Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-06T00:23:15.900Z Has data issue: false hasContentIssue false

11 - The viologens

Published online by Cambridge University Press:  10 August 2009

Paul Monk
Affiliation:
Manchester Metropolitan University
Roger Mortimer
Affiliation:
Loughborough University
David Rosseinsky
Affiliation:
University of Exeter
Get access

Summary

Introduction

The next major group of electrochromes are the bipyridilium species formed by the diquaternisation of 4,4′-bipyridyl to form 1,1′-disubstituted-4,4′-bipyridilium salts (Scheme 11.1). The positive charge shown localised on N is better viewed as being delocalised over the rings. The compounds are formally named as 1,1′-di-substituent-4,4′-bipyridilium if the two substituents at nitrogen are the same, and as 1-substitituent-1′-substituent′-4,4′-bipyridilium should they differ. The anion X in Scheme 11.1 need not be monovalent and can be part of a polymer. The molecules are zwitterionic (i.e. bearing plus and minus charge concentrations at different molecular regions or sites) when a substituent at one nitrogen bears a negative charge.

A convenient abbreviation for any bipyridyl unit regardless of its redox state is ‘bipm’, with its charge indicated. The literature of these compounds contains several trivial names. The most common is ‘viologen’ following Michaelis, who noted the violet colour formed when 1,1′-dimethyl-4,4′-bipyridilium undergoes a one-electron reduction to form a radical cation. 1,1′-Dimethyl-4,4′-bipyridilium is therefore called ‘methyl viologen’ (MV) in this nomenclature. Another extensively used name is ‘paraquat’, PQ, after the ICI brand name for methyl viologen, which they developed for herbicidal use. In this latter style, bipyridilium species other than the dimethyl are called ‘substituent paraquat’.

There are several reviews of this field extant. The most substantial is The Viologens: Physicochemical Properties, Synthesis, and Applications of the Salts of 4,4′-Bipyridine (1998) by Monk.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kamagawa, H. and Suzuki, T.Organic solid photochromism via a photoreduction mechanism: photochromism of viologen crystals. J. Chem. Soc., Chem. Commun., 1985, 525–6.CrossRefGoogle Scholar
Sariciftci, N. S., Mehring, M. and Neugebauer, N.In situ studies on the structural mechanism of zwitter-viologen system during electrochemical charge-transfer reactions. Synth. Met., 41–43, 1991, 2971–4.CrossRefGoogle Scholar
Michaelis, L.Semiquinones, the intermediate steps of reversible organic oxidation–reduction. Chem. Rev., 16, 1935, 243–86.CrossRefGoogle Scholar
Michaelis, L. and Hill, E. S.The viologen indicators. J. Gen. Physiol., 16, 1933, 859–73.CrossRefGoogle ScholarPubMed
Monk, P. M. S.The Viologens: Physicochemical Properties, Synthesis and Applications of the Salts of 4,4′-Bipyridine. Chichester, Wiley, 1998.Google Scholar
Monk, P. M. S., Mortimer, R. J. and Rosseinsky, D. R.Electrochromism: Fundamentals and Applications, Weinheim, VCH, 1995, ch. 8.CrossRefGoogle Scholar
Summers, L. A.The bipyridines. Adv. Heterocyc. Chem., 35, 1984, 281–394.CrossRefGoogle Scholar
Summers, L. A.The Bipyridinium Herbicides, London, Academic Press, 1980.Google Scholar
Bird, C. L. and Kuhn, A. T.The electrochemistry of the viologens. Chem. Soc. Rev., 10, 1981, 49–82.CrossRefGoogle Scholar
Bard, A. J., Ledwith, A. and Shine, H. J.Formation, properties and reactions of cation radicals in solution. Adv. Phys. Org. Chem., 13, 1976, 155–278.Google Scholar
Sliwa, W., Bachowska, B. and Zelichowicz, N.Chemistry of viologens. Heterocycles, 32, 1991, 2241–73.CrossRefGoogle Scholar
Rosseinsky, D. R. and Monk, P. M. S.Comproportionation in propylene carbonate of substituted bipyridiliums. J. Chem. Soc., Faraday Trans., 89, 1993, 219–22.CrossRefGoogle Scholar
Rosseinsky, D. R. and Monk, P. M. S.Solid-state conductivities of CPQ [1,1′-bis(p-cyanophenyl)-4,4′-bipyridilium] salts, redox-state mixtures and a new intervalence adduct. J. Chem. Soc., Faraday Trans., 90, 1994, 1127–31.CrossRefGoogle Scholar
Emmert, B. and Varenkamp, O.Über chinhydronartige Verbindungen der N, N′dialkyl-[dihydro-γγ′dipyridyle]. Berichte, 56, 1923, 490–501.Google Scholar
Levey, G. and Emmertson, T. W.Methyl viologen radical reactions with several oxidizing reagents. J. Phys. Chem., 87, 1983, 829–32.CrossRefGoogle Scholar
Leest, R. E. V. D.The coulometric determination of oxygen with the electrochemically generated viologen radical-cation. J. Electroanal. Chem., 43, 1973, 251–5.CrossRefGoogle Scholar
Hünig, S. and Schenk, W.Einfluß von N-substitutenten in 4,4′-bipyridylen auf das Redox-verhalten, die Radikalstabilität und die Elektronenspektren. Liebigs Ann. Chem., 1979, 1523–33.CrossRefGoogle Scholar
Čársky, P., Hünig, S., Scheutzow, D. and Zahradník, R.Theoretical study of redox equilibria. Tetrahedron, 25, 1969, 4781–96.CrossRefGoogle Scholar
Hünig, S. and Groß, J.Reversible Redoxsysteme vom Weitz-typ: eine polarographische Studie. Tetrahedron Lett., 21, 1968, 2599–604.CrossRefGoogle Scholar
Kosower, E. M.An Introduction to Physical Organic Chemistry, New York, Wiley, 1968.Google Scholar
Thorneley, R. N. F.A convenient electrochemical preparation of reduced methyl viologen and kinetic study of the reaction with oxygen using an anaerobic stopped-flow apparatus. Biochim. Biophys. Acta, 333, 1974, 487–96.CrossRefGoogle ScholarPubMed
Watanabe, T. and Hondo, K.Measurement of the extinction coefficient of the methyl viologen cation radical and the efficiency of its formation by semiconductor photocatalysis. J. Phys. Chem., 86, 1982, 2617–19.CrossRefGoogle Scholar
Kosower, E. and Cotter, J. L.Stable free radicals, II: the reduction of 1-methyl-4-cyanopyridinium ion to methylviologen radical cation. J. Am. Chem. Soc., 86, 1964, 5524–7.CrossRefGoogle Scholar
Schwarz W., Jr. Ph.D thesis, 1962, University of Wisconsin, as cited in ref. 23.
Stargardt, J. F. and Hawkridge, F. M.Computer decomposition of the ultraviolet–visible adsorption spectrum of the methyl viologen cation radical and its dimer in solution. Anal. Chim. Acta, 146, 1983, 1–8.CrossRefGoogle Scholar
Imabayashi, S.-I., Kitamura, N., Tazuke, S. and Tokuda, K.The role of intramolecular association in the electrochemical reduction of viologen dimers and trimers. J. Electroanal. Chem., 243, 1988, 143–60.CrossRefGoogle Scholar
New Electronics, 7, 1986, 66 (editorial).
Monk, P. M. S., Hodgkinson, N. M. and Ramzan, S. K.Spin pairing (‘dimerisation’) of the viologen radical cation: kinetics and equilibria. Dyes Pigm., 43, 1999, 207–17.CrossRefGoogle Scholar
Müller, F. and Mayhew, S. G.Dimerisation of the radical cation of Benzyl Viologen in aqueous solution. Biochem. Soc. Trans., 10, 1982, 176–7.Google Scholar
Compton, R. G., Waller, A. M., Monk, P. M. S. and Rosseinsky, D. R.Electron paramagnetic resonance spectroscopy of electrodeposited species from solutions of 1,1′-bis(p-cyanophenyl)-4,4′-bipyridilium (cyanophenyl paraquat, CPQ). J. Chem. Soc., Faraday Trans., 86, 1990, 2583–6.CrossRefGoogle Scholar
Mori, H. and Mizuguchi, J.Green electrochromism in the system p-cyanophenyl viologen and potassium ferrocyanide. Jpn. J. Appl. Phys., 26, 1987, 1356–60.CrossRefGoogle Scholar
Emmert, B.Ein Radikal mit vierwertigem Stickstoff. Ber., 53, 1920, 370–7.Google Scholar
Belinko, K.Electrochemical studies of the viologen system for display applications. Appl. Phys. Lett., 29, 1976, 363.CrossRefGoogle Scholar
Müller, E. and Bruhn, K. A.Über das Merichinoide, N, N'-Dibenzyl-γ, γ'dipyridinium-subchlorid. Chem. Ber., 86, 1953, 1122–32.CrossRefGoogle Scholar
Carey, J. E., Cairns, J. E. and Colchester, J. E.Reduction of 1,1′-dimethyl-4,4′-bipyridilium dichloride to 1,1′-dimethyl-1,1′-dihydro-4,4′-bipyridilyl. J. Chem. Soc., Chem. Commun., 1969, 1290–1.Google Scholar
Barclay, D. J., Bird, C. L., Kirkman, D. H., Martin, D. H. and Moth, F. T.An integrated electrochromic data display. SID Digest, 1980, 124–5.Google Scholar
Barclay, D. J., Dowden, A. C., Lowe, A. C. and Wood, J. C.Viologen-based electrochromic light scattering display. Appl. Phys. Lett., 42, 1983, 911–13.CrossRefGoogle Scholar
Bookbinder, D. C. and Wrighton, M. S.Electrochromic polymers covalently anchored to electrode surfaces: optical and electrochromic properties of a viologen-based polymer. J. Electrochem. Soc., 130, 1983, 1081–7.CrossRefGoogle Scholar
Dominey, R. N., Lewis, T. J. and Wrighton, M. S.Synthesis and characterization of a benzylviologen surface-derivatizing reagent: N, N′-bis [p-(trimethoxysilyl)benzyl]-4,4′-bipyridilium dichloride. J. Phys. Chem., 87, 1983, 5345–54.CrossRefGoogle Scholar
Shu, C.-F. and Wrighton, M. S.Synthesis and charge-transport properties of polymers derived from the oxidation of 1-hydro-1′-(6-(pyrrol-1-yl)hexyl)-4,4′-bipyridinium bis(hexafluorophosphate) and demonstration of a pH-sensitive microelectrochemical transistor derived from the redox properties of a conventional redox center. J. Phys. Chem., 92, 1988, 5221–9.CrossRefGoogle Scholar
Ko, H. C., Park, S.-A., Paik, W.-K. and Lee, H.Electrochemistry and electrochromism of the polythiophene derivative with viologen pendant. Synth. Met., 132, 2002, 15–20.CrossRefGoogle Scholar
Akahoshi, H., Toshima, S. and Itaya, K.Electrochemical and spectroelectrochemical properties of polyviologen complex modified electrodes. J. Phys. Chem., 85, 1981, 818–22.CrossRefGoogle Scholar
Berlin, A. A., Zherebtsova, L. V. and Rabazobovskii, Y. F.Polymers with a conjugated system, XXXVII: synthesis of polymers with charged heteroatoms in the macromolecular chain (onium polymerization). Polym. Sci. (USSR), 6, 1964, 67–74.CrossRefGoogle Scholar
Factor, A. and Heisolm, G. E.Polyviologens – a novel class of cationic polyelectrolyte redox polymers. Polym. Lett., 9, 1971, 289–95.CrossRefGoogle Scholar
Lieder, M. and Schlapfer, C. W.Synthesis and electrochemical properties of new viologen polymers. J. Appl. Electrochem., 27, 1997, 235–9.CrossRefGoogle Scholar
Sato, H. and Tamamura, T.Polymer effect in electrochromic behavior of oligomeric viologens. J. Appl. Polym. Sci., 24, 1979, 2075–85.CrossRefGoogle Scholar
Willman, K. W. and Murray, R. W.Viologen homopolymer, polymer mixture and polymer bilayer films on electrodes: electropolymerization, electrolysis, spectroelectrochemistry, trace analysis and photoreduction. J. Electroanal. Chem., 133, 1982, 211–31.CrossRefGoogle Scholar
Marguerettaz, X., O' Neill, R. and Fitzmaurice, D.Heterodyads: electron transfer at a semiconductor electrode–liquid electrolyte interface modified by an adsorbed spacer–acceptor complex. J. Am. Chem. Soc., 116, 1994, 2629–30.CrossRefGoogle Scholar
Corr, D., Bach, U., Fay, D.et al. Coloured electrochromic ‘paper-quality’ displays based on modified mesoporous electrodes. Solid State Ionics, 165, 2003, 315–21.CrossRefGoogle Scholar
Sammells, A. F.Semi conductor/solid electrolyte junctions for optical information storage. US Government Reports and Announcements Index, 87, 1987, Abstract no. 703, 869, as cited in Chem. Abs. 107: 86,064m.Google Scholar
Sammells, A. F. and Pujare, N. U.Electrochromic effects on heptylviologen incorporated within a solid polymer electrolyte cell. J. Electrochem. Soc., 133, 1986, 1270–1.CrossRefGoogle Scholar
Calvert, J. M., Manuccia, T. J., and Nowak, R. J.A polymeric solid-state electrochromic cell. J. Electrochem. Soc., 133, 1986, 951–3.CrossRefGoogle Scholar
Byker, H. J.Electrochromics and polymers. Electrochim. Acta, 46, 2001, 2015–22.CrossRefGoogle Scholar
Schoot, C. J., Ponjeé, J. J., Dam, H. T., Doorn, R. A. and Bolwijn, P. J.New electrochromic memory device. Appl. Phys. Lett., 23, 1973, 64–5.CrossRefGoogle Scholar
As cited in Philips Ltd. Image display apparatus. British Patent 1,302,000, 1971.
Kenworthy, J. G. ICI Ltd. Variable light transmission device. British Patent, 1,314,049, 1973.
Yasuda, A., Mori, H., Takehana, Y. and Ohkoshi, A.Electrochromic properties of n-heptyl viologen–ferrocyanate system. J. Appl. Electrochem., 14, 1984, 323–8.CrossRefGoogle Scholar
J. G. Allen, personal communication, 1987.
Dam, H. T. and Ponjeé, J. J.Electrochemically generated colored films of insoluble viologen radical compounds. J. Electrochem. Soc., 121, 1974, 1555–8.Google Scholar
Jasinski, R. J.The electrochemistry of some n-heptyl viologen salt solutions. J. Electrochem. Soc., 124, 1977, 637–41.CrossRefGoogle Scholar
Monk, P. M. S. and Hodgkinson, N. M.Charge-transfer complexes of the viologens: effects of complexation on the rate of electron transfer to methyl viologen. Electrochim. Acta, 43, 1998, 245–55.CrossRefGoogle Scholar
Bruinink, J. and Zanten, P.The response of an electrochromic display with viologens on a potential step. J. Electrochem. Soc., 124, 1977, 1232–3.CrossRefGoogle Scholar
Jasinski, R.On the cathodic growth of n-heptylviologen radical cation films. J. Electrochem. Soc., 126, 1979, 167–70.CrossRefGoogle Scholar
Bruinink, J. and Kregting, C. G. A.The voltammetric behaviour of viologens at SnO2 electrodes. J. Electrochem. Soc., 125, 1978, 1397–401.CrossRefGoogle Scholar
Jasinski, R.n-Heptylviologen radical cation films on transparent oxide electrodes. J. Electrochem. Soc., 125, 1978, 1619–23.CrossRefGoogle Scholar
Berzins, T. and Delahay, P.Oscillographic polarographic waves for the reversible deposition of metals on solid electrodes. J. Am. Chem. Soc., 75, 1953, 555–9.CrossRefGoogle Scholar
Fletcher, S., Duff, L. and Barradas, R. G.Nucleation and charge-transfer kinetics at the viologen/SnO2 interface in electrochromic device applications. J. Electroanal. Chem., 100, 1979, 759–70.CrossRefGoogle Scholar
Tang, X. Y., Schneider, T. W., Walker, J. W. and Buttry, D. A.Dimerized-complexes in self-assembled monolayers containing viologens: an origin of unusual wave shapes in the voltammetry of monolayers. Langmuir, 12, 1996, 5921–33.CrossRefGoogle Scholar
Barna, G. G.The morphology of viologen films on transparent oxide electrodes. J. Electrochem. Soc., 127, 1980, 1317–19.CrossRefGoogle Scholar
Goddard, N. J., Jackson, A. C. and Thomas, M. G.Spectroelectrochemical studies of some viologens used in electrochromic display devices. J. Electroanal. Chem., 159, 1983, 323–35.Google Scholar
Bewick, A., Lowe, A. C. and Wederell, C. W.Recrystallisation processes in viologen-based electrochromic deposits: voltammetry coupled with rapid time-resolved spectroscopy. Electrochim. Acta, 28, 1983, 1899–902.CrossRefGoogle Scholar
Bewick, A., Cunningham, D. W. and Lowe, A. C.Electrochemical and spectroscopic characterisation of structural reorganisation in N, N′-dipyridinium cation radical deposits. Macromol. Chem. Macromol. Symp., 8, 1987, 355–60.CrossRefGoogle Scholar
Rosseinsky, D. R., Monk, P. M. S. and Hann, R. A.Anion-dependent aqueous electrodeposition of electrochromic 1,1′-bis-cyanophenyl-4,4′-bipyridilium (cyanophenylparaquat) radical cation by cyclic voltammetry and spectroelectrochemical studies. Electrochim. Acta, 35, 1990, 1113–23.CrossRefGoogle Scholar
Kaifer, A. E. and Bard, A. J.Micellar effects on the reductive electrochemistry of methylviologen. J. Phys. Chem. B, 89, 1985, 4876–80.CrossRefGoogle Scholar
Rosseinsky, D. R. and Monk, P. M. S.Electrochromic cyanophenylparaquat (CPQ: 1,1′-bis-cyanophenyl-4,4′-bipyridilium) studied voltammetrically, spectroelectrochemically and by ESR. Sol. Energy Mater. Sol. Cells, 25, 1992, 201–10.CrossRefGoogle Scholar
Shaw, D. J.Introduction to Colloid and Surface Chemistry, 3rd edn, London, Butterworths, 1980, p. 74.Google Scholar
Hoshino, K. and Saji, T.Electrochemical formation of thin film of viologen by disruption of micelles. Chem. Lett., 1987, 1439–42.CrossRefGoogle Scholar
Heyrovský, M.Catalytic and photocatalytic reduction of water by the reduced forms of methylviologen. J. Chem. Soc., Chem. Commun., 1983, 1137–8.CrossRefGoogle Scholar
Heyrovský, M.Effect of light upon electroreduction of 4,4′-bipyridyl and methyl viologen in aqueous solutions. J. Chem. Soc., Faraday Trans. 1, 82, 1986, 585–96.CrossRefGoogle Scholar
Heyrovský, M.The electroreduction of methyl viologen. J. Chem. Soc., Chem. Commun., 1987, 1856–7.CrossRefGoogle Scholar
Engelman, E. E. and Evans, D. H.Explicit finite-difference digital simulation of the effects of rate-controlled product adsorption or deposition in double-potential-step chronocoulometry. J. Electroanal. Chem., 331, 1992, 739–49.CrossRefGoogle Scholar
Engelman, E. E. and Evans, D. H.Treatment of the electrodeposition of alkyl sulfate salts of viologen radical cations as an equilibrium process governed by solubility product. Anal. Chem., 66, 1994, 1530–4.CrossRefGoogle Scholar
Byker, H. J., Gentex Corporation. 1990, Single-compartment, self-erasing, solution-phase electrochromic devices, solutions for use therein and uses thereof. US Patent No. 4,902,108, 1990.
Ho, K.-C., Fang, J. G., Hsu, Y.-C. and Yu, F.-C.A study on the electro-optical properties of HV and TMPD with their application in electrochromic devices. Proc. Electrochem. Soc., 2003–17, 2003, 266–78.Google Scholar
Ho, K.-C., Fang, Y.-W., Hsu, Y.-C. and Chen, L.-C.The influences of operating voltage and cell gap on the performance of a solution-phase electrochromic device containing HV and TMPD. Solid State Ionics, 165, 2003, 279–87.CrossRefGoogle Scholar
Ostrom, G. S. and Buttry, D. A.Quartz crystal microbalance studies of deposition and dissolution mechanisms of electrochromic films of diheptylviologen bromide. J. Electroanal. Chem., 256, 1988, 411–31.CrossRefGoogle Scholar
Tang, X. Y., Schneider, T. and Buttry, D. A.A vibrational spectroscopic study of the structure of electroactive self-assembled monolayers of viologen derivatives. Langmuir, 10, 1994, 2235–40.CrossRefGoogle Scholar
Beden, B., Enea, O., Hahn, F. and Lamy, C.Investigation of the adsorption of methyl viologen on a platinum electrode by voltammetry coupled with ‘in situ’ UV-visible reflectance spectroscopy. J. Electroanal. Chem., 170, 1984, 357–61.CrossRefGoogle Scholar
Crouigneau, P., Enea, O. and Beden, B.‘In situ’ investigation by simultaneous voltammetry and UV-visible reflectance spectroscopy of some viologen radicals absorbed on a platinum electrode. J. Electroanal. Chem., 218, 1987, 307–17.CrossRefGoogle Scholar
Reichman, B., Fan, F.-R. F. and Bard, A. J.Semiconductor electrodes, XXV: the p-GaAs / heptyl viologen system: photoelectrochemical cells and photoelectrochromic cells. J. Electrochem. Soc., 127, 1980, 333–8.CrossRefGoogle Scholar
Crouigneau, P., Enea, O. and Lamy, C.A comparative electron spin resonance study of adsorbed cation-radicals generated ‘in situ’ by electrochemical and photoelechemical reduction of some viologen derivatives. Nouv. J. Chem., 10, 1986, 539–43.Google Scholar
Yasuda, A., Kondo, H., Itabashi, M. and Seto, J.Structure changes of viologen + β-cyclodextrin inclusion complex corresponding to the redox state of viologen. J. Electroanal. Chem., 210, 1986, 265–75.CrossRefGoogle Scholar
Lu, T. and Cotton, T. M.In situ Raman spectra of the three redox forms of heptylviologen at platinum and silver electrodes: counterion effects. J. Phys. Chem., 91, 1987, 5978–85.CrossRefGoogle Scholar
Osawa, M. and Suëtaka, W.Electrochemical reduction of heptyl viologen at platinum studied by time-resolved resonance Raman spectroscopy. J. Electroanal. Chem., 270, 1989, 261–72.CrossRefGoogle Scholar
Sawada, T. and Bard, A. J.Laser-photoelectric-photoacoustic observation of the electrode surface. J. Photoacoustics, 1, 1982/3, 317–27.Google Scholar
Malpas, R. E. and Bard, A. J.In situ monitoring of electrochromic systems by piezoelectric detector photoacoustic spectroscopy of electrodes. Anal. Chem., 52, 1980, 109–12.CrossRefGoogle Scholar
Brilmyer, G. H. and Bard, A. J.Application of photothermal spectroscopy to in-situ studies of films on metals and electrodes. Anal. Chem., 52, 1980, 685–91.CrossRefGoogle Scholar
Scharifker, B. and Wehrmann, C.Phase formation phenomena during electrodeposition of benzyl and heptyl viologen bromides. J. Electroanal. Chem., 185, 1985, 93–108.CrossRefGoogle Scholar
Gołden, A. and Przyłuski, J.Studies of electrochemical properties of N-heptylviologen bromide films. Electrochim. Acta, 30, 1985, 1231–5.CrossRefGoogle Scholar
Monk, P. M. S., Fairweather, R. D., Duffy, J. A. and Ingram, M. D.Evidence for the product of viologen comproportionation being a spin-paired radical cation dimer. J. Chem. Soc., Perkin Trans. II, 1992, 2039–41.CrossRefGoogle Scholar
Poizat, O., Sourisseau, C. and Corset, J.Vibrational and electronic study of the methyl viologen radical cation MV+ • in the solid state. J. Mol. Struct., 143, 1986, 203–6.CrossRefGoogle Scholar
Rosseinsky, D. R. and Monk, P. M. S.Kinetics of the comproportionation of the bipyridilium salt p-cyanophenyl paraquat in propylene carbonate studied by rotating ring-disc electrodes. J. Chem. Soc., Faraday Trans., 86, 1990, 3597–601.CrossRefGoogle Scholar
Monk, P. M. S., Comment on: ‘Dimer formation of viologen derivatives and their electrochromic properties’, Dyes Pigm., 39, 1998, 125–8.CrossRefGoogle Scholar
Engelman, E. E. and Evans, D. H.Investigation of the nature of electrodeposited neutral viologens formed by reduction of the dications. J. Electroanal. Chem., 349, 1992, 141–58.CrossRefGoogle Scholar
Compton, R. G., Monk, P. M. S., Rosseinsky, D. R. and Waller, A. M.An ESR study of the comproportionation of 1,1′-bis(p-cyanophenyl)-4,4′-bipyridilium (cyanophenyl paraquat) in propylene carbonate. J. Electroanal. Chem., 267, 1989, 309–12.CrossRefGoogle Scholar
Monk, P. M. S.The effect of ferrocyanide on the performance of heptyl viologen-based electrochromic display devices. J. Electroanal. Chem., 432, 1997, 175–9.CrossRefGoogle Scholar
Rosseinsky, D. R., Slocombe, J. D., Soutar, A., Monk, P. M. S. and Glidle, A.Simple diffuse reflectance monitoring of emerging surface-attached species. J. Electroanal. Chem., 259, 1989, 233–9.CrossRefGoogle Scholar
Yasuda, A. and Mori, H.Sony Corp. Electrochromic display devices. Jpn. Kokai Tokkyo Koho JP 60,198,521, 1985, as cited in Chem. Abs. 104: P99,571n.
Nakahara, A. and Wang, J. H.Charge-transfer complexes of methylviologen. J. Phys. Chem., 67, 1963, 496–8.CrossRefGoogle Scholar
Murthy, A. S. N. and Bhardwaj, A. P.Electronic absorption spectroscopic studies on charge-transfer interactions in a biologically important molecule: N, N′-dimethyl-4,4′-bipyridylium chloride (paraquat or methyl viologen) as an electron acceptor. Spectrochim. Acta, 38A, 1982, 207–12.CrossRefGoogle Scholar
Kramarenko, S. F., Krainov, I. P., Pretsenko, E. G. and Vargalyuk, B. F.Electrochemical chromism of 1,1′-diaryl-4,4′-bipyridilium perchlorates. Ukr. Khim. Zh., 51, 1985, 501–4 [in Russian], cited in Chem. Abs. 103: 112, 232.Google Scholar
Bruinink, J., Ponjeé, J. J. and Kregting, C. G. A.Modified viologens with improved electrochemical properties for display applications. J. Electrochem. Soc., 124, 1977, 1854–8.CrossRefGoogle Scholar
Barna, G. G. and Fish, J. G.An improved electrochromic display using a symmetric viologen. J. Electrochem. Soc., 128, 1981, 1290–2.CrossRefGoogle Scholar
Barltrop, J. A. and Jackson, A. C.The synthesis and electrochemical study of new electrochromic viologen-based materials. J. Chem. Soc., Perkin Trans. II, 1984, 367–71.CrossRefGoogle Scholar
Barclay, D. J. and Martin, D. H. Electrochromic displays. In Howells, E. R. (ed.), Technology of Chemicals and Materials for the Electronics Industry, Chichester, Ellis Horwood, 1984, 266–76,Google Scholar
Nazeeruddin, M. K. and Grätzel, M. Conversion and storage of solar energy using dye-sensitized nanocrystalline TiO2 cells. In McCleverty, J. A. and Meyer, T. J. (eds.), Comprehensive Coordination Chemistry II: From Biology to Nanotechnology, Oxford, Elsevier, 2004, vol. 9, pp. 719–58.Google Scholar
O'Regan, B. and Grätzel, M.A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature (London), 353, 1991, 737–40.CrossRefGoogle Scholar
[Online] at http://www.fki.uu.se/research/nano/textfile2/integration3.html, (accessed 27 January 2006).
[Online] at www.ntera.com (accessed 27 January 2006).
Cinnsealach, R., Boschloo, G., Nagaraja Rao, S. and Fitzmaurice, D.Coloured electrochromic windows based on nanostructured TiO2 films modified by adsorbed redox chromophores. Sol. Energy Mater. Sol. Cells, 57, 1999, 107–25.CrossRefGoogle Scholar
Cinnsealach, R., Boschloo, G., Nagaraja Rao, S. and Fitzmaurice, D.Electrochromic windows based on viologen-modified nanostructured TiO2 films. Sol. Energy Mater. Sol. Cells, 55, 1998, 215–23.CrossRefGoogle Scholar
Cummins, D., Boschloo, G., Ryan, M., Corr, D., Rao, S. N. and Fitzmaurice, D.Ultrafast electrochromic windows based on redox-chromophore modified nanostructured semiconducting and conducting films. J. Phys. Chem. B, 104, 2000, 11449–59.CrossRefGoogle Scholar
Grätzel, M.Ultrafast colour displays. Nature (London), 409, 2001, 575–6.CrossRefGoogle ScholarPubMed
Graham-Rowe, D.Mirror trick leads chase for electronic paper. New Scientist, 26 February 2005, p. 27.Google Scholar
Bonhôte, P., Gogniat, E., Campus, F., Walder, L. and Grätzel, M.Nanocrystalline electrochromic displays. Displays, 20, 1999, 137–44.CrossRefGoogle Scholar
Campus, F., Bonhôte, P., Grätzel, M., Heinen, S. and Walder, L.Electrochromic devices based on surface-modified nanocrystalline TiO2 thin-film electrodes. Sol. Energy Mater. Sol. Cells, 56, 1999, 281–97.CrossRefGoogle Scholar
Boehlen, R., Felderhoff, M., Michalek, R. and Walder, L.A new 2,2′-bipyridinium salt with pink electrochromism for the modification of nanocrystalline TiO2-electrodes. Chem. Lett., 27, 1998, 815–16.CrossRefGoogle Scholar
Edwards, M. O. M., Andersson, M., Gruszecki, T., Pettersson, H., Thunman, R., Thuraisingham, G., Vestling, L. and Hagfeldt, A.Charge–discharge kinetics of electric-paint displays. J. Electroanal. Chem., 565, 2004, 175–84.CrossRefGoogle Scholar
Edwards, M. O. M., Boschloo, G., Gruszecki, T., Pettersson, H., Sohlberg, R. and Hagfeldt, . ‘Electric-paint displays’ with carbon counter electrodes. Electrochim. Acta, 46, 2001, 2187–93.CrossRefGoogle Scholar
Edwards, M. O. M., Gruszecki, T., Pettersson, H., Thuraisingham, G. and Hagfeldt, A.A semi-empirical model for the charging and discharging of electric-paint displays. Electrochem. Commun., 4, 2002, 963–7.CrossRefGoogle Scholar
Edwards, M. O. M. and Hagfeldt, A.Switch-speed considerations for viologen–metal oxide displays. Proc. Electrochem. Soc., 2003–17, 2003, 305–9.Google Scholar
Pettersson, H., Gruszecki, T., Johansson, L.-H., Edwards, M. O. M., Hagfeldt, A. and Matuszczyk, T.Direct-driven electrochromic displays based on nanocrystalline electrodes. Displays, 25, 2004, 223–30.CrossRefGoogle Scholar
Monk, P. M. S., Fairweather, R. D., Ingram, M. D. and Duffy, J. A. Pulsed electrolysis enhancement of electrochromism in viologen systems: influence of comproportionation reactions. J. Electroanal. Chem., 359, 1993, 301–6.CrossRefGoogle Scholar
Rosseinsky, D. R. and Monk, P. M. S.Studies of tetra-(bipyridilium) salts as possible polyelectrochromic materials. J. Appl. Electrochem., 24, 1994, 1213–21.CrossRefGoogle Scholar
Porat, Z., Tricot, Y.-M., Rubinstein, I. and Zinger, B.New multi-charged viologen derivatives, 1: electrochemical behaviour in Nafion films. J. Electroanal. Chem., 315, 1991, 217–23.CrossRefGoogle Scholar
Porat, Z., Tricot, Y.-M., Rubinstein, I. and Zinger, B.New multi-charged viologen derivatives, 2: unusual electrochemical behaviour in solution. J. Electroanal. Chem., 315, 1991, 225–43.CrossRefGoogle Scholar
Mortimer, R. J.Five color electrochromicity using Prussian blue and Nafion / methyl viologen layered films. J. Electrochem. Soc., 138, 1991, 633–4.CrossRefGoogle Scholar
Monk, P. M. S., Delage, F. and Costa Vieira, S. M.Electrochromic paper: utility of electrochromes incorporated in paper. Electrochim. Acta, 46, 2001, 2195–202.CrossRefGoogle Scholar
Rosseinsky, D. R. and Monk, J. L.Thin layer electrochemistry in a paper matrix: electrochromography of Prussian blue and two bipyridilium systems. J. Electroanal. Chem., 270, 1989, 473–8.CrossRefGoogle Scholar
Monk, P. M. S., Turner, C. and Akhtar, S. P.Electrochemical behaviour of methyl viologen in a matrix of paper. Electrochim. Acta, 44, 1999, 4817–26.CrossRefGoogle Scholar
Mortimer, R. J. and Warren, C. P.Cyclic voltammetric studies of Prussian blue and viologens within a paper matrix for electrochromic printing applications. J. Electroanal. Chem., 460, 1999, 263–6.CrossRefGoogle Scholar
John, S. A. and Ramaraj, R.Role of acidity on the electrochemistry of Prussian blue at plain and Nafion film-coated electrodes. Proc. Ind. Acad. Sci., 107, 1995, 371–383.Google Scholar
Mortimer, R. J. and Dillingham, J. L.Electrochromic 1,1′-dialkyl-4,4′-bipyridilium-incorporated Nafion electrodes. J. Electrochem. Soc., 144, 1997, 1549–53.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • The viologens
  • Paul Monk, Manchester Metropolitan University, Roger Mortimer, Loughborough University, David Rosseinsky, University of Exeter
  • Book: Electrochromism and Electrochromic Devices
  • Online publication: 10 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511550959.013
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • The viologens
  • Paul Monk, Manchester Metropolitan University, Roger Mortimer, Loughborough University, David Rosseinsky, University of Exeter
  • Book: Electrochromism and Electrochromic Devices
  • Online publication: 10 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511550959.013
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • The viologens
  • Paul Monk, Manchester Metropolitan University, Roger Mortimer, Loughborough University, David Rosseinsky, University of Exeter
  • Book: Electrochromism and Electrochromic Devices
  • Online publication: 10 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511550959.013
Available formats
×