Book contents
- Frontmatter
- Contents
- Preface
- Acknowledgements
- List of symbols and units
- List of abbreviations and acronyms
- 1 Introduction to electrochromism
- 2 A brief history of electrochromism
- 3 Electrochemical background
- 4 Optical effects and quantification of colour
- 5 Kinetics of electrochromic operation
- 6 Metal oxides
- 7 Electrochromism within metal coordination complexes
- 8 Electrochromism by intervalence charge-transfer coloration: metal hexacyanometallates
- 9 Miscellaneous inorganic electrochromes
- 10 Conjugated conducting polymers
- 11 The viologens
- 12 Miscellaneous organic electrochromes
- 13 Applications of electrochromic devices
- 14 Fundamentals of device construction
- 15 Photoelectrochromism
- 16 Device durability
- Index
- Plate Section
- References
5 - Kinetics of electrochromic operation
Published online by Cambridge University Press: 10 August 2009
- Frontmatter
- Contents
- Preface
- Acknowledgements
- List of symbols and units
- List of abbreviations and acronyms
- 1 Introduction to electrochromism
- 2 A brief history of electrochromism
- 3 Electrochemical background
- 4 Optical effects and quantification of colour
- 5 Kinetics of electrochromic operation
- 6 Metal oxides
- 7 Electrochromism within metal coordination complexes
- 8 Electrochromism by intervalence charge-transfer coloration: metal hexacyanometallates
- 9 Miscellaneous inorganic electrochromes
- 10 Conjugated conducting polymers
- 11 The viologens
- 12 Miscellaneous organic electrochromes
- 13 Applications of electrochromic devices
- 14 Fundamentals of device construction
- 15 Photoelectrochromism
- 16 Device durability
- Index
- Plate Section
- References
Summary
Kinetic considerations for type-I and type-II electrochromes: transport of electrochrome through liquid solutions
Type-I and type-II electrochromes are dissolved in solution prior to the electron-transfer reaction that results in colour. Such electron-transfer reactions are said to be ‘nernstian’ or ‘reversible’ when uncomplicated and fast and in accord with the Nernst equation (Eq. (3.1), Chapter 3). When two conditions regarding the motions of electroactive species (or indeed other participant species) are met, there is a particular means, that needs definition, whereby the key electroactive species arrives at the electrode. These conditions are: the absence both of convection (i.e. the solution unstirred, ‘still’), and also of electroactive-species migration. Then ‘mass transport’ (directional motion) of any electroactive species is constrained to occur wholly by diffusion. On the one hand, the rate of forming coloured product can be dictated by the rate of electron transfer with rate constant ket, which if low may render the electrode response non-nernstian (the electrode potential EO,R diverges from the Nernst equation (3.1) in terms of bulk electroactive concentrations), and furthermore, the rate of the process governed by ket largely determines the current. On the other hand, if ket is high, then electroactive/electrode electron transfer is not the rate- and current-controlling bottleneck, and the overall rate of colour formation is dictated by the rate of mass transport of electroactive species toward the electrode.
The experimental context of these considerations arises as follows. An electrochromic cell is primed for use (‘polarised’) by applying an overpotential (Section 3.3, Chapter 3).
- Type
- Chapter
- Information
- Electrochromism and Electrochromic Devices , pp. 75 - 124Publisher: Cambridge University PressPrint publication year: 2007