Book contents
- Frontmatter
- Contents
- Preface
- Acknowledgements
- 1 Introduction to tensors and dyadics
- 2 Deformation. Strain and rotation tensors
- 3 The stress tensor
- 4 Linear elasticity – the elastic wave equation
- 5 Scalar and elastic waves in unbounded media
- 6 Plane waves in simple models with plane boundaries
- 7 Surface waves in simple models – dispersive waves
- 8 Ray theory
- 9 Seismic point sources in unbounded homogeneous media
- 10 The earthquake source in unbounded media
- 11 Anelastic attenuation
- Hints
- Appendices
- Bibliography
- Index
Preface
Published online by Cambridge University Press: 12 November 2009
- Frontmatter
- Contents
- Preface
- Acknowledgements
- 1 Introduction to tensors and dyadics
- 2 Deformation. Strain and rotation tensors
- 3 The stress tensor
- 4 Linear elasticity – the elastic wave equation
- 5 Scalar and elastic waves in unbounded media
- 6 Plane waves in simple models with plane boundaries
- 7 Surface waves in simple models – dispersive waves
- 8 Ray theory
- 9 Seismic point sources in unbounded homogeneous media
- 10 The earthquake source in unbounded media
- 11 Anelastic attenuation
- Hints
- Appendices
- Bibliography
- Index
Summary
The study of the theory of elastic wave propagation and generation can be a daunting task because of its inherent mathematical complexity. The books on the subject currently available are either advanced or introductory. The advanced ones require a mathematical background and/or maturity generally beyond that of the average seismology student. The introductory ones, on the other hand, address advanced subjects but usually skip the more difficult mathematical derivations, with frequent references to the advanced books. What is needed is a text that goes through the complete derivations, so that readers have the opportunity to acquire the tools and training that will allow them to pose and solve problems at an intermediate level of difficulty and to approach the more advanced problems discussed in the literature. Of course, there is nothing new in this idea; there are hundreds of physics, mathematics, and engineering books that do just that, but unfortunately this does not apply to seismology. Consequently, the student in a seismology program without a strong quantitative or theoretical component, or the observational seismologist interested in a clear understanding of the analysis or processing techniques used, do not have an accessible treatment of the theory. A result of this situation is an ever widening gap between those who understand seismological theory and those who do not. At a time when more and more analysis and processing computer packages are available, it is important that their users have the knowledge required to use those packages as something more than black boxes.
- Type
- Chapter
- Information
- Elastic Wave Propagation and Generation in Seismology , pp. xiii - xviiPublisher: Cambridge University PressPrint publication year: 2003