Published online by Cambridge University Press: 04 May 2010
One of the most fruitful developments in the last couple of decades, has been the use of K-theory in the study of special values of L-functions of modular forms. This link is manifested in several ways. The first is through the work of Beilinson, who constructed zeta-elements living in K2 of a modular curve. He managed to prove that their image under the regulator map yielded the residue of the L-series at s = 0. In an orthogonal direction, Coates and Wiles found a non-archimedean approach to relating the L-function of a CM elliptic curve at s = 1, with a certain Euler system of elliptic units. They were then able to prove the first concrete theorems in the direction of the Birch and Swinnerton-Dyer conjecture.
It was Kato who realised the approach of Beilinson and that of Coates-Wiles could be combined, with spectacular results. He noticed that the zeta-elements considered by Beilinson satisfied norm-compatibility relations, reminiscent of those satisfied by elliptic units. Moreover, he devised a purely p-adic method whereby these elements could be used to study L-values. Underlying his discoveries was the ground-breaking work of Perrin-Riou in the early nineties, which extended the local Iwasawa theory used by Coates and Wiles to a very general framework (required for modular forms and non-CM elliptic curves). We shall review some of the highlights of their work, and in Chapters III, V and VI we will generalise it to modular symbols and Λ-adic families of modular forms.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.