Published online by Cambridge University Press: 17 December 2010
Introduction
Having highlighted some of the data and issues about the prebiotic chemistry of low-molecular-weight compounds, let's now turn to the functional long chains – mostly proteins and nucleic acids. The first part of this chapter is devoted to the prebiotic chemistry of biopolymers, the second part, which will necessarily be more speculative, to ideas of conceiving the very origin of macromolecular sequences.
Our biology is regulated by the catalytic power of enzymes and by the encoding power of nucleic acids. This chapter may begin with one very general question: “Why macromolecules? What is so peculiar in their great length that makes these molecules essential for life? Why didn't nature do it all using smaller peptides or smaller oligonucleotides? Why this … and not that?”
The question “why are enzymes macromolecules?” is an old issue in structural biochemistry, and one with which I liked to play around in my younger days (Luisi, 1979). Clearly, there are good reasons for long chains: only a long chain permits the dilution in the same string of many active residues and, simultaneously, their mutual proximity due to the forced folding; in turn, this folding and the corresponding conformational rigidity is due to the very large number of intramolecular interactions, which is only possible in long chains; the consequence of the length is an elaborate three-dimensional architecture that brings forth a particular micro-environment and reactivity of the active site; the large size is also responsible for the overall physicochemical properties, such as solubility in water or affinity to the membrane, conformational changes and cooperativity.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.