Book contents
- Frontmatter
- Contents
- Contributors
- Preface
- Chapter One The integrative roles of plant secondary metabolites in natural systems
- Chapter Two Natural selection for anti-herbivore plant secondary metabolites
- Chapter Three Temporal changes in plant secondary metabolite production
- Chapter Four Mixtures of plant secondary metabolites
- Chapter Five The herbivore’s prescription
- Chapter Six Volatile isoprenoids and abiotic stresses
- Chapter Seven Atmospheric change, plant secondary metabolites and ecological interactions
- Chapter Eight The role of plant secondary metabolites in freshwater macrophyte–herbivore interactions
- Chapter Nine The soil microbial community and plant foliar defences against insects
- Chapter Ten Phytochemicals as mediators of aboveground–belowground interactions in plants
- Chapter Eleven Plant secondary metabolites and the interactions between plants and other organisms
- Chapter Twelve Integrating the effects of PSMs on vertebrate herbivores across spatial and temporal scales
- Chapter Thirteen Plant secondary metabolite polymorphisms and the extended chemical phenotype
- Chapter Fourteen From genes to ecosystems
- Chapter Fifteen Asking the ecosystem if herbivory-inducible plant volatiles (HIPVs) have defensive functions
- Chapter Sixteen Dynamics of plant secondary metabolites and consequences for food chains and community dynamics
- Index
- Plate Section
- References
Chapter Two - Natural selection for anti-herbivore plant secondary metabolites
a Eucalyptus system
Published online by Cambridge University Press: 05 August 2012
- Frontmatter
- Contents
- Contributors
- Preface
- Chapter One The integrative roles of plant secondary metabolites in natural systems
- Chapter Two Natural selection for anti-herbivore plant secondary metabolites
- Chapter Three Temporal changes in plant secondary metabolite production
- Chapter Four Mixtures of plant secondary metabolites
- Chapter Five The herbivore’s prescription
- Chapter Six Volatile isoprenoids and abiotic stresses
- Chapter Seven Atmospheric change, plant secondary metabolites and ecological interactions
- Chapter Eight The role of plant secondary metabolites in freshwater macrophyte–herbivore interactions
- Chapter Nine The soil microbial community and plant foliar defences against insects
- Chapter Ten Phytochemicals as mediators of aboveground–belowground interactions in plants
- Chapter Eleven Plant secondary metabolites and the interactions between plants and other organisms
- Chapter Twelve Integrating the effects of PSMs on vertebrate herbivores across spatial and temporal scales
- Chapter Thirteen Plant secondary metabolite polymorphisms and the extended chemical phenotype
- Chapter Fourteen From genes to ecosystems
- Chapter Fifteen Asking the ecosystem if herbivory-inducible plant volatiles (HIPVs) have defensive functions
- Chapter Sixteen Dynamics of plant secondary metabolites and consequences for food chains and community dynamics
- Index
- Plate Section
- References
Summary
Introduction
Since the seminal papers of Fraenkel (1959) and Ehrlich and Raven (1964), much research has demonstrated the role of plant secondary metabolites (PSMs) as defence mechanisms against invertebrate and vertebrate herbivory. These metabolites can act directly on the herbivore as toxins (Theis & Lerdau, 2003; Gershenzon & Dudareva, 2007), digestibility reducers (Ayres et al., 1997; De Gabriel et al., 2009) and deterrents (Pass & Foley, 2000), and they can also act indirectly by, for example, attracting natural enemies of the herbivore (Dicke, 2009). The idea that the herbivores themselves are acting as selective agents on these PSMs has existed since it was first noted that these compounds may serve as anti-herbivore traits, and in some systems it is clear that herbivores may act as agents of natural selection on some specific PSMs (Simms & Rausher, 1989; Mauricio & Rausher, 1997; Stinchcombe & Rausher, 2001; Agrawal, 2005). However, in most systems there is still a dearth of evidence addressing this question, particularly in light of the vast number of herbivores that attack a single plant species across its entire life and the array of PSMs that are expressed in a plant species. Are all of these herbivores agents of selection and have all PSMs evolved because of the selective pressures by the herbivores, or are PSMs driven by selection from other pressures such as abiotic factors (Close & McArthur, 2002)? Knowing the answer to these questions is important when attempting to understand what is driving population divergence within species and the evolution and change in PSMs.
For selection to occur there must be additive genetic-based variability in herbivory within plant populations. This herbivory must correlate with additive genetic-based variation in plant defensive traits, and herbivory must affect plant fitness (see Box 2.1). Key papers in the late 1980s through to the late 1990s clearly demonstrated the evolutionary impact that invertebrate herbivores were having on plant chemical defences in some systems (Rausher & Simms, 1989; Simms & Rausher, 1992; Rausher, 1993; Mauricio & Rausher, 1997; Juenger & Bergelson, 1998).
- Type
- Chapter
- Information
- The Ecology of Plant Secondary MetabolitesFrom Genes to Global Processes, pp. 10 - 33Publisher: Cambridge University PressPrint publication year: 2012
References
- 5
- Cited by