Book contents
- Frontmatter
- Contents
- List of contributors
- Preface
- Acknowledgements
- 1 Consequences of living in an industrial world
- 2 Metallophytes: the unique biological resource, its ecology and conservational status in Europe, central Africa and Latin America
- 3 Lichens and industrial pollution
- 4 The impacts of metalliferous drainage on aquatic communities in streams and rivers
- 5 Impacts of emerging contaminants on the environment
- 6 Ecological monitoring and assessment of pollution in rivers
- 7 Detecting ecological effects of pollutants in the aquatic environment
- 8 With the benefit of hindsight: the utility of palaeoecology in wetland condition assessment and identification of restoration targets
- 9 An ecological risk assessment framework for assessing risks from contaminated land in England and Wales
- 10 Diversity and evolution of micro-organisms and pathways for the degradation of environmental contaminants: a case study with the s-triazine herbicides
- 11 The microbial ecology of land and water contaminated with radioactive waste: towards the development of bioremediation options for the nuclear industry
- 12 The microbial ecology of remediating industrially contaminated land: sorting out the bugs in the system
- 13 Ecological recovery in a river polluted to its sources: the River Tame in the English Midlands
- 14 Manchester Ship Canal and Salford Quays: industrial legacy and ecological restoration
- 15 Large-scale mine site restoration of Australian eucalypt forests after bauxite mining: soil management and ecosystem development
- 16 Sustaining industrial activity and ecological quality: the potential role of an ecosystem services approach
- Index
- Plate section
- References
12 - The microbial ecology of remediating industrially contaminated land: sorting out the bugs in the system
Published online by Cambridge University Press: 05 June 2012
- Frontmatter
- Contents
- List of contributors
- Preface
- Acknowledgements
- 1 Consequences of living in an industrial world
- 2 Metallophytes: the unique biological resource, its ecology and conservational status in Europe, central Africa and Latin America
- 3 Lichens and industrial pollution
- 4 The impacts of metalliferous drainage on aquatic communities in streams and rivers
- 5 Impacts of emerging contaminants on the environment
- 6 Ecological monitoring and assessment of pollution in rivers
- 7 Detecting ecological effects of pollutants in the aquatic environment
- 8 With the benefit of hindsight: the utility of palaeoecology in wetland condition assessment and identification of restoration targets
- 9 An ecological risk assessment framework for assessing risks from contaminated land in England and Wales
- 10 Diversity and evolution of micro-organisms and pathways for the degradation of environmental contaminants: a case study with the s-triazine herbicides
- 11 The microbial ecology of land and water contaminated with radioactive waste: towards the development of bioremediation options for the nuclear industry
- 12 The microbial ecology of remediating industrially contaminated land: sorting out the bugs in the system
- 13 Ecological recovery in a river polluted to its sources: the River Tame in the English Midlands
- 14 Manchester Ship Canal and Salford Quays: industrial legacy and ecological restoration
- 15 Large-scale mine site restoration of Australian eucalypt forests after bauxite mining: soil management and ecosystem development
- 16 Sustaining industrial activity and ecological quality: the potential role of an ecosystem services approach
- Index
- Plate section
- References
Summary
Introduction
Understanding and manipulating the microbial ecology of contaminated land are increasingly critical steps towards meeting the challenge of remediating the considerable legacy of industrial pollution in the UK and worldwide.
Understanding the microbial ecology of contaminated land is key to its remediation in two ways. First, the microbial community in the soil, occasionally enhanced through inoculation, can be exploited to bioremediate (through either in situ or ex situ approaches) contaminated sites (Alexander 1999; Atlas & Philp 2005). This is an increasingly attractive, environmentally sustainable option as excavation and landfill of contaminated site waste become both increasingly expensive (both through landfill tax increases, ever-increasing transport costs and the introduction of the aggregrate levy on material brought in as fill), fewer landfill sites are available (in Scotland, for example, there are no hazardous landfills and material must be transported great distances, further adding to disposal costs) and environmental regulators rightly press for more sustainable approaches to site clean-up. Second, the indigenous microbial communities of sites are often impacted by the contamination, particularly where toxic contaminants such as free phase solvents and available heavy metals are present, and part of the remediation challenge is to restore soil/aquifer biological function. Because of the wide range of microbial functions carried out in the soil, in particular, this restoration may be linked, for example, to carbon and nutrient (N, P and S) cycling or to the wide range of plant–microbe interactions on which ecosystem health depends.
- Type
- Chapter
- Information
- Ecology of Industrial Pollution , pp. 242 - 254Publisher: Cambridge University PressPrint publication year: 2010
References
- 1
- Cited by