz, D., Shapiro-Ilan, D. I. et al. (2015). Insect pathogens as biological control agents: back to the future. Journal of Invertebrate Pathology, 132, 141.CrossRefGoogle ScholarPubMed
Lahiri, A., Douglas, G. C., Murphy, B. R. and Hodkinson, T. R. (2019). In vitro methods for plant–microbe interaction and biocontrol studies in european ash (Fraxinus excelsior L.). In Endophytes for a Growing World, ed. Hodkinson, T. R., Doohan, F. M., Saunders, M. J. and Murphy, B. R.. Cambridge: Cambridge University Press, Chapter 15.Google Scholar
Leroux, P., Gredt, M., Leroch, M. and Walker, A. S. (2010). Exploring mechanisms of resistance to respiratory inhibitors in field strains of Botrytis cinerea, the causal agent of gray mold. Applied and Environmental Microbiology, 76, 66156630.CrossRefGoogle ScholarPubMed
Levitan, L., Merwin, I. and Kovach, J. (1995). Assessing the relative environmental impacts of agricultural pesticides: the quest for a holistic method. Agriculture, Ecosystems & Environment, 55, 153168.CrossRefGoogle Scholar
Liao, X., O’Brien, T. R., Fang, W. and Leger, R. J. S. (2014). The plant beneficial effects of Metarhizium species correlate with their association with roots. Applied Microbiology and Biotechnology, 98, 70897096.CrossRefGoogle ScholarPubMed
Lingg, A. and Donaldson, M. (1981). Biotic and abiotic factors affecting stability of B. bassiana conidia in soil. Journal of Invertebrate Pathology, 38, 191200.CrossRefGoogle Scholar
Logrieco, A., Moretti, A., Castella, G. et al. (1998). Beauvericin production by Fusarium species. Applied Environmental Microbiology, 64, 30843088.CrossRefGoogle ScholarPubMed
Lohse, R., Jakobs-Schönwandt, D., Vidal, S. and Patel, A. V. (2015). Evaluation of new fermentation and formulation strategies for a high endophytic establishment of Beauveria bassiana in oilseed rape plants. Biological Control, 88, 2636.CrossRefGoogle Scholar
Lopez, D. C. and Sword, G. A. (2015). The endophytic fungal entomopathogens Beauveria bassiana and Purpureocillium lilacinum enhance the growth of cultivated cotton (Gossypium hirsutum) and negatively affect survival of the cotton bollworm (Helicoverpa zea). Biological Control, 89, 5360.CrossRefGoogle Scholar
Majumder, D., Kangjam, B., Devi, K. J. et al. (2016). Endophytes: an emerging tool for plant disease management. In The Handbook of Microbial Bioresources, ed. Gupta, V. K., Sharma, G. D., Tuohy, M. G. and R. Gaur. Oxfordshire: CABI, pp. 179192.CrossRefGoogle Scholar
Mantzoukas, S., Chondrogiannis, C. and Grammatikopoulos, G. (2015). Effects of three endophytic entomopathogens on sweet sorghum and on the larvae of the stalk borer Sesamia nonagrioides. Entomologia Experimentalis et Applicata, 154, 7887.CrossRefGoogle Scholar
Martin, K. J. and Rygiewicz, P. T. (2005). Fungal-specific PCR primers developed for analysis of the ITS region of environmental DNA extracts. BMC Microbiology, 5, 28.CrossRefGoogle ScholarPubMed
Mazón, A. (2001). Producción, uso y control de calidad de hongos entomopatógenos en Nicaragua. Manejo Integrado de plagas, CATIE, Costa Rica, 63, 95103.Google Scholar
Meyling, N. V. and Eilenberg, J. (2007). Ecology of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae in temperate agroecosystems: potential for conservation biological control. Biological Control, 43, 145155.CrossRefGoogle Scholar
Moore, D., Bateman, R. P., Carey, M. and Prior, C. (1995). Long-term storage of Metarhizium flavoviride conidia in oil formulations for the control of locusts and grasshoppers. Biocontrol Science and Technology, 5, 193200.CrossRefGoogle Scholar
Murphy, B. R., Martin Nieto, L., Doohan, F. M. and Hodkinson, T. R. (2015). Fungal endophytes enhance agronomically important traits in severely drought-stressed barley. Journal of Agronomy and Crop Science, 201, 419427.CrossRefGoogle Scholar
Murphy, B. R., Doohan, F. M., Hodkinson, T. R. (2018). From concept to commerce: developing a successful fungal endophyte inoculant for agricultural crops. Journal of Fungi, 4, 24.CrossRefGoogle ScholarPubMed
Murphy, B. R., Doohan, F. M and Hodkinson, T. R. (2019). Prospecting crop wild relatives for beneficial endophytes. In Endophytes for a Growing World, ed. Hodkinson, T. R., Doohan, F. M., Saunders, M. J. and Murphy, B. R.. Cambridge: Cambridge University Press, Chapter 18.Google Scholar
Oerke, E. C. and Dehne, H. W. (2004). Safeguarding production: losses in major crops and the role of crop protection. Crop Protection, 23, 275285.CrossRefGoogle Scholar
Ownley, B. H., Pereira, R. M., Klingeman, W. E., Quigley, N. B. and Leckie, B. M. (2004). Beauveria bassiana, a dual purpose biocontrol organism, with activity against insect pests and plant pathogens. In Emerging Concepts in Plant Health Management, ed. Lartey, R. T. and Caesar, A. J.. Kerala, India: Research Signposts, pp. 255269.Google Scholar
Ownley, B. H., Griffin, M. R., Klingeman, W. E. et al. (2008). Beauveria bassiana: endophytic colonization and plant disease control. Journal of Invertebrate Pathology, 98, 267270.CrossRefGoogle ScholarPubMed
Ownley, B., Gwinn, K. and Vega, F. (2010). Endophytic fungal entomopathogens with activity against plant pathogens: ecology and evolution. Biocontrol, 55, 113128.CrossRefGoogle Scholar
Parine, N. R., Devinder, K., Khan, P. A. A. and Varaprasad, B. (2010). Antifungal efficacy of secondary metabolites from entomopathogenic fungi Beauveria bassiana. Journal of Pharmacy Research, 3, 855856.Google Scholar
Parsa, S., Ortiz, V. and Vega, F. E. (2013). Establishing fungal entomopathogens as endophytes: towards endophytic biological control. JoVE, 74, e50360.Google Scholar
Pereira, R., Stimac, J. and Alves, S. (1993). Soil antagonism affecting the dose- response of workers of the red imported fire ant Solenopsis invicta, to Beauveria bassiana conidia. Journal of Invertebrate Pathology, 61, 156161.CrossRefGoogle Scholar
Petrini, O. (1991). Fungal endophytes of tree leaves. In Microbial Ecology of Leaves, ed. Andrews, J. H. and Hirano, S. S.. New York, NY: Springer, pp. 179197.CrossRefGoogle Scholar
Pieterse, C. M., Van Wees, S. C., Van Pelt, J. A. et al. (1998). A novel signaling pathway controlling induced systemic resistance in Arabidopsis. The Plant Cell, 10, 15711580.CrossRefGoogle ScholarPubMed
Posada, F., Aime, M. C., Peterson, S. W., Rehner, S. A. and Vega, F. E. (2007). Inoculation of coffee plants with the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales). Mycological Research, 111, 748757.CrossRefGoogle ScholarPubMed
Posada, F. J., Chaves, F. C., Gianfagna, T. J., Pava-Ripoll, M. and Hebbar, P. (2010). Establishment of the fungal entomopathogen Beauveria bassiana as an endophyte in cocoa pods (Theobroma cacao L.). Revista UDCA Actualidad & Divulgación Científica, 13, 7178.Google Scholar
Powell, W. A., Klingeman, W. E., Ownley, B. H. and Gwinn, K. D. (2009). Evidence of endophytic Beauveria bassiana in seed-treated tomato plants acting as a systemic entomopathogen to larval Helicoverpa zea (Lepidoptera: Noctuidae). Journal of Entomological Science, 44, 391396.CrossRefGoogle Scholar
Quesada-Moraga, E. and Vey, A. (2004). Bassiacridin, a protein toxic for locusts secreted by the entomopathogenic fungus Beauveria bassiana. Mycological Research, 108, 441452.CrossRefGoogle ScholarPubMed
Quesada-Moraga, E., Ruiz-García, A. and Santiago-Alvarez, C. (2006). Laboratory evaluation of entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae against puparia and adults of Ceratitis capitata (Diptera: Tephritidae). Journal of Economic Entomology, 99, 19551966.CrossRefGoogle Scholar
Quesada-Moraga, E., Muñoz-Ledesma, F. J. and Santiago-Alvarez, C. (2009). Systemic protection of Papaver somniferum L. against Iraella luteipes (Hymenoptera: Cynipidae) by an endophytic strain of Beauveria bassiana (Ascomycota: Hypocreales). Environmental Entomology, 38, 723730.CrossRefGoogle ScholarPubMed
Quesada-Moraga, E., López-Díaz, C. and Landa, B. B. (2014). The hidden habit of the entomopathogenic fungus Beauveria bassiana: first demonstration of vertical plant transmission. PloS One, 9, e89278.CrossRefGoogle ScholarPubMed
Ravindran, K., Chitra, S., Wilson, A. and Sivaramakrishnan, S. (2014). Evaluation of antifungal activity of Metarhizium anisopliae against plant phytopathogenic fungi. In Microbial Diversity and Biotechnology in Food Security, ed. Kharwar, R. N., Upadhyay, R. S., Dubey, N. K. and Raghuwanshi, R.. India: Springer, pp. 251255.CrossRefGoogle Scholar
Rehner, S. A., Minnis, A. M., Sung, G.-H., Luangsa-ard, J. J., Devotto, L. and Humber, R. A. (2011). Phylogeny and systematics of the anamorphic, entomopathogenic genus Beauveria. Mycologia, 103, 10551073.CrossRefGoogle ScholarPubMed
Roberts, D. W. and Hajek, A. E. (1992). Entomopathogenic fungi as bioinsecticides. In Frontiers in Industrial Mycology, ed. G. Leatham. New York: Chapman and Hall, pp. 144159.CrossRefGoogle Scholar
Roberts, D. W. and Leger, R. J. S. (2004). Metarhizium spp., cosmopolitan insect-pathogenic fungi: mycological aspects. Advances in Applied Microbiology, 54, 170.CrossRefGoogle ScholarPubMed
Rodríguez, R., WhiteJr, J., Arnold, A. and Redman, R. (2009). Fungal endophytes: diversity and functional roles. New Phytologist, 182, 314330.CrossRefGoogle ScholarPubMed
Rondot, Y. and Reineke, A. (2016). Endophytic Beauveria bassiana in grapevine Vitis vinifera (L.) reduces infestation with piercing-sucking insects. Biological Control, 116, 8289.CrossRefGoogle Scholar
Ryu, C. M., Hu, C. H., Reddy, M. S. and Kloepper, J. W. (2003). Different signaling pathways of induced resistance by rhizobacteria in Arabidopsis thaliana against two pathovars of Pseudomonas syringae. New Phytologist, 160, 413420.CrossRefGoogle ScholarPubMed
Sánchez Márquez, S., Bills, G. F., Herrero, N. and Zabalgogeazcoa, I. (2011). Non-systemic fungal endophytes of grasses. Fungal Ecology, 5, 289297.CrossRefGoogle Scholar
Sasan, R. K. and Bidochka, M. J. (2012). The insect-pathogenic fungus Metarhizium robertsii (Clavicipitaceae) is also an endophyte that stimulates plant root development. American Journal of Botany, 99, 101107.CrossRefGoogle ScholarPubMed
Sasan, R. K. and Bidochka, M. J. (2013). Antagonism of the endophytic insect pathogenic fungus Metarhizium robertsii against the bean plant pathogen Fusarium solani f. sp. phaseoli. Canadian Journal of Plant Pathology, 35, 288293.CrossRefGoogle Scholar
Shah, F. A., Ansari, M. A., Watkins, J. et al. (2009). Influence of commercial fungicides on the germination, growth and virulence of four species of entomopathogenic fungi. Biocontrol Science and Technology, 19, 743753.CrossRefGoogle Scholar
Sharma, P. (2011). Complexity of ‘Trichoderma-fusarium’ interaction and manifestation of biological control. Australian Journal of Crop Science, 5, 10271038.Google Scholar
Shoresh, M., Harman, G. E. and Mastouri, F. (2010). Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology, 48, 2143.CrossRefGoogle ScholarPubMed
Soper, R. S. and Ward, M. G. (1981). Production, formulation and application of fungi for insect control. In Biological Control in Crop Production, BARC Symposium No. 5, ed. Papavizas, G. C.. Montclair, NJ: Allanheld, Osmun, pp. 161180.Google Scholar
Stone, J., Polishook, J. and White, J. (2004). Endophytic fungi. In Biodiversity of Fungi, Inventory and Monitoring Methods, ed. Mueller, G. M., Bills, G. F. and Foster, M. S.. Amsterdam: Elsevier, pp. 241270.CrossRefGoogle Scholar
Strobel, G. and Daisy, B. (2003). Bioprospecting for microbial endophytes and their natural products. Microbiology and Molecular Biology Reviews, 67, 491502.CrossRefGoogle ScholarPubMed
Susuki, A., Kanaoka, M., Isogai, A. et al. (1977). Bassianolide, a new insecticidal cyclodepsipeptide from Beauveria bassiana and Verticillium lecanni. Tetrahedrom, 25, 21672170.CrossRefGoogle Scholar
Tefera, T. and Vidal, S. (2009). Effect of inoculation method and plant growth medium on endophytic colonization of sorghum by the entomopathogenic fungus Beauveria bassiana. Biocontrol, 4, 663669.CrossRefGoogle Scholar
Taylor, A. G. and Harman, G. E. (1990). Concepts and technologies of selected seed treatments. Annual Review of Phytopathology, 28, 321339.CrossRefGoogle Scholar
Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. and Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature, 418, 671677.CrossRefGoogle ScholarPubMed
Vega, F., Posada, F., Aime, M. et al. (2008). Entomopathogenic fungal endophytes. Biological Control, 46, 7282.CrossRefGoogle Scholar
Vega, F. E., Goettel, M. S., Blackwell, M. et al. (2009). Fungal entomopathogens: new insights on their ecology. Fungal Ecology, 2, 149159.CrossRefGoogle Scholar
Vega, F. E., Meyling, N. V., Luangsaard, J. J. and Blackwell, M. (2012). Fungal entomopathogens. Insect Pathology, 2, 171220.CrossRefGoogle Scholar
Venugopalan, A. and Srivastava, S. (2015). Endophytes as in vitro production platforms of high value plant secondary metabolites. Biotechnology Advances, 33, 873887.CrossRefGoogle ScholarPubMed
Vicari, M., Hatcher, P. and Ayres, P. (2002). Combined effect of foliar and mycorrhizal endophytes on an insect herbivore. Ecology, 83, 24522464.CrossRefGoogle Scholar
Vidal, S. and Jaber, L. R. (2015). Entomopathogenic fungi as endophytes: plant–endophyte–herbivore interactions and prospects for use in biological control. Current Science, 109, 4654.Google Scholar
Vining, L., Kelleher, W. and Schwarting, A. (1962). Oosporein production by a strain of Beauveria bassiana originally identified as Amanita muscaria. Canadian Journal of Microbiology, 8, 931933.CrossRefGoogle Scholar
Wagner, B. L. and Lewis, L. C., (2000). Colonization of corn, Zea mays, by the entomopathogenic fungus Beauveria bassiana. Applied and Environmental Microbiology 66, 34683473.CrossRefGoogle ScholarPubMed
Wang, C. and Wang, S. (2017). Insect pathogenic fungi: genomics, molecular interactions, and genetic improvements. Annual Review of Entomology, 62, 7390.CrossRefGoogle ScholarPubMed
Wang, Q. and Xu, L. (2012). Beauvericin, a bioactive compound produced by fungi: a short review. Molecules, 17, 23672377.CrossRefGoogle ScholarPubMed
Wang, X., Radwan, M. M., Taráwneh, A. H. et al. (2013). Antifungal activity against plant pathogens of metabolites from the endophytic fungus Cladosporium cladosporioides. Journal of Agricultural and Food Chemistry, 61, 45514555.CrossRefGoogle ScholarPubMed
White, T. J., Bruns, T. D., Lee, S. and Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications, ed. Innis, M. A., Gelfand, D. H., Sninsky, J. J. and White, T. J.. New York: Academic Press, pp. 315322.Google Scholar
Wilson, D. (1995). Endophyte: the evolution of a term, and clarification of its use and definition. Oikos, 73, 274276.CrossRefGoogle Scholar
Xu, Y., Orozco, R., Wijeratne, E. K. et al. (2009). Biosynthesis of the cyclooligomer depsipeptide bassianolide, an insecticidal virulence factor of Beauveria bassiana. Fungal Genetics and Biology, 46, 353364.CrossRefGoogle ScholarPubMed
Xu, L., Wang, J., Zhao, J. et al. (2010). Beauvericin from the endophytic fungus, Fusarium redolens, isolated from Dioscorea zingiberensis and its antibacterial activity. Natural Product Communications, 5, 811814.CrossRefGoogle ScholarPubMed

References

Abrahamsen, S. (1992). Methods for testing fungal antagonists against Drechslera teres in barley seeds. IOBC-WPRS Bulletin, 15, 2729.Google Scholar
Achatz, B., von Rüden, S., Andrade, D. et al. (2010). Root colonization by Piriformospora indica enhances grain yield in barley under diverse nutrient regimes by accelerating plant development. Plant and Soil, 333, 5970.CrossRefGoogle Scholar
Akar, T., Avci, M. and Dusunceli, F. (2004). Barley: Post-Harvest Operations. Rome: Food and Agricultre Organization of the United Nations.Google Scholar
Alabouvette, C., Olivain, C. and Steinberg, C. (2006). Biological control of plant diseases: the European situation. European Journal of Plant Pathology, 114, 329341.CrossRefGoogle Scholar
Ali-Hoimoud, D.-E., Mostafa, M., Barrault, G. and Albertini, L. (1993). Evaluation of organisms antagonistic to the sclerorotid organs of Drechslera teres, the causal agent of barley net blotch. Plant Disease, 77, 12511255.CrossRefGoogle Scholar
Aly, A. H., Debbab, A. and Proksch, P. (2011). Fungal endophytes: unique plant inhabitants with great promises. Applied Microbiology and Biotechnology, 90, 18291845.CrossRefGoogle ScholarPubMed
Araujo, W. L., Marcon, J., Maccheroni, W. et al. (2002). Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Applied and Environmental Microbiology, 68, 49064914.CrossRefGoogle ScholarPubMed
Balog, A., Hartel, T., Loxdale, H. D. and Wilson, K. (2017). Differences in the progress of the biopesticide revolution between the EU and other major crop-growing regions. Pest Management Science, 73, 22032208.CrossRefGoogle ScholarPubMed
de Bary, A. (1884). Vergleichende Morphologie und Biologie der Pilze, Mycetozoen, und Bacterien. Leipzig, Germany: Verlag von Wilhelm Engelmann.Google Scholar
Brar, G. S. and Hucl, P. J. (2017). Cultivar description 00Ar134-1, a spring wheat line of intergeneric origin. Canadian Journal of Plant Science, 97, 153156.Google Scholar
Braun-Kiewnick, A., Jacobsen, B. J. and Sands, D. C. (2000). Biological control of Pseudomonas syringae pv. syringae, the causal agent of basal kernel blight of barley, by antagonistic Pantoea agglomerans. Phytopathology, 90, 368375.CrossRefGoogle ScholarPubMed
Broadfoot, M. (2016). Microbes added to seeds could boost crop production. Scientific American. www.scientificamerican.com/article/microbes-added-to-seeds-could-boost-crop-production/Google Scholar
Buddrus-Schiemann, K., Schmid, M., Schreiner, K. et al. (2010). Root colonization by Pseudomonas sp. DSMZ 13134 and impact on the indigenous rhizosphere bacterial community of barley. Microbial Ecology, 60, 381393.CrossRefGoogle ScholarPubMed
Choi, G. J., Kim, J. C., Jang, K. S. and Lee, D. H. (2007). Antifungal activities of Bacillus thuringiensis isolates on barley and cucumber powdery mildews. Journal of Microbiology and Biotechnology, 17, 20712075.Google ScholarPubMed
Clay, K. (1990). Fungal endophytes of grasses. Annual Review of Ecology and Systematics, 21, 275297.CrossRefGoogle Scholar
Comby, M., Lacoste, S., Baillieul, F., Profizi, C. and Dupont, J. (2016). Spatial and temporal variation of cultivable communities of co-occurring endophytes and pathogens in wheat. Frontiers in Microbiology, 7, 403.CrossRefGoogle ScholarPubMed
Coombs, J. T., Michelsen, P. P. and Franco, C. M. M. (2004). Evaluation of endophytic Actinobacteria as antagonists of Gaeumannomyces graminis var. tritici in wheat. Biological Control, 29, 359366.CrossRefGoogle Scholar
Department of Agriculture (2013). National Action Plan for the Sustainable Use of Pesticides, Vol. II. Dublin: Pesticide Registration & Control Division, Department of Agriculture, Food and the Marine.Google Scholar
Deshmukh, S. D. and Kogel, K.-H. (2007). Piriformospora indica protects barley root rot caused by Fusarium graminearum. Journal of Plant Diseases and Protection, 114, 18613829.CrossRefGoogle Scholar
Duczek, L. J. (1997). Biological control of common root rot in barley by Idriella bolleyi. Canadian Journal of Plant Pathology, 194, 402405.CrossRefGoogle Scholar
Eevers, N., Gielen, M., Sánchez-López, A. et al. (2015). Optimization of isolation and cultivation of bacterial endophytes through addition of plant extract to nutrient media. Microbial Biotechnology, 8, 707715.CrossRefGoogle ScholarPubMed
Ellis, J. G. (2017). Can plant microbiome studies lead to effective biocontrol of plant diseases? Molecular Plant–Microbe Interactions, 30, 190193.CrossRefGoogle ScholarPubMed
ENDURE (2008). ENDURE IPM Training Guide, Chapter Arguments. www.endure-network.eu/Google Scholar
European Parliament (2009). Directive 2009/128/EC of the European Parliament and the Council of 21 October 2009 Establishing a Framework for Community Action to Achieve the Sustainable Use of Pesticides. October, Vol. 309.Google Scholar
Evans, H. C., Holmes, K. A. and Thomas, S. E. (2003). Endophytes and mycoparasites associated with an indigenous forest tree, Theobroma gileri, in Ecuador and a preliminary assessment of their potential as biocontrol agents of cocoa diseases. Mycological Progress, 2, 149160.CrossRefGoogle Scholar
FAOSTAT (2018). Statistical databases. Rome: Food and Agriculture Organization of the United Nations. www.fao.org/faostat/en/#homeGoogle Scholar
Fedak, G., Cao, W., Wolfe, D., Chi, D. and Xue, A. (2017). Molecular characterization of Fusarium resistance from Elymus repens introgressed into bread wheat. Cytology and Genetics, 51, 130133.CrossRefGoogle Scholar
Fravel, D. R. (1988). Role of antibiosis in the biocontrol of plant diseases. Annual Review of Phytopathology, 26, 7591.CrossRefGoogle Scholar
Guetsky, R., Shtienberg, D., Elad, Y., Fischer, E. and Dinoor, A. (2002). Improving biological control by combining biocontrol agents each with several mechanisms of disease suppression. Phytopathology, 92, 976985.CrossRefGoogle ScholarPubMed
Hardoim, P. R., van Overbeek, L. S., Berg, G. et al. (2015). The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology and Molecular Biology Reviews, 79, 293320.CrossRefGoogle ScholarPubMed
Harrach, B. D., Baltruschat, H., Barna, B., Fodor, J. and Kogel, K.-H. (2013). The mutualistic fungus Piriformospora indica protects barley roots from a loss of antioxidant capacity caused by the necrotrophic pathogen Fusarium culmorum. Molecular Plant–Microbe Interactions, 26, 599605.CrossRefGoogle ScholarPubMed
Hodkinson, T. R. (2018). Evolution and taxonomy of the grasses (Poaceae): a model family for the study of species-rich groups. Annual Plant Reviews Online, doi: 10.1002/9781119312994.apr0622.CrossRefGoogle Scholar
Hökeberg, M., Gerhardson, B. and Johnsson, L. (1997). Biological control of cereal seed-borne diseases by seed bacterization with greenhouse-selected bacteria. European Journal of Plant Pathology, 103, 2533.CrossRefGoogle Scholar
Høyer, A. K., Jørgensen, H. J. L., Amby, D. B. and Jensen, B. (2016). Endophytic colonisation of tomato plants by the biological control agent Clonostachys rosea. IOBC-WPRS Bulletin, 115, 101106.Google Scholar
Hubbard, M., Germida, J. J. and Vujanovic, V. (2014). Fungal endophytes enhance wheat heat and drought tolerance in terms of grain yield and second-generation seed viability. Journal of Applied Microbiology, 116, 109122.CrossRefGoogle ScholarPubMed
Jensen, B., Knudsen, I. M. B. and Jensen, D. F. (2000). Biological seed treatment of cereals with fresh and long-term stored formulations of Clonostachys rosea: biocontrol efficacy against Fusarium culmorum. European Journal of Plant Pathology, 106, 233242.CrossRefGoogle Scholar
Jensen, B., Knudsen, I. M. B. and Funck Jensen, D. (2002). Survival of conidia of Clonostachys rosea on stored barley seeds and their biocontrol efficacy against seed-borne Bipolaris sorokiniana. Biocontrol Science and Technology, 124, 427441.CrossRefGoogle Scholar
Jensen, B., Lübeck, P. S. and Jørgensen, H. J. (2016). Clonostachys rosea reduces spot blotch in barley by inhibiting prepenetration growth and sporulation of Bipolaris sorokiniana without inducing resistance. Pest Management Science, 72, 22312239.CrossRefGoogle ScholarPubMed
Johnsson, L., Hökeberg, M. and Gerhardson, B. (1998). Performance of the Pseudomonas chlororaphis biocontrol agent MA 342 against cereal seed-borne diseases in field experiments. European Journal of Plant Pathology, 104, 701711.CrossRefGoogle Scholar
Jørgensen, H. J. L., Andresen, H. and Smedegaard-Petersen, V. (1996). Control of Drechslera teres and other barley pathogens by preinoculation with Bipolaris maydis and Septoria nodorum. Phytopathology, 86, 602607.CrossRefGoogle Scholar
Jørgensen, H. J. L., Lübeck, P. S. et al. (1998). Mechanisms of induced resistance in barley against Drechslera teres. Phytopathology, 88, 698707.CrossRefGoogle Scholar
Jumpponen, A. and Trappe, J. M. (1998). Dark septate endophytes: a review of facultative biotrophic root-colonizing fungi. New Phytologist, 140, 295310.CrossRefGoogle ScholarPubMed
Kabaluk, J. T., Svircev, M. S., Goettel, M. S. and Woo, S. G., eds. (2010). The Use and Regulation of Microbial Pesticides in Representative Jurisdictions Worldwide. IOBC Global, www.IOBC-Global.org.Google Scholar
Khan, M. R. and Doohan, F. M. (2008a). Bacterium-mediated control of Fusarium head blight disease of wheat and barley and associated mycotoxin contamination of grain. Biological Control, 48, 4247.CrossRefGoogle Scholar
Khan, M. R. and Doohan, F. M. (2008b). Comparison of the efficacy of chitosan with that of a fluorescent pseudomonad for the control of Fusarium head blight disease of cereals and associated mycotoxin contamination of grain. Biological Control, 48, 4854.CrossRefGoogle Scholar
Khan, M. R., Fischer, S., Egan, D. and Doohan, F. M. (2006). Biological control of Fusarium seedling blight disease of wheat and barley. Phytopathology, 96, 386394.CrossRefGoogle ScholarPubMed
Kirk, J. J. and Deacon, J. W. (1987). Control of the take-all fungus by Microdochium bolleyi, and interactions involving M. bolleyi, Phialophora graminicola and Periconia macrospinosa on cereal roots. Plant and Soil, 98, 231237.CrossRefGoogle Scholar
Knudsen, I. M. B., Hockenhull, J. and Jensen, D. F. (1995). Biocontrol of seedling diseases of barley and wheat caused by Fusarium culmorum and Bipolaris sorokiniana: effects of selected fungal antagonists on growth and yield components. Plant Pathology, 44, 467477.CrossRefGoogle Scholar
Knudsen, I. M. B., Hockenhull, J., Funck Jensen, D. et al. (1997). Selection of biological control agents for controlling soil and seed-borne diseases in the field. European Journal of Plant Pathology, 103, 775784.CrossRefGoogle Scholar
Koch, E., Weil, B., Wächter, R., Wohlleben, S. et al. (2006). Evaluation of selected microbial strains and commercial alternative products as seed treatments for the control of Tilletia tritici, Fusarium culmorum, Drechslera graminea and D. teres. Journal of Plant Diseases and Protection, 113, 150158.CrossRefGoogle Scholar
Köhl, J. J., Molhoek, W. W. M. L. et al. (2009). Selection and orchard testing of antagonists suppressing conidial production by the apple scab pathogen Venturia inaequalis. European Journal of Plant Pathology, 123, 401414.CrossRefGoogle Scholar
Kumar, M., Yadav, V., Tuteja, N. and Johri, A. K. (2009). Antioxidant enzyme activities in maize plants colonized with Piriformospora indica. Microbiology, 155(3), 780790.CrossRefGoogle ScholarPubMed
Liljeroth, E. and Bryngelsson, T. (2002). Seed treatment of Barley with Idriella bolleyi causes systemically enhanced defence against root and leaf infection by Bipolaris sorokiniana. Biocontrol Science and Technology, 12, 235249.CrossRefGoogle Scholar
Lindow, S. E. and Brandl, M. T. (2003). Microbiology of the phyllosphere. Applied and Environmental Microbiology, 69, 18751883.CrossRefGoogle ScholarPubMed
Lindsey III, B. E., Rivero, L., Calhoun, C. S., Grotewold, E. and Brkljacic, J. (2017). Standardized method for high-throughput sterilization of Arabidopsis seeds video link. Journal of Visualized Experiments, 128, 56587.Google Scholar
Maciá-Vicente, J. G., Jansson, H.-B., Mendgen, K. and Lopez-Llorca, L. V. (2008). Colonization of barley roots by endophytic fungi and their reduction of take-all caused by Gaeumannomyces graminis var. tritici. Canadian Journal of Microbiology, 54, 600609.CrossRefGoogle ScholarPubMed
Maciá-Vicente, J. G., Rosso, L. C., Ciancio, A. et al. (2009). Colonisation of barley roots by endophytic Fusarium equiseti and Pochonia chlamydosporia: effects on plant growth and disease. Annals of Applied Biology, 155, 391401.CrossRefGoogle Scholar
Mandyam, K., Loughin, T. and Jumpponen, A. (2010). Isolation and morphological and metabolic characterization of common endophytes in annually burned tallgrass prairie. Mycologia, 102, 813821.CrossRefGoogle ScholarPubMed
Mathre, D. E., ed. (1982). Compendium of Barley Diseases. St Paul, MN: APS Press.Google Scholar
Mercado-Blanco, J., Alos, E., Rey, M. D. and Prieto, P. (2016). Pseudomonas fluorescens PICF7 displays an endophytic lifestyle in cultivated cereals and enhances yield in barley. FEMS Microbiology Ecology, 92, 113.CrossRefGoogle ScholarPubMed
Monfort, E., Lopez-Llorca, L. V., Jansson, H.-B. et al. (2005). Colonisation of seminal roots of wheat and barley by egg-parasitic nematophagous fungi and their effects on Gaeumannomyces graminis var. tritici and development of root rot. Soil Biology and Biochemistry, 37, 12291235.CrossRefGoogle Scholar
Mostafa, M.-M. (1993). Biological control of Drechslera teres: ability of antagonists to reduce conidia formation, coleoptile infection and leaf infection in barley (Hordeum vulgare). Cryptogamie Mycologie, 14, 287295.Google Scholar
Moya, P., Pedemonte, D., Amengual, S., Franco, M. E. E. and Sisterna, M. N. (2016). Antagonism and modes of action of Chaetomium globosum species group, potential biocontrol agent of barley foliar diseases. The Bulletin of the Botanical Society of Argentina, 51, 569578.Google Scholar
Müller, D. B., Vogel, C., Bai, Y. and Vorholt, J. A. (2016). The plant microbiota: systems-level insights and perspectives. Annual Review of Genetics, 50, 211234.CrossRefGoogle Scholar
Murphy, B. R., Doohan, F. M. and Hodkinson, T. R. (2015a). Fungal root endophytes of a wild barley species increase yield in a nutrient-stressed barley cultivar. Symbiosis, 65, 17.CrossRefGoogle Scholar
Murphy, B. R., Doohan, F. M. and Hodkinson, T. R. (2015b). Persistent fungal root endophytes isolated from a wild barley species suppress seed-borne infections in a barley cultivar. BioControl, 60, 281292.CrossRefGoogle Scholar
Murphy, B., Doohan, F. M. and Hodkinson, T. R. (2018). From concept to commerce: developing a successful fungal endophyte inoculant for agricultural crops. Journal of Fungi, 4, 24.CrossRefGoogle ScholarPubMed
Nandwani, D. and Nwosisi, S. (2016). Global trends in organic agriculture. In Organic Farming for Sustainable Agriculture, ed. Nandwani, D. Berlin: Springer International Publishing, pp. 135.CrossRefGoogle Scholar
Naveed, M., Mitter, B., Reichenauer, T. G., Wieczorek, K. and Sessitsch, A. (2014). Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp. FD17. Environmental and Experimental Botany, 97, 3039.CrossRefGoogle Scholar
Nielsen, L. K., Cook, D. J., Edwards, S. G. and Ray, R. V. (2014). The prevalence and impact of Fusarium head blight pathogens and mycotoxins on malting barley quality in UK. International Journal of Food Microbiology, 179, 3849.CrossRefGoogle ScholarPubMed
Nissinen, R. M., Männistö, M. K. and van Elsas, J. D. (2012). Endophytic bacterial communities in three arctic plants from low arctic fell tundra are cold-adapted and host-plant specific. FEMS Microbiology Ecology, 82, 510522.CrossRefGoogle ScholarPubMed
Oliveira, P., Mauch, A., Jacob, F. and Arendt, E. K. (2012). Impact of Fusarium culmorum-infected barley malt grains on brewing and beer quality. American Society of Brewing Chemists, 70, 186194.CrossRefGoogle Scholar
Pal, K. K. and Gardener, B. M. (2006). Biological control of plant pathogens. The Plant Health Instructor, doi: 10.1094/PHI-A-2006-1117-02.CrossRefGoogle Scholar
Porras-Alfaro, A. and Bayman, P. (2011). Hidden fungi, emergent properties: endophytes and microbiomes. Annual Review of Phytopathology, 49, 291315.CrossRefGoogle ScholarPubMed
Punja, Z. K. (1997). Comparative efficacy of bacteria, fungi, and yeasts as biological control agents for diseases of vegetable crops. Canadian Journal of Plant Pathology, 19, 315323.CrossRefGoogle Scholar
Rabiey, M., Ullah, I. and Shaw, M. W. (2015). The endophytic fungus Piriformospora indica protects wheat from Fusarium crown rot disease in simulated UK autumn conditions. Plant Pathology, 64, 10291040.CrossRefGoogle Scholar
Renwick., A., Campbell, R. and Coe, S. (1991). Assessment of in vivo screening systems for potential biocontrol agents of Gaeumannomyces graminis. Plant Pathology, 40, 524532.CrossRefGoogle Scholar
Rodriguez, R. J., Henson, J., Van Volkenburgh, E. et al. (2008). Stress tolerance in plants via habitat-adapted symbiosis. The ISME Journal, 2, 404416.CrossRefGoogle ScholarPubMed
Roylawar, P., Panda, S. and Kamble, A. (2015). Comparative analysis of BABA and Piriformospora indica mediated priming of defence-related genes in tomato against early blight. Physiological and Molecular Plant Pathology, 91, 8895.CrossRefGoogle Scholar
Serfling, A., Wirsel, S. G. R., Lind, V. and Deising, H. B. (2007). Performance of the biocontrol fungus Piriformospora indica on wheat under greenhouse and field conditions. Phytopathology, 97, 523531.CrossRefGoogle ScholarPubMed
Silva, H. S. A., Tozzi, J. P. L., Terrasan, C. R. F. and Bettiol, W. (2012). Endophytic microorganisms from coffee tissues as plant growth promoters and biocontrol agents of coffee leaf rust. Biological Control, 63, 6267.CrossRefGoogle Scholar
Ting, A. S. Y., Fang, M. T. and Tee, C. S. (2009). Assessment on the effect of formulative materials on the viability and efficacy of Serratia marcescens: a biocontrol agent against Fusarium oxysporum f. sp. cubense race 4. American Journal of Agricultural and Biological Sciences, 4, 283288.Google Scholar
Ullrich, S. E. (2011). Significance, adaptation, production, and trade of barley. In Barley: Production Improvement and Uses, ed. Ullrich, S. E. Ames, IA: Wiley-Blackwell, pp. 313.Google Scholar
Varma, A., Bakshi, M., Lou, B., Hartmann, A. and Oelmueller, R. (2012). Piriformospora indica: a novel plant growth-promoting mycorrhizal fungus. Agricultural Research, 1, 117131.CrossRefGoogle Scholar
Videira, S. I. R., Groenewald, J. Z., Braun, U., Shin, H. D. and Crous, P. W. (2016). All that glitters is not Ramularia. Studies in Mycology, 83, 49163.CrossRefGoogle Scholar
Vilich, V., Dolfen, M. and Sikora, R. A. (1998). Chaetomium spp. colonization of barley following seed treatment and its effect on plant growth and Erysiphe graminis f. sp. hordei disease severity. Journal of Plant Diseases and Protection, 105, 130139.Google Scholar
Walker, R., Rossall, S. and Asher, M. J. C. (2002). Colonization of the developing rhizosphere of sugar beet seedlings by potential biocontrol agents applied as seed treatments. Journal of Applied Microbiology, 92, 228237.CrossRefGoogle ScholarPubMed
Waller, F., Achatz, B., Baltruschat, H. et al. (2005). The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proceedings of the National Academy of Sciences of the United States of America, 102, 1338613391.CrossRefGoogle ScholarPubMed
Walters, D. (2009). Controlling plant disease using biological and environmentally friendly approaches: making it work in practice. In Disease Control in Crops: Biological and Environmentally Friendly Approaches, ed. Walters, D.. Oxford, UK: Wiley-Blackwell, pp. 257261.CrossRefGoogle Scholar
Walters, D. R., Avrova, A., Bingham, I. J. et al. (2012). Control of foliar diseases in barley: towards an integrated approach. European Journal of Plant Pathology, 133, 3373.CrossRefGoogle Scholar
Wang, H., Zheng, J., Ren, X. et al. (2015). Effects of Piriformospora indica on the growth, fruit quality and interaction with tomato yellow leaf curl virus in tomato cultivars susceptible and resistant to TYCLV. Plant Growth Regulation, 76, 303313.CrossRefGoogle Scholar
Wearn, J. A., Sutton, B. C., Morley, N. J. and Gange, A. C. (2012). Species and organ specificity of fungal endophytes in herbaceous grassland plants. Journal of Ecology, 100, 10851092.CrossRefGoogle Scholar
Weiß, M., Waller, F., Zuccaro, A. and Selosse, M.-A. (2016). Sebacinales: one thousand and one interactions with land plants. New Phytologist, 211, 2040.CrossRefGoogle ScholarPubMed
Whipps, J. M. (1987). Effect of media on growth and interactions between a range of soil-borne glasshouse pathogens and antagonistic fungi. New Phytologist, 107, 127142.CrossRefGoogle Scholar
Whipps, J. M. and Magan, N. (1987). Effects of nutrient status and water potential of media on fungal growth and antagonist-pathogen interactions. EPPO Bulletin, 17, 581591.CrossRefGoogle Scholar
Wilkinson, H. H., Siegel, M. R., Blankenship, J. D. et al. (2000). Contribution of fungal loline alkaloids to protection from aphids in a grass–endophyte mutualism. Molecular Plant–Microbe Interactions, 13, 10271033.CrossRefGoogle Scholar
Wilson, D. (1995). Endophyte: the evolution of a term, and clarification of its use and definition. Oikos, 73, 274276.CrossRefGoogle Scholar
Yekkour, A., Sabaou, N., Zitouni, A., Errakhi, R., Mathieu, F. and Lebrihi, A. (2012). Characterization and antagonistic properties of Streptomyces strains isolated from Saharan soils, and evaluation of their ability to control seedling blight of barley caused by Fusarium culmorum. Letters in Applied Microbiology, 55, 427435.CrossRefGoogle ScholarPubMed
Zabalgogeazcoa, I. (2008). Fungal endophytes and their interaction with plant pathogens. Spanish Journal Of Agricultural Research, 6, 138146.CrossRefGoogle Scholar
Zeng, J., Cao, W., Hucl, P. et al. (2013). Molecular cytogenetic analysis of wheat Elymus repens introgression lines with resistance to Fusarium head blight. Genome, 56, 7582.CrossRefGoogle ScholarPubMed

References

Achatz, B., von Ruden, S., Andrade-Linares, D. R. et al. (2010). Root colonization by Piriformospora indica enhances grain yield in barley under diverse nutrient regimes by accelerating plant development. Plant and Soil, 333, 5970.CrossRefGoogle Scholar
Almario, J., Jeena, G., Wunder, J. et al. (2017). Root-associated fungal microbiota of nonmycorrhizal Arabis alpina and its contribution to plant phosphorus nutrition. Proceedings of the National Academy of Sciences of the United States of America, 114, E9403–E9412.Google ScholarPubMed
Andrade, G., Mihara, K. L., Linderman, R. G. and Bethlenfalvay, G. J. (1997). Bacteria from rhizosphere and hyphosphere soils of different arbuscular-mycorrhizal fungi. Plant and Soil, 192, 7179.CrossRefGoogle Scholar
Antunes, P. M., Schneider, K., Hillis, D. and Klironomos, J. N. (2007). Can the arbuscular mycorrhizal fungus Glomus intraradices actively mobilize P from rock phosphates? Pedobiologia, 51, 281–286.CrossRefGoogle Scholar
Auge, R. M., Stodola, A. J. W., Tims, J. E. and Saxton, A. M. (2001). Moisture retention properties of a mycorrhizal soil. Plant and Soil, 230, 8797.CrossRefGoogle Scholar
Bago, B. and Cano, C. (2005). In Vitro Culture of Mycorrhizas. Berlin: Springer.Google Scholar
Barrow, J. R. and Osuna, P. (2002). Phosphorus solubilization and uptake by dark septate fungi in fourwing saltbush, Atriplex canescens (Pursh) Nutt. Journal of Arid Environments, 51, 449459.CrossRefGoogle Scholar
Battini, F., Cristani, C., Giovannetti, M. and Agnolucci, M. (2016). Multifunctionality and diversity of culturable bacterial communities strictly associated with spores of the plant beneficial symbiont Rhizophagus intraradices. Microbiol Research, 183, 6879.CrossRefGoogle ScholarPubMed
Battini, F., Grønlund, M., Agnolucci, M., Giovannetti, M. and Jakobsen, I. (2017). Facilitation of phosphorus uptake in maize plants by mycorrhizosphere bacteria. Scientific Reports, 7, 4686.CrossRefGoogle ScholarPubMed
Behie, S. W. and Bidochka, M. J. (2014). Nutrient transfer in plant–fungal symbioses. Trends in Plant Science, 19, 734740.CrossRefGoogle ScholarPubMed
Bitterlich, M. and Franken, P. (2016). Connecting polyphosphate translocation and hyphal water transport points to a key of mycorrhizal functioning. New Phytologist, 211, 11471149.CrossRefGoogle ScholarPubMed
Bitterlich, M., Franken, P. and Graefe, J. (2018a). Arbuscular mycorrhiza improves substrate hydraulic conductivity in the plant available moisture range under root growth exclusion. Frontiers in Plant Science, 9, 301.CrossRefGoogle ScholarPubMed
Bitterlich, M., Sandmann, M. and Graefe, J. (2018b). Arbuscular mycorrhiza alleviates restrictions to substrate water flow and delays transpiration limitation to stronger drought in tomato. Frontiers in Plant Science, 9.CrossRefGoogle ScholarPubMed
Boldt, K., Pörs, Y., Haupt, B. et al. (2011). Photochemical processes, carbon assimilation and RNA accumulation of sucrose transporter genes in tomato arbuscular mycorrhiza. Journal of Plant Physiology, 168, 12561263.CrossRefGoogle ScholarPubMed
Brady, N. C. (1990). The Nature and Properties of the Soil. New York, NY: Macmillan Publishing Co.Google Scholar
Breuillin, F., Schramm, J., Hajirezaei, M. et al. (2010). Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning. Plant Journal, 64, 10021017.CrossRefGoogle ScholarPubMed
Bucher, M. (2007). Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytologist, 173, 1126.CrossRefGoogle ScholarPubMed
Bütehorn, B., Rhody, D. and Franken, P. (2000). Isolation and characterisation of Pitef1 encoding the translation elongation factor EF-1a of the root endophyte Piriformospora indica. Plant Biology, 49, 687692.CrossRefGoogle Scholar
Cano, C. and Bago, A. (2005). Competition and substrate colonization strategies of three polyxenically grown arbuscular mycorrhizal fungi. Mycologia, 97, 12011214.CrossRefGoogle ScholarPubMed
Chen, M. and Graedel, T. E. (2016). A half-century of global phosphorus flows, stocks, production, consumption, recycling, and environmental impacts. Global Environmental Change, 36, 139152.CrossRefGoogle Scholar
Cordell, D. and White, S. (2015). Tracking phosphorus security: indicators of phosphorus vulnerability in the global food system. Food Security, 7, 337350.CrossRefGoogle Scholar
Cordell, D., Drangert, J. O. and White, S. (2009). The story of phosphorus: global food security and food for thought. Global Environmental Change, 19, 292–305.CrossRefGoogle Scholar
Cox, G., Moran, K. J., Sanders, F., Nockolds, C. and Tinker, P. B. (1980). Translocation and transfer of nutrients in vesicular-arbuscular mycorrhizas. III. Polyphosphate granules and phosphorus translocation. New Phytologist, 84, 649659.CrossRefGoogle Scholar
Daynes, C. N., Field, D. J., Saleeba, J. A., Cole, M. A. and McGee, P. A. (2013). Development and stabilisation of soil structure via interactions between organic matter, arbuscular mycorrhizal fungi and plant roots. Soil Biology and Biochemistry, 57, 683694.CrossRefGoogle Scholar
Drew, E. A., Murray, R. S., Smith, S. E. and Jakobsen, I. (2003). Beyond the rhizosphere: growth and function of arbuscular mycorrhizal external hyphae in sands of varying pore sizes. Plant and Soil, 251, 105114.CrossRefGoogle Scholar
Fakhro, A., Andrade-Linares, D. R., von Bargen, S. et al. (2010). Impact of Piriformospora indica on tomato growth and on interaction with fungal and viral pathogens. Mycorrhiza, 20, 191200.CrossRefGoogle ScholarPubMed
Franken, P. (2012). The plant strengthening root endophyte Piriformospora indica: potential application and the biology behind. Applied Microbiology and Biotechnology, 96, 14551464.CrossRefGoogle ScholarPubMed
Frey-Klett, P., Garbaye, J. and Tarkka, M. (2007). The mycorrhiza helper bacteria revisited. New Phytologist, 176, 2236.CrossRefGoogle ScholarPubMed
Frossard, E., Achat, D. L., Bernasconi, S. M. et al. (2011). Phosphorus in Action: Biological Processes in Soil Phosphorus Cycling. Berlin: Springer.Google Scholar
Gahoonia, T. S., Raza, S. and Nielsen, N. E. (1994). Phosphorus depletion in the rhizosphere as influenced by soil moisture. Plant and Soil, 159, 213218.CrossRefGoogle Scholar
George, E., Häussler, K.-U., Vetterlein, D., Gorgus, E. and Marschner, H. (1992). Water and nutrient translocation by hyphae of Glomus mosseae. Canadian Journal of Botany, 70, 21302137.CrossRefGoogle Scholar
Gordon-Weeks, R., Tong, Y., Davies, T. G. E. and Leggewie, G. (2003). Restricted spatial expression of a high-affinity phosphate transporter in potato roots. Journal of Cell Science, 116, 31353144.CrossRefGoogle ScholarPubMed
Graham, J. H. and Abbott, L. K. (2000). Wheat responses to aggressive and non-aggressive arbuscular mycorrhizal fungi. Plant and Soil, 220, 207218.CrossRefGoogle Scholar
Harrison, M. J. and van Buuren, M. L. (1995). A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature, 378, 626629.CrossRefGoogle ScholarPubMed
Harrison, M. J., Dewbre, G. R. and Liu, J. Y. (2002). A phosphate transporter from Medicago truncatula involved in the acquisiton of phosphate released by arbuscular mycorrhizal fungi. Plant Cell, 14, 24132429.CrossRefGoogle Scholar
Haselwandter, K. and Read, D. J. (1982). The significance of a root-fungus association in two Carex species of high-alpine plant communities. Oecologia, 53, 352354.CrossRefGoogle ScholarPubMed
Hawkesford, M., Horst, W., Kichey, T. et al. (2012). Marschner’s Mineral Nutrition of Higher Plants, 3rd edn. San Diego, CA: Academic Press.Google Scholar
Helber, N., Wippel, K., Sauer, N. et al. (2011). A versatile monosaccharide transporter that operates in the arbuscular mycorrhizal fungus Glomus sp is crucial for the symbiotic relationship with plants. Plant Cell, 23, 3812–23.CrossRefGoogle ScholarPubMed
Hermans, C., Hammond, J. P., White, P. J. and Verbruggen, N. (2006). How do plants respond to nutrient shortage by biomass allocation? Trends in Plant Science, 11, 610617.CrossRefGoogle ScholarPubMed
Hibbett, D. S., Binder, M., Bischoff, J. F. et al. (2007). A higher-level phylogenetic classification of the Fungi. Mycological Research, 111, 509–47.CrossRefGoogle ScholarPubMed
Hinsinger, P. (2000). Trace Elements in the Rhizosphere. Boca Raton, FL: CRC Press.Google Scholar
Hodge, A. (2009). Root decisions. Plant, Cell & Environment, 32, 628–40.CrossRefGoogle ScholarPubMed
Javot, H., Penmetsa, R. V., Terzaghi, N., Cook, D. R. and Harrison, M. J. (2007). A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 104, 17201725.CrossRefGoogle ScholarPubMed
Johnson, J. M., Sherameti, I., Ludwig, A. et al. (2011). Protocols for Arabidopsis thaliana and Piriformospora indica co-cultivation: a model system to study plant beneficial traits. Journal of Endocytobiosis and Cell Research, 21, 101113.Google Scholar
Johnson, N. C., Graham, J. H. and Smith, F. A. (1997). Functioning of mycorrhizal associations along the mutualism–parasitism continuum. New Phytologist, 135, 575585.CrossRefGoogle Scholar
Joner, E. J. and Johansen, A. (2000). Phosphatase activity of external hyphae of two arbuscular mycorrhizal fungi. Mycological Research, 104, 8186.CrossRefGoogle Scholar
Jumpponen, A. and Trappe, J. M. (1998). Dark septate endophytes: a review of facultative biotrophic root-colonizing fungi. New Phytologist, 140, 295310.CrossRefGoogle ScholarPubMed
Jumpponen, A., Mattson, K. G. and Trappe, J. M. (1998). Mycorrhizal functioning of Phialocephala fortinii with Pinus contorta on glacier forefront soil: interactions with soil nitrogen and organic matter. Mycorrhiza, 7, 261265.CrossRefGoogle ScholarPubMed
Kenrick, P. and Crane, P. R. (1997). The origin and early evolution of plants on land. Nature, 389, 33.CrossRefGoogle Scholar
Keymer, A., Pimprikar, P., Wewer, V. et al. (2017). Lipid transfer from plants to arbuscular mycorrhiza fungi. Elife, 6, e29107.CrossRefGoogle ScholarPubMed
Kikuchi, Y., Hijikata, N., Ohtomo, R. et al. (2016). Aquaporin-mediated long-distance polyphosphate translocation directed towards the host in arbuscular mycorrhizal symbiosis: application of virus-induced gene silencing. New Phytologist, 211, 12021208.CrossRefGoogle ScholarPubMed
Kivlin, S. N., Emery, S. M. and Rudgers, J. A. (2013). Fungal symbionts alter plant responses to global change. American Journal of Botany, 100, 14451457.CrossRefGoogle ScholarPubMed
Knapp, D. G. and Kovács, G. M. (2016). Interspecific metabolic diversity of root-colonizing endophytic fungi revealed by enzyme activity tests. FEMS Microbiology Ecology, 92, fiw190.CrossRefGoogle ScholarPubMed
Knapp, D. G., Németh, J. B., Barry, K. et al. (2018). Comparative genomics provides insights into the lifestyle and reveals functional heterogeneity of dark septate endophytic fungi. Scientific Reports, 8, 6321.CrossRefGoogle ScholarPubMed
Koide, R. T. and Kabir, Z. (2000). Extraradical hyphae of the mycorrhizal fungus Glomus intraradices can hydrolyse organic phosphate. New Phytologist, 148, 511517.CrossRefGoogle ScholarPubMed
Lambers, H., Raven, J. A., Shaver, G. R. and Smith, S. E. (2008). Plant nutrient-acquisition strategies change with soil age. Trends in Ecology & Evolution, 23, 95103.CrossRefGoogle ScholarPubMed
Larsen, J., Cornejo, P. and Barea, J. M. (2009). Interactions between the arbuscular mycorrhizal fungus Glomus intraradices and the plant-growt- promoting rhizobacteria Paenibacillus polymyxa and P. macerans in the mycorrhizosphere of Cucumis sativus. Soil Biology and Biochemistry, 41, 286292.CrossRefGoogle Scholar
Li, B., Ravnskov, S., Xie, G. and Larsen, J. (2008). Differential effects of Paenibacillus spp. on cucumber mycorrhizas. Mycological Progress, 7, 277284.CrossRefGoogle Scholar
Li, H., Smith, S. E., Holloway, R. E., Zhu, Y. and Smith, F. A. (2006). Arbuscular mycorrhizal fungi contribute to phosphorus uptake by wheat grown in a phosphorus-fixing soil even in the absence of positive growth responses. New Phytologist, 172, 536543.CrossRefGoogle Scholar
Liu, H., Trieu, A. T., Blayloock, L. A. and Harrison, M. J. (1998). Cloning and characterization of two phosphate transporters from Medicago truncatula: root regulation in response to phosphate and to colonization by arbuscular mycorrhizal fungi. Molecular Plant–Microbe Interactions, 11, 1422.CrossRefGoogle Scholar
Lynch, J. P. (2007). Roots of the second Green Revolution. Australian Journal of Botany, 55, 493512.CrossRefGoogle Scholar
Lynch, J. P. and Ho, M. D. (2005). Rhizoeconomics: carbon costs of phosphorus acquisition. Plant and Soil, 269, 4556.CrossRefGoogle Scholar
Maldonado-Mendoza, I. E., Dewbre, G. R. and Harrison, M. J. (2001). A phosphate transporter gene from the extra-radical mycelium of an arbuscular mycorrhizal fungus Glomus intraradices is regulated in response to phosphate in the environment. Molecular Plant–Microbe Interactions, 14, 11401148.CrossRefGoogle ScholarPubMed
Mandyam, K. and Jumpponen, A. (2005). Seeking the elusive function of the root-colonising dark septate endophytic fungi. Studies in Mycology, 173189.CrossRefGoogle Scholar
Marschner, H. and Dell, B. (1994). Nutrient uptake in mycorrhizal symbiosis. Plant and Soil, 159, 89102.CrossRefGoogle Scholar
Miller, R. M. and Jastrow, J. D. (2000). Mycorrhizal fungi influence soil structure. In Arbuscular Mycorrhizas: Physiology and Function, ed. Kapulnik, Y and Douds, D. D. Dordrecht, The Netherlands: Springer, pp. 318.CrossRefGoogle Scholar
Miller, S. H., Browne, P., Prigent-Combaret, C. et al. (2010). Biochemical and genomic comparison of inorganic phosphate solubilization in Pseudomonas species. Environmental Microbiology Reports, 2, 403–11.CrossRefGoogle ScholarPubMed
Müller, A., George, E. and Gabriel-Neumann, E. (2013). The symbiotic recapture of nitrogen from dead mycorrhizal and non-mycorrhizal roots of tomato plants. Plant and Soil, 364, 341355.CrossRefGoogle Scholar
Nautiyal, C. S. (1999). An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letters, 170, 265270.CrossRefGoogle ScholarPubMed
Newsham, K. K. (2000). Phialophora graminicola, a dark septate fungus, is a beneficial associate of the grass Vulpia ciliata ssp. ambigua. New Phytologist, 144, 517524.CrossRefGoogle Scholar
Newsham, K. K. (2011). A meta-analysis of plant responses to dark septate root endophytes. New Phytologist, 190, 783793.CrossRefGoogle ScholarPubMed
Ngwene, B., Boukail, S., Söllner, L., Franken, P. and Andrade-Linares, D. R. (2016). Phosphate utilization by the fungal root endophyte Piriformospora indica. Plant and Soil, 405, 231241.CrossRefGoogle Scholar
Oberwinkler, F., Riess, K., Bauer, R. and Garnica, S. (2014). Morphology and molecules: the Sebacinales, a case study. Mycological Progress, 13, 445470.CrossRefGoogle Scholar
Oelmuller, R., Sherameti, I., Tripathi, S. and Varma, A. (2009). Piriformospora indica, a cultivable root endophyte with multiple biotechnological applications. Symbiosis, 49, 117.CrossRefGoogle Scholar
Olsson, P. A., van Aarle, I. M., Allaway, W. G., Ashford, A. E. and Rouhier, H. (2002). Phosphorus effects on metabolic processes in monoxenic arbuscular mycorrhiza cultures. Plant Physiology, 130, 11621171.CrossRefGoogle ScholarPubMed
Peskan-Berghofer, T., Shahollari, B., Giong, P. H. et al. (2004). Association of Piriformospora indica with Arabidopsis thaliana roots represents a novel system to study beneficial plant-microbe interactions and involves early plant protein modifications in the endoplasmic reticulum and at the plasma membrane. Physiologia Plantarum, 122, 465477.Google Scholar
Qin, H., Brookes, P. C. and Xu, J. (2016). Arbuscular mycorrhizal fungal hyphae alter soil bacterial community and enhance polychlorinated biphenyls dissipation. Frontiers in Microbiology, 7, 939.CrossRefGoogle ScholarPubMed
Ramaekers, L., Remans, R., Rao, I. M., Blair, M. W. and Vanderleyden, J. (2010). Strategies for improving phosphorus acquisition efficiency of crop plants. Field Crops Research, 117, 169176.CrossRefGoogle Scholar
Rausch, C., Daram, P., Brunner, S. et al. (2001). A phosphate transporter expressed in arbuscule-containing cells in potato. Nature, 414, 462466.CrossRefGoogle ScholarPubMed
Redecker, D. and Raab, P. (2006). Phylogeny of the Glomeromycota (arbuscular mycorrhizal fungi): recent developments and new gene markers. Mycologia, 98, 885895.CrossRefGoogle ScholarPubMed
Rich, M. K., Nouri, E., Courty, P.-E. and Reinhardt, D. (2017). Diet of arbuscular mycorrhizal fungi: bread and butter? Trends in Plant Science, 22, 652660.CrossRefGoogle ScholarPubMed
Richardson, A. E. (2001). Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Australian Journal of Plant Physiology, 28, 896–906.Google Scholar
Richardson, A. E. and Simpson, R. J. (2011). Soil microorganisms mediating phosphorus availability. Plant Physiology, 156.CrossRefGoogle ScholarPubMed
Richardson, A. E., Hocking, P. J., Simpson, R. J. and George, T. S. (2009). Plant mechanisms to optimise access to soil phosphorus. Crop and Pasture Science, 60, 124143.CrossRefGoogle Scholar
Rillig, M. C. and Mummey, D. L. (2006). Mycorrhizas and soil structure. New Phytologist, 171, 4153.CrossRefGoogle ScholarPubMed
Sato, T., Ezawa, T., Cheng, W. G. and Tawaraya, K. (2015). Release of acid phosphatase from extraradical hyphae of arbuscular mycorrhizal fungus Rhizophagus clarus. Soil Science and Plant Nutrition, 61, 269274.CrossRefGoogle Scholar
Schachtman, D. P., Reid, R. J. and Ayling, S. M. (1998). Phosphorus uptake by plants: from soil to cell. Plant Physiology, 116, 447453.CrossRefGoogle ScholarPubMed
Scheublin, T. R., Sanders, I. R., Keel, C. and van der Meer, J. R. (2010). Characterisation of microbial communities colonising the hyphal surfaces of arbuscular mycorrhizal fungi. The ISME Journal, 4, 752.CrossRefGoogle ScholarPubMed
Selosse, M. A., Bauer, R. and Moyersoen, B. (2002). Basal hymenomycetes belonging to the Sebacinaceae are ectomycorrhizal on temperate deciduous trees. New Phytologist, 155, 183195.CrossRefGoogle Scholar
Shahollari, B., Varma, A. and Oelmuller, R. (2005). Expression of a receptor kinase in Arabidopsis roots is stimulated by the basidiomycete Piriformospora indica and the protein accumulates in Triton X-100 insoluble plasma membrane microdomains. Journal of Plant Physiology, 162, 945958.CrossRefGoogle ScholarPubMed
Sharma, S. B., Sayyed, R. Z., Trivedi, M. H. and Gobi, T. A. (2013). Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, 2, 587.CrossRefGoogle ScholarPubMed
Shen, J., Yuan, L., Zhang, J. et al. (2011). Phosphorus dynamics: from soil to plant. Plant Physiology, 156, 9971005.CrossRefGoogle ScholarPubMed
Sieber, T. N. and Grünig, C. R. (2013). Fungal root endophytes. In Plant Roots: The Hidden Half, ed. Wasel, Y, Eshel, A. and Kafkafi, U.. New York: Marcel Dekker, pp. 149.Google Scholar
Smith, S. E. and Read, D. (2008). Mycorrhizal Symbiosis, 3rd edn. London: Academic Press.Google Scholar
Smith, S. E., Smith, F. A. and Jakobsen, I. (2003). Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiology, 133, 1620.CrossRefGoogle ScholarPubMed
Smith, S. E., Smith, F. A. and Jakobsen, I. (2004). Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytologist, 162, 511524.CrossRefGoogle Scholar
Smith, S. E., Jakobsen, I., Grønlund, M. and Smith, F. A. (2011). Roles of arbuscular mycorrhizas in plant phosphorus nutrition. Plant Physiology, 156, 10501057.CrossRefGoogle ScholarPubMed
Spagnoletti, F. N., Tobar, N. E., Fernández Di Pardo, A., Chiocchio, V. M. and Lavado, R. S. (2017). Dark septate endophytes present different potential to solubilize calcium, iron and aluminum phosphates. Applied Soil Ecology, 111, 2532.CrossRefGoogle Scholar
Spatafora, J. W., Chang, Y., Benny, G. L. et al. (2016). A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia, 108, 10281046.CrossRefGoogle ScholarPubMed
Staddon, P. L., Ramsey, C. B., Ostle, N., Ineson, P. and Fitter, A. H. (2003). Rapid turnover of hyphae of mycorrhizal fungi determined by AMS microanalysis of 14C. Science, 300, 1138–40.CrossRefGoogle ScholarPubMed
Taktek, S., St-Arnaud, M., Piché, Y., Fortin, J. A. and Antoun, H. (2017). Igneous phosphate rock solubilization by biofilm-forming mycorrhizobacteria and hyphobacteria associated with Rhizoglomus irregulare DAOM 197198. Mycorrhiza, 27, 1322.CrossRefGoogle ScholarPubMed
Tawaraya, K. (2003). Arbuscular mycorrhizal dependency of different plant species and cultivars. Soil Science and Plant Nutrition, 49, 655668.CrossRefGoogle Scholar
Tedersoo, L., Bahram, M., Ryberg, M. et al. (2014). Global biogeography of the ectomycorrhizal /sebacina lineage (Fungi, Sebacinales) as revealed from comparative phylogenetic analyses. Molecular Ecology, 23, 41684183.CrossRefGoogle ScholarPubMed
Tennant, D. (1975). A test of a modified line intersect method of estimating root length. Journal of Ecology, 63, 9951001.CrossRefGoogle Scholar
Tilman, D., Fargione, J., Wolff, B. et al. (2001). Forecasting agriculturally driven global environmental change. Science, 292, 281284.CrossRefGoogle ScholarPubMed
Turner, B. L., Papházy, M. J., Haygarth, P. M. and McKelvie, I. D. (2002). Inositol phosphates in the environment. Philosophical Transactions of the Royal Society B: Biological Sciences, 357, 449469.CrossRefGoogle ScholarPubMed
van der Heijden, M. G., Martin, F. M., Selosse, M. A. and Sanders, I. R. (2015). Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytologist, 205, 1406–23.CrossRefGoogle ScholarPubMed
Varma, A., Verma, S., Sudah, , Sahay, N. and Franken, P. (1999). Piriformospora indica, a cultivable plant growth-promoting root endophyte. Applied and Environmental Microbiology, 65, 27412744.CrossRefGoogle ScholarPubMed
Verma, S., Varma, A., Rexer, K.-H. et al. (1998). Piriformospora indica, gen. nov. sp. nov., a new root-colonizing fungus. Mycologia, 90, 896903.CrossRefGoogle Scholar
Wang, W., Shi, J., Xie, Q. et al. (2017a). Nutrient exchange and regulation in arbuscular mycorrhizal symbiosis. Molecular Plant, 10, 11471158.CrossRefGoogle ScholarPubMed
Wang, X. X., Hoffland, E., Feng, G. and Kuyper, T. W. (2017b). Phosphate uptake from phytate due to hyphae-mediated phytase activity by arbuscular mycorrhizal maize. Frontiers in Plant Science, 8, 684.CrossRefGoogle ScholarPubMed
Weiß, M., Selosse, M. A., Rexer, K. H., Urban, A. and Oberwinkler, F. (2004). Sebacinales: a hitherto overlooked cosm of heterobasidiomycetes with a broad mycorrhizal potential. Mycological Research, 108, 10031010.CrossRefGoogle ScholarPubMed
Weiß, M., Sykorova, Z., Garnica, S. et al. (2011). Sebacinales everywhere: previously overlooked ubiquitous fungal endophytes. PLoS One, 6, e16793.CrossRefGoogle ScholarPubMed
Weiß, M., Waller, F., Zuccaro, A. and Selosse, M.-A. (2016). Sebacinales: one thousand and one interactions with land plants. New Phytologist, 211, 2040.CrossRefGoogle ScholarPubMed
Wolfe, M. S., Baresel, J. P., Desclaux, D. et al. (2008). Developments in breeding cereals for organic agriculture. Euphytica, 163, 323.CrossRefGoogle Scholar
Yadav, V., Kumar, M., Deep, D. K. et al. (2010). A phosphate transporter from the root endophytic fungus Piriformospora indica plays a role in phosphate transport to the host plant. Journal of Biological Chemistry, 285, 2653226544.CrossRefGoogle Scholar
Zuccaro, A., Basiewicz, M., Zurawska, M., Biedenkopf, D. and Kogel, K. H. (2009). Karyotype analysis, genome organization, and stable genetic transformation of the root colonizing fungus Piriformospora indica. Fungal Genetics and Biology, 46, 543550.CrossRefGoogle ScholarPubMed
Zuccaro, A., Lahrmann, U., Guldener, U. et al. (2011). Endophytic life strategies decoded by genome and transcriptome analyses of the mutualistic root symbiont Piriformospora indica. PLoS Pathogens, 7, e1002290.CrossRefGoogle ScholarPubMed

References

Addy, H. D., Piercey, M. M. and Currah, R. S. (2005). Microfungal endophytes in roots. Canadian Journal of Botany-Revue Canadienne de Botanique, 83, 113.Google Scholar
Alberton, O., Kuyper, T. W. and Summerbell, R. C. (2009). Dark septate root endophytic fungi increase growth of Scots pine seedlings under elevated CO2 through enhanced nitrogen use efficiency. Plant and Soil, 328, 459470.CrossRefGoogle Scholar
Andrade-Linares, D. R., Grosh, R., Restrepo, S. et al. (2011). Effects of dark septate endophytes on tomato plant performance. Mycorrhiza, 21, 413422.CrossRefGoogle ScholarPubMed
Ban, Y., Tang, M., Chen, H. et al. (2012). The response of dark septate endophytes (DSE) to heavy metals in pure culture. PLoS One, 7, e47968.CrossRefGoogle ScholarPubMed
Ban, Y., Xu, Z., Yang, Y. et al. (2017). Effect of dark septate endophytic fungus Gaeumannomyces cylindrosporus on plant growth, photosynthesis and Pb tolerance of maize (Zea mays L.). Pedosphere, 27, 283292.CrossRefGoogle Scholar
Bartholdy, B., Berreck, M. and Haselwandter, K. (2001). Hydroxamate siderophore synthesis by Phialocephala fortinii, a typical dark septate fungal root endophyte. Biometals, 14, 3342.CrossRefGoogle ScholarPubMed
Berthelot, C., Leyval, C., Foulon, J. et al. (2016). Plant growth promotion, metabolite production and metal tolerance of dark septate endophytes isolated from metal-polluted poplar phytomanagement sites. FEMS Microbiology Ecology, 92, fiw144.CrossRefGoogle ScholarPubMed
Berthelot, C., Blaudez, D. and Leyval, C. (2017). Differential growth promotion of poplar and birch inoculated with three dark septate endophytes in two trace element-contaminated soils. International Journal of Phytoremediation, 19,11181125.CrossRefGoogle ScholarPubMed
Berthelot, C., Blaudez, D., Beguiristain, T. et al. (2018). Co-inoculation of Lolium perenne with Funneliformis mosseae and the dark septate endophyte Cadophora sp. in a trace element-polluted soil. Mycorrhiza, 28 , 301314.CrossRefGoogle Scholar
Bois, G., Bertrand, A., Piché, Y. et al. (2006). Growth, compatible solute and salt accumulation of five mycorrhizal fungal species grown over a range of NaCl concentrations. Mycorrhiza, 16, 99109.CrossRefGoogle Scholar
Brundrett, M. C. (2006). Understanding the roles of multifunctional mycorrhizal and endophytic fungi. In Microbial Root Endophytes, ed. Schulz, B, Boyle, C. and Sieber, T. N. Berlin: Springer, pp. 281298.CrossRefGoogle Scholar
Butler, M. and Day, A. (1998). Fungal melanins: a review. Canadian Journal of Microbiology, 44, 11151136.CrossRefGoogle Scholar
Caldwell, B. A., Jumpponen, A. and Trappe, J. M. (2000). Utilization of major detrital substrates by dark-septate, root endophytes. Mycologia, 92, 230232.CrossRefGoogle Scholar
Compant, S., Saikkonen, K., Mitter, B. et al. (2016). Editorial special issue: soil, plants and endophytes. Plant and Soil, 405, 1CrossRefGoogle Scholar
David, A. S., Haridas, S., LaButti, K. et al. (2016). Draft genome sequence of Microdochium bolleyi, a dark septate fungal endophyte of beach grass. Genome Announcements, 4, e00270–16.CrossRefGoogle ScholarPubMed
Della Monica, I. F., Saparrat, M. C. N., Godeas, A. M. et al. (2015). The co-existence between DSE and AMF symbionts affects plant P pools through P mineralization and solubilization processes. Fungal Ecology, 17, 1017.CrossRefGoogle Scholar
De Maria, S. Rivelli, A. R., Kuffner, M. et al. (2011). Interactions between accumulation of trace elements and macronutrients in Salix caprea after inoculation with rhizosphere microorganisms. Chemosphere, 84, 12561261.CrossRefGoogle ScholarPubMed
Deram, A., Languereau, F. and Haluwyn, C. Van. (2011). Mycorrhizal and endophytic fungal colonization in Arrhenatherum elatius L. roots according to the soil contamination in heavy metals. Soil and Sediment Contamination, 20, 114127.CrossRefGoogle Scholar
Grünig, C. R., Queloz, V. and Sieber, T. N. (2011). Structure of diversity in dark septate endophytes: from species to genes. In Endophytes of forest trees, ed. Pirtilla, A. M and Franck, A. C. London: Springer, pp. 330.CrossRefGoogle Scholar
Harman, G. E., Howell, C., Viterbo, A. et al. (2004). Trichoderma species-opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2, 4356.CrossRefGoogle ScholarPubMed
Haselwandter, K. and Read, D. J. (1982). The significance of a root-fungus association in two Carex species of high-alpine plant communities. Oecologia, 53, 352354.CrossRefGoogle ScholarPubMed
He, Y., Yang, Z., Li, M. et al. (2017). Effects of a dark septate endophyte (DSE) on growth, cadmium content, and physiology in maize under cadmium stress. Environmental Science and Pollution Research International, 24. doi: 10.1007/s11356-017-9459-6.CrossRefGoogle ScholarPubMed
Hilbert, M., Voll, L. M., Ding, L. et al. (2012). Indole derivative production by the root endophyte Piriformospora indica is not required for growth promotion but for biotrophic colonization of barley roots. New Phytologist, 196, 520534.CrossRefGoogle Scholar
Hung, R., Lee, S. and Bennett, J. W. (2013). Arabidopsis thaliana as a model system for testing the effect of Trichoderma volatile organic compounds. Fungal Ecology, 6, 1926.CrossRefGoogle Scholar
Jumpponen, A. and Trappe, J. M. (1998a). Dark septate endophytes: a review with special reference to facultative biotrophic root-colonizing fungi. New Phytologist, 140, 295310.CrossRefGoogle Scholar
Jumpponen, A. and Trappe, J. M. (1998b). Performance of Pinus contorta inoculated with two strains of root endophytic fungus, Phialocephala fortinii: effects of synthesis system and glucose concentration. Canadian Journal of Botany, 76, 12051213.CrossRefGoogle Scholar
Jumpponen, A., Trappe, J. M. and Mattson, K. (1998). Mycorrhizal functioning of Phialocephala fortinii with Pinus contorta on glacier forefront soil: interactions with soil nitrogen and organic matter. Mycorrhiza, 7, 261265.CrossRefGoogle ScholarPubMed
Khan, A.L., Hamayun, M., Ahmad, N. et al. (2011). Exophiala sp. LHL08 reprograms Cucumis sativus to higher growth under abiotic stresses. Physiologia Plantarum, 143, 329–43.CrossRefGoogle ScholarPubMed
Khastini, R. O., Ogawara, T., Sato, Y. et al. (2014). Control of Fusarium wilt in melon by the fungal endophyte, Cadophora sp. European Journal of Plant Pathology, 139, 333342.CrossRefGoogle Scholar
Knapp, D. G. and Kovács, G. M. (2016). Interspecific metabolic diversity of root colonizind fungi reveals by enzyme activity tests. FEMS Microbiology Ecology, 92, p.fiw190.CrossRefGoogle ScholarPubMed
Knapp, D. G., Pintye, A. and Kovács, G. M. (2012). The dark side is not fastidious: dark septate endophytic fungi of native and invasive plants of semiarid sandy areas. PLoS One, 7, p.e32570.CrossRefGoogle Scholar
Kovàcs, G. M. and Szigetvari, C. (2002). Mycorrhizae and other root-associated fungal structures of the plants of a sandy grassland on the Great Hungarian Plain. Phyton – Annales Rei Botanicae, 42, 211223.Google Scholar
Kramer, R. and Abraham, W. R. (2012). Volatile sesquiterpenes from fungi: what are they good for? Phytochemistry Reviews, 11, 15–37.CrossRefGoogle Scholar
Lacercat-Didier, L., Berthelot, C., Foulon, J. et al. (2016). New mutualistic fungal endophytes isolated from poplar roots display high metal tolerance. Mycorrhiza, 26, 115.CrossRefGoogle ScholarPubMed
Lemfack, M. C., Nickel, J., Dunkel, M. et al. (2014). MVOC: a database of microbial volatiles. Nucleic Acids Research, 42, 744748.CrossRefGoogle ScholarPubMed
Li, T., Liu, M. J., Zhang, X. T. et al. (2011). Improved tolerance of maize (Zea mays L.) to heavy metals by colonization of a dark septate endophyte (DSE) Exophiala pisciphila. The Science of the Total Environment, 409, 10691074.CrossRefGoogle ScholarPubMed
Likar, M. and Regvar, M. (2009). Application of temporal temperature gradient gel electrophoresis for characterisation of fungal endophyte communities of Salix caprea L. in a heavy metal polluted soil. The Science of the Total Environment, 407, 61796187.CrossRefGoogle Scholar
Likar, M. and Regvar, M. (2013). Isolates of dark septate endophytes reduce metal uptake and improve physiology of Salix caprea L. Plant and Soil, 370, 593604.CrossRefGoogle Scholar
Mahmoud, R. S. and Narisawa, K. (2013). A new fungal endophyte, Scolecobasidium humicola, promotes tomato growth under organic nitrogen conditions. PLoS One, 8, e78746.CrossRefGoogle ScholarPubMed
Mandyam, K. G. and Jumpponen, A. (2005). Seeking the elusive function of the root-colonising dark septate endophytic fungi. Studies in Mycology, 53, 173189.CrossRefGoogle Scholar
Mandyam, K. G. and Jumpponen, A. (2014). Unraveling the dark septate endophyte functions: insights from the Arabidospis model. In Advances in Endophytic Research, ed. Verma, V. C and Gange, A. C. India: Springer, pp. 115141.CrossRefGoogle Scholar
Mandyam, K. G. and Jumpponen, A. (2015). Mutualism–parasitism paradigm synthesized from results of root-endophyte models. Frontiers in Microbiology, 5, 113.CrossRefGoogle ScholarPubMed
Mandyam, K. G., Roe, J. and Jumpponen, A. (2013). Arabidopsis thaliana model system reveals a continuum of responses to root endophyte colonization. Fungal Biology, 117, 250260.CrossRefGoogle ScholarPubMed
Mayerhofer, M. S., Kernaghan, G. and Harper, K. A. (2013). The effects of fungal root endophytes on plant growth: a meta-analysis. Mycorrhiza, 23, 119128.CrossRefGoogle ScholarPubMed
Melin, E. (1921). Über die mykorrhizapilze von Pinus sylvestris L. und Picea abies (L.) Karst. (vorläufige mitteilungen). Svensk Botanisk Tidskrift, 15, 192203.Google Scholar
Narisawa, K., Ohki, K. T. and Hashiba, T. (2000). Suppression of clubroot formation in Chinese cabbage by the root endophytic fungus, Heteroconium chaetospira. Plant Pathology, 49, 141146.CrossRefGoogle Scholar
Narisawa, K., Kawamata, H., Currah, S. H. et al. (2002). Suppression of Verticillium wilt in eggplant by some fungal root endophytes. European Journal of Plant Pathology, 108, 103109.CrossRefGoogle Scholar
Naznin, H. A., Kimura, N., Miyasawa, M. et al. (2013). Analysis of volatile organic compounds emitted by plant growth-promoting fungus Phoma sp. GS8-3 for growth promotion effects on tobacco. Microbes and Environments, 28, 4249.CrossRefGoogle ScholarPubMed
Newsham, K. K. (2011). A meta-analysis of plant responses to dark septate root endophytes. New Phytologist, 190, 783793.CrossRefGoogle ScholarPubMed
Op De Beeck, M., Lievens, B., Busschaert, P. et al. (2015). Impact of metal pollution on fungal diversity and community structures. Environmental Microbiology, 17, 20352047.CrossRefGoogle ScholarPubMed
Paul, D. and Park, K. (2013). Identification of volatiles produced by Cladosporium cladosporioides CL-1, a fungal biocontrol agent that promotes plant growth. Sensors (Basel, Switzerland), 13, 1396913977.CrossRefGoogle ScholarPubMed
Peterson, R. L., Wagg, C. and Pautler, M. (2008). Associations between microfungal endophytes and roots: do structural features indicate function? Botany, 86, 445456.CrossRefGoogle Scholar
Peyronel, B. (1924). Prime ricerche sulla micorizae endotrofiche e sulla microflora radicola normalle della fanerograme. Revista Biologia, 6 , 463–485.Google Scholar
Porras-Alfaro, A. and Bayman, P. (2011). Hidden fungi, emergent properties: endophytes and microbiomes. Annual Review of Phytopathology, 49, 291315.CrossRefGoogle ScholarPubMed
Read, D. J. and Haselwandter, K. (1981). Observations on the mycorrhizal status of some alpine plant communities. The New Phytologist, 88, 341352.CrossRefGoogle Scholar
Reininger, V. and Schlegel, M. (2016). Analysis of the Phialocephala subalpina transcriptome during colonization of its host plant Picea abies. PLoS One, 11, 116.CrossRefGoogle ScholarPubMed
Ruotsalainen, A. L. and Kytöviita, M. M. (2004). Mycorrhiza does not alter low temperature impact on Gnaphalium norvegicum. Oecologia, 140, 226233.CrossRefGoogle Scholar
Ruotsalainen, A. L., Markkola, A. and Kozlov, M. V. (2007). Root fungal colonisation in Deschampsia flexuosa: Effects of pollution and neighbouring trees. Environmental Pollution, 147, 723728.CrossRefGoogle ScholarPubMed
Schulz, B. and Boyle, C. (2005). The endophytic continuum. Mycological Research, 109, 661686.CrossRefGoogle ScholarPubMed
Schulz, B., Boyle, C., Draeger, S. et al. (2002). Endophytic fungi: a source of novel biologically active secondary metabolites. Mycological Research, 106, 9961004.CrossRefGoogle Scholar
Spagnoletti, F. N., Tobar, N., di Pardo, F. et al. (2017). Dark septate endophytes present different potential to solubilize calcium, iron and aluminum phosphates. Applied Soil Ecology, 111, 2532.CrossRefGoogle Scholar
Strobel, G. A., Dirkse, E., Sears, J. et al. (2001). Volatile antimicrobials from Muscodor albus, a novel endophytic fungus. Microbiology, 147, 29432950.CrossRefGoogle ScholarPubMed
Su, Z. Z., Mao, L.-J., Li, N. et al. (2013). Evidence for biotrophic lifestyle and biocontrol potential of dark septate endophyte Harpophora oryzae to rice blast disease. PLoS One, 8, e61332.CrossRefGoogle ScholarPubMed
Sukumar, P., Legué, V., Vayssière, A. et al. (2013). Involvement of auxin pathways in modulating root architecture during beneficial plant–microorganism interactions. Plant, Cell and Environment, 36, 909919.CrossRefGoogle ScholarPubMed
Surono, and Narisawa, K. (2017). The dark septate endophytic fungus Phialocephala fortinii is a potential decomposer of soil organic compounds and a promoter of Asparagus officinalis growth. Fungal Ecology, 28, 110.CrossRefGoogle Scholar
Tamura, K., Stecher, D., Perterson, D. (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution, 30, 27252729.CrossRefGoogle ScholarPubMed
Tellenbach, C. and Sieber, T. N. (2012). Do colonization by dark septate endophytes and elevated temperature affect pathogenicity of oomycetes? FEMS Microbiology Ecology, 82, 157168.CrossRefGoogle ScholarPubMed
Tellenbach, C., Sumarah, M. W., Grunig, C. R. et al. (2013). Inhibition of Phytophthora species by secondary metabolites produced by the dark septate endophyte Phialocephala europaea. Fungal Ecology, 6, 1218.CrossRefGoogle Scholar
Terhonen, E., Kerio, S., Sun, H. et al. (2014). Endophytic fungi of Norway spruce roots in boreal pristine mire, drained peatland and mineral soil and their inhibitory effect on Heterobasidion parviporum in vitro. Fungal Ecology, 9, 1726.CrossRefGoogle Scholar
Terhonen, E., Sipari, N. and Asiegbu, F. O. (2016). Inhibition of phytopathogens by fungal root endophytes of Norway spruce. Biological Control, 99, 5363.CrossRefGoogle Scholar
Upson, R., Read, D. J. and Newsham, K. K. (2009). Nitrogen form influences the response of Deschampsia antarctica to dark septate root endophytes. Mycorrhiza, 20, 111.CrossRefGoogle ScholarPubMed
Usuki, F. and Narisawa, K. (2007). A mutualistic symbiosis between a dark septate endophytic fungus, Heteroconium chaetospira, and a nonmycorrhizal plant, Chinese cabbage. Mycologia, 99, 175184.CrossRefGoogle Scholar
Utmazian, M. N. D. S., Sweiger, P., Sommer, P. et al. (2007). Influence of Cadophora finlandica and other microbial treatments on cadmium and zinc uptake in willows grown on polluted soil. Plant Soil and Environment, 53, 158166.CrossRefGoogle Scholar
Vohník, M., Albrechtová, J. and Vosátka, M. (2005). The inoculation with Oidodendron maius and Phialocephala fortinii alters phosphorus and nitrogen uptake, foliar C:N ratio and root biomass distribution in Rhododendron cv. Azurro. Symbiosis, 40, 8796.Google Scholar
Vrålstad, T., Myrhe, E. and Schumasher, T. (2002). Molecular diversity and phylogenetic affinities of symbiotic root-associated ascomycetes of the Helotiales in burnt and metal polluted habitats. New Phytologist, 155, 131148.CrossRefGoogle ScholarPubMed
Wang, J., Li, T., Liu, G.-Y. et al. (2016). Unraveling the role of dark septate endophyte (DSE) colonizing maize (Zea mays) under cadmium stress: physiological, cytological and genic aspects. Nature Scientific Reports, 6, 112.Google ScholarPubMed
Xu, R., Li, T., Cui, H. et al. (2015). Diversity and characterization of Cd-tolerant dark septate endophytes (DSEs) associated with the roots of Nepal alder (Alnus nepalensis) in a metal mine tailing of southwest China. Applied Soil Ecology, 93, 1118.CrossRefGoogle Scholar
Xu, X. H., Su, Z.-Z., Wang, C. et al. (2014). The rice endophyte Harpophora oryzae genome reveals evolution from a pathogen to a mutualistic endophyte. Scientific Reports, 4, 19.Google ScholarPubMed
Yu, T., Nassuth, A. and Peterson, R. L. (2001). Characterization of the interaction between the dark septate fungus Phialocephala fortinii and Asparagus officinalis roots. Canadian Journal of Microbiology, 47, 741753.CrossRefGoogle ScholarPubMed
Zhan, F., Li, T., Cui, H. et al. (2016). Effects of tricyclazole on cadmium tolerance and accumulation characteristics of a dark septate endophyte (DSE), Exophiala pisciphila. Bulletin of Environmental Contamination and Toxicology, 96, 235241.CrossRefGoogle ScholarPubMed
Zhan, F., Li, T., Cui, H. et al. (2017). Effects of a dark septate endophyte (DSE) on the glutathione metabolism in maize plants under cadmium. Journal of Plant Interactions, 12, 421428.CrossRefGoogle Scholar
Zhang, Q., Gong, M., Yuan, J. et al. (2017). Dark septate endophyte improves drought tolerance in sorghum. International Journal of Agriculture and Biology, 19, 5360.CrossRefGoogle Scholar
Zhang, Y., Zhang, Y., Liu, M. et al. (2008). Dark septate endophyte (DSE) fungi isolated from metal polluted soils: their taxonomic position, tolerance, and accumulation of heavy metals in vitro. Journal of Microbiology, 46, 624632.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×