Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-06T04:09:49.830Z Has data issue: false hasContentIssue false

5 - Stress functions

Published online by Cambridge University Press:  11 November 2009

Andrei Constantinescu
Affiliation:
Centre National de la Recherche Scientifique (CNRS), Paris
Alexander Korsunsky
Affiliation:
University of Oxford
Get access

Summary

OUTLINE

This chapter is devoted to the solution of elastic problems using the stress function approach. The Beltrami potential has already been introduced previously as a convenient form of representation for self-equilibrated stress fields. However, the main emphasis in the chapter is placed on the analysis of the Airy stress function formulation, even though it represents only a particular case of the Beltrami representation. The reason for this is the particular importance of this approach in the context of plane elasticity.

The Airy stress function approach is introduced taking particular care to ensure that conditions of strain compatibility are properly satisfied. The approximate nature of the plane stress formulation is elucidated.

The properties of Airy stress functions in cylindrical polar coordinates are then addressed. Particular care is taken to analyse some important fundamental solutions that serve as nuclei of strain within the elasticity theory, namely the solutions for a disclination, dislocations and dislocation dipoles, and concentrated forces.

Williams eigenfunction analysis of the stress state in an elastic wedge under homogeneous loading is presented next, and the elastic stress fields found around the tip of a sharp crack subjected either to opening or shear mode loading. Finally, two further important problems are treated, namely the Kirsch problem of remote loading of a circular hole in an infinite plate, and the Inglis problem of remote loading of an elliptical hole in an infinite plate.

Type
Chapter
Information
Elasticity with Mathematica ®
An Introduction to Continuum Mechanics and Linear Elasticity
, pp. 116 - 156
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×