Book contents
- Frontmatter
- Contents
- Contributors
- Preface
- Chapter One The integrative roles of plant secondary metabolites in natural systems
- Chapter Two Natural selection for anti-herbivore plant secondary metabolites
- Chapter Three Temporal changes in plant secondary metabolite production
- Chapter Four Mixtures of plant secondary metabolites
- Chapter Five The herbivore’s prescription
- Chapter Six Volatile isoprenoids and abiotic stresses
- Chapter Seven Atmospheric change, plant secondary metabolites and ecological interactions
- Chapter Eight The role of plant secondary metabolites in freshwater macrophyte–herbivore interactions
- Chapter Nine The soil microbial community and plant foliar defences against insects
- Chapter Ten Phytochemicals as mediators of aboveground–belowground interactions in plants
- Chapter Eleven Plant secondary metabolites and the interactions between plants and other organisms
- Chapter Twelve Integrating the effects of PSMs on vertebrate herbivores across spatial and temporal scales
- Chapter Thirteen Plant secondary metabolite polymorphisms and the extended chemical phenotype
- Chapter Fourteen From genes to ecosystems
- Chapter Fifteen Asking the ecosystem if herbivory-inducible plant volatiles (HIPVs) have defensive functions
- Chapter Sixteen Dynamics of plant secondary metabolites and consequences for food chains and community dynamics
- Index
- Plate Section
- References
Chapter One - The integrative roles of plant secondary metabolites in natural systems
a synthesis
Published online by Cambridge University Press: 05 August 2012
- Frontmatter
- Contents
- Contributors
- Preface
- Chapter One The integrative roles of plant secondary metabolites in natural systems
- Chapter Two Natural selection for anti-herbivore plant secondary metabolites
- Chapter Three Temporal changes in plant secondary metabolite production
- Chapter Four Mixtures of plant secondary metabolites
- Chapter Five The herbivore’s prescription
- Chapter Six Volatile isoprenoids and abiotic stresses
- Chapter Seven Atmospheric change, plant secondary metabolites and ecological interactions
- Chapter Eight The role of plant secondary metabolites in freshwater macrophyte–herbivore interactions
- Chapter Nine The soil microbial community and plant foliar defences against insects
- Chapter Ten Phytochemicals as mediators of aboveground–belowground interactions in plants
- Chapter Eleven Plant secondary metabolites and the interactions between plants and other organisms
- Chapter Twelve Integrating the effects of PSMs on vertebrate herbivores across spatial and temporal scales
- Chapter Thirteen Plant secondary metabolite polymorphisms and the extended chemical phenotype
- Chapter Fourteen From genes to ecosystems
- Chapter Fifteen Asking the ecosystem if herbivory-inducible plant volatiles (HIPVs) have defensive functions
- Chapter Sixteen Dynamics of plant secondary metabolites and consequences for food chains and community dynamics
- Index
- Plate Section
- References
Summary
Introduction
Since Fraenkel (1959) recognised that plant secondary metabolites (PSMs) were not simply plant waste products but served to defend them against insect herbivores, numerous ecological roles for these intriguing compounds have been established, notably as defences against a broad range of herbivores and pathogens, but also as mediators of interactions with competitors and mutualists, and as a defence against abiotic stress. A single compound can influence multiple components within an ecological system, and can have effects that act across many different scales. Add to this the huge diversity of PSMs that have now been characterised, and the possible interactive effects among them, and it is clear that PSMs either individually or as groups can no longer be considered only in the context of interactions between the plant and a single other species. They are now recognised as major contributors to the bridge between genes and ecosystems, because (context-dependent) gene expression patterns influence the phenotype of a plant. The effects of PSMs are now known to affect community dynamics and to cascade through ecosystems, driving their composition and function and acting as agents of their evolution (e.g. Whitham et al., 2006). Here, we summarise the key points and emergent themes from the chapters in this book and provide a synthesis of the recent developments in the ecology and evolution of PSMs, illustrating how a range of approaches, including molecular, transgenic and metabolomic techniques, have brought us to the cusp of a new understanding of their integrative roles in ecosystems.
Distribution, allocation and evolutionary selection for PSMs
The chemical diversity of PSMs, combined with the number and complexity of potential biotic and abiotic interactions in which they are involved, has hitherto prevented these systems being predictable beyond the outcome of the strongest, pairwise and most well defined of these interactions. However, several recent developments are moving us towards a better understanding and predictability of the roles of PSMs in more complex systems.
- Type
- Chapter
- Information
- The Ecology of Plant Secondary MetabolitesFrom Genes to Global Processes, pp. 1 - 9Publisher: Cambridge University PressPrint publication year: 2012
References
- 6
- Cited by