Introduction
The past 15 years have witnessed important developments in the modelling of nonlinear time series. This modelling opens the path to a variety of different models. It poses multiple difficulties, both from a theoretical point of view relative to the basic properties of the models and the estimators, and from an empirical point of view, for instance in the choice of the specification of nonlinearity.
The theoretical basis that is necessary to prove consistency and asymptotic normality of the moment estimators has been treated in Chapter 2, including for the non i.i.d. case. Indeed, Chapter 2 introduced tools that allow us to apply the law of large numbers and the central limit theorem to dynamic models. In particular, we have seen the concept of statistical models that are uniformly mixing stationary and the concept of near epoch dependence (NED). This enabled us to state Theorem 2.6 in Chapter 2, which is nothing but a central limit theorem for stationary mixing processes. We will return to some of these concepts again in this chapter.
Here, we are not attempting to provide a general and comprehensive presentation of nonlinear dynamic models because each model has characteristics and properties that result in complexity and difficulties that are specific to those. Moreover, the study of these models is expanding fast. Therefore, we will settle for the presentation of some examples only.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.