Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-05T13:33:28.255Z Has data issue: false hasContentIssue false

I - Algebras and modules

Published online by Cambridge University Press:  12 January 2010

Ibrahim Assem
Affiliation:
Université de Sherbrooke, Canada
Andrzej Skowronski
Affiliation:
Nicholas Copernicus University of Toruń, Poland
Daniel Simson
Affiliation:
Nicholas Copernicus University of Toruń, Poland
Get access

Summary

We introduce here the notations and terminology we use on algebras and modules, and we briefly recall some of the basic facts from module theory. Examples of algebras, modules, and functors are presented. We introduce the notions of the (Jacobson) radical of an algebra and of a module; the notions of semisimple module, projective cover, injective envelope, the socle and the top of a module, local algebra, and primitive idempotent. We also collect basic facts from the module theory of finite dimensional K-algebras. In this chapter we present complete proofs of most of the results, except for a few classical theorems. In these cases the reader is referred to the following textbooks on this subject, and.

Throughout, we freely use the basic notation and facts on categories and functors introduced in the Appendix.

The reader interested mainly in linear representations of quivers and path algebras or familiar with elementary facts on rings and modules can skip this chapter and begin with Chapter II.

For the sake of simplicity of presentation, we always suppose that K is an algebraically closed field and that an algebra means a finite dimensional K-algebra, unless otherwise specified.

Algebras

By a ring, we mean a triple (A, +, ·) consisting of a set A, two binary operations: addition + : A × AA, (a, b) ↦ a + b; multiplication · : A × AA, (a, b) ↦ ab, such that (A, +) is an abelian group, with zero element 0 ∈ A, and the following conditions are satisfied:

  1. (i) (ab)c = a(bc)

  2. (ii) a(b + c) = ab + ac and (b + c)a = ba + ca

for all a, b, cA.

Type
Chapter
Information
Elements of the Representation Theory of Associative Algebras
Techniques of Representation Theory
, pp. 1 - 40
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Algebras and modules
  • Ibrahim Assem, Université de Sherbrooke, Canada, Andrzej Skowronski, Nicholas Copernicus University of Toruń, Poland, Daniel Simson, Nicholas Copernicus University of Toruń, Poland
  • Book: Elements of the Representation Theory of Associative Algebras
  • Online publication: 12 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511614309.002
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Algebras and modules
  • Ibrahim Assem, Université de Sherbrooke, Canada, Andrzej Skowronski, Nicholas Copernicus University of Toruń, Poland, Daniel Simson, Nicholas Copernicus University of Toruń, Poland
  • Book: Elements of the Representation Theory of Associative Algebras
  • Online publication: 12 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511614309.002
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Algebras and modules
  • Ibrahim Assem, Université de Sherbrooke, Canada, Andrzej Skowronski, Nicholas Copernicus University of Toruń, Poland, Daniel Simson, Nicholas Copernicus University of Toruń, Poland
  • Book: Elements of the Representation Theory of Associative Algebras
  • Online publication: 12 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511614309.002
Available formats
×