Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-23T00:00:46.973Z Has data issue: false hasContentIssue false

8 - Ecological Panel Inference from Repeated Cross Sections

Published online by Cambridge University Press:  18 May 2010

Gary King
Affiliation:
Harvard University, Massachusetts
Ori Rosen
Affiliation:
University of Pittsburgh
Martin A. Tanner
Affiliation:
Northwestern University, Illinois
Get access

Summary

ABSTRACT

This chapter presents a Markov chain model for the estimation of individual-level binary transitions from a time series of independent repeated cross-sectional (RCS) samples. Although RCS samples lack direct information on individual turnover, it is demonstrated here that it is possible with these data to draw meaningful conclusions on individual state-to-state transitions. We discuss estimation and inference using maximum likelihood, parametric bootstrap, and Markov chain Monte Carlo approaches. The model is illustrated by an application to the rise in ownership of computers in Dutch households since 1986, using a 13-wave annual panel data set. These data encompass more information than we need to estimate the model, and this additional information allows us to assess the validity of the parameter estimates. We examine the determinants of the transitions from have-not to have (and back again) using well-known socioeconomic and demographic covariates of the digital divide. Parametric bootstrap and Bayesian simulation are used to evaluate the accuracy and the precision of the ML estimates, and the results are also compared with those of a first-order dynamic panel model. To mimic genuine repeated cross-sectional data, we additionally analyze samples of independent observations randomly drawn from the panel. Software implementing the model is available.

Type
Chapter
Information
Ecological Inference
New Methodological Strategies
, pp. 188 - 206
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×