Skip to main content Accessibility help
×
Hostname: page-component-669899f699-7tmb6 Total loading time: 0 Render date: 2025-05-05T02:00:55.067Z Has data issue: false hasContentIssue false

Chapter 8 - Thyroid Physiology and Early Pregnancy

Published online by Cambridge University Press:  16 April 2025

Roy G. Farquharson
Affiliation:
Liverpool Women’s Hospital
Mary D. Stephenson
Affiliation:
University of Illinois, Chicago
Mariëtte Goddijn
Affiliation:
Amsterdam University Medical Centers
Get access

Summary

Thyroid hormones are essential for metabolism and growth in almost all tissues. In reproduction, thyroid hormones affect steroidogenesis, ovulation, implantation, placental vascularisation and the maintenance of pregnancy and neurocognitive development of the child. The thyroid and reproductive axis are closely intertwined. Prior to describing early-pregnant thyroid physiology, non-pregnant thyroid physiology and its environmental influences, the interaction of the hypothalamic-pituitary-thyroid- and -ovarian axis and the action of thyroid hormones on the reproductive organs are described. In the foetus, the thyroid is the first endocrine gland to develop from 5 weeks of gestation, with a functional pituitary axis around week 20, but only fully mature at birth. For the rapid neuronal proliferation and growth, thyroid hormone receptors are present in the fetal brain from around 8-9 weeks of gestation. The foetus depends on the mothers thyroid hormone supply until 20 weeks of gestation.

Type
Chapter
Information
Early Pregnancy , pp. 70 - 80
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Mégier, C., Dumery, G., Luton, D.. Iodine and thyroid maternal and fetal metabolism during pregnancy. Metabolites. 2023;13(5):633.CrossRefGoogle ScholarPubMed
Fliers, E., Kalsbeek, A., Boelen, A.. Beyond the fixed setpoint of the hypothalamus-pituitary-thyroid axis. Eur J Endocrinol. 2014;171(5):R197208.CrossRefGoogle ScholarPubMed
Colicchia, M., Campagnolo, L., Baldini, E., Ulisse, S., Valensise, H., Moretti, C.. Molecular basis of thyrotropin and thyroid hormone action during implantation and early development. Hum Reprod Update. 2014;20(6):884904.CrossRefGoogle ScholarPubMed
Yen, P. M.. Physiological and molecular basis of thyroid hormone action. Physiol Rev. 2001;81(3):1097–142.CrossRefGoogle ScholarPubMed
Soldin, S. J., Soukhova, N., Janicic, N., Jonklaas, J., Soldin, O. P.. The measurement of free thyroxine by isotope dilution tandem mass spectrometry. Clin Chim Acta. 2005;358(1–2);113–18.CrossRefGoogle ScholarPubMed
Mullur, R., Liu, Y. Y., Brent, G. A.. Thyroid hormone regulation of metabolism. Physiol Rev. 2014;94(2):355–82.CrossRefGoogle ScholarPubMed
Andersson, M., Braegger, C. P.. The role of iodine for thyroid function in lactating women and infants. Endocr Rev. 2022;43(3):469506.CrossRefGoogle ScholarPubMed
De Lloyd, A., Bursell, J., Gregory, J. W., Rees, D. A., Ludgate, M.. TSH receptor activation and body composition. J Endocrinol. 2010;204(1):1320.CrossRefGoogle ScholarPubMed
Andersen, S., Pedersen, K. M., Bruun, N. H., Laurberg, P.. Narrow individual variations in serum T(4) and T(3) in normal subjects: a clue to the understanding of subclinical thyroid disease. J Clin Endocrinol Metab. 2002;87(3):1068–72.CrossRefGoogle Scholar
Biondi, B., Wartofsky, L.. Combination treatment with T4 and T3: toward personalized replacement therapy in hypothyroidism? J Clin Endocrinol Metab. 2012;97(7):2256–71.CrossRefGoogle ScholarPubMed
Krassas, G. E., Poppe, K., Glinoer, D.. Thyroid function and human reproductive health. Endocr Rev. 2010;31(5): 702–55.CrossRefGoogle ScholarPubMed
Mazzilli, R., Medenica, S., Di Tommaso, A. M., Fabozzi, G., Zamponi, V., Cimadomo, D., et al. The role of thyroid function in female and male infertility: a narrative review. J Endocrinol Invest. 2023;46(1):1526.CrossRefGoogle ScholarPubMed
Nazeri, P., Dejshad, H.. Iodine deficiency/excess and pregnancy outcomes. In Azizi, F., Tehrani, F. R., eds. Thyroid diseases in pregnancy. Springer Nature Switzerland AG; 2022.Google Scholar
Gupta, P. M., Gahche, J. J., Herrick, K. A., Ershow, A. G., Potischman, N., Perrine, C. G.. Use of iodine-containing dietary supplements remains low among women of reproductive age in the United States: NHANES 2011–2014. Nutrients. 2018;10(4):422.CrossRefGoogle ScholarPubMed
Sebastiani, G., Herranz Barbero, A., Borrás-Novell, C., Alsina Casanova, M., Aldecoa-Bilbao, V., Andreu-Fernández, V., et al. The effects of vegetarian and vegan diet during pregnancy on the health of mothers and offspring. Nutrients. 2019;11(3):557.CrossRefGoogle ScholarPubMed
Pehrsson, P. R., Roseland, J. M., Patterson, K. Y., Phillips, K. M., Spungen, J. H., Andrews, K. W., et al. Iodine in foods and dietary supplements: a collaborative database developed by NIH, FDA and USDA. J Food Compost Anal. 2022;109:104369.CrossRefGoogle ScholarPubMed
Hollowell, J. G., Staehling, N. W., Flanders, W. D., Hannon, W. H., Gunter, E. W., Spencer, C. A., et al. Serum TSH, T(4), and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J Clin Endocrinol Metab. 2002;87(2):489–99.CrossRefGoogle Scholar
Sletner, L., Jenum, A. K., Qvigstad, E., Hammerstad, S. S.. Thyroid function during pregnancy in a multiethnic population in Norway. J Endocr Soc. 2021;5(7):bvab078.CrossRefGoogle Scholar
Osinga, J. A. J., Derakhshan, A., Palomaki, G. E., Ashoor, G., Männistö, T., Maraka, S., et al. TSH and FT4 reference intervals in pregnancy: a systematic review and individual participant data meta-analysis. J Clin Endocrinol Metab. 2022;107(10):2925–33.CrossRefGoogle ScholarPubMed
López-Muñoz, E.. Isolated hypothyroxinemia during pregnancy. In Azizi, F., Tehrani, F. R., eds. Thyroid diseases in pregnancy. Springer Nature Switzerland AG; 2022.Google Scholar
Song, R.-H., Wang, B., Yao, Q.-M., Li, Q., Jia, X., Zhang, J.-A.. The impact of obesity on thyroid autoimmunity and dysfunction: a systematic review and meta-analysis. Front Immunol. 2019;10:2349.CrossRefGoogle ScholarPubMed
Laurberg, P., Knudsen, N., Andersen, S., Carle, A., Pedersen, I. B., Karmisholt, J.. Thyroid function and obesity. Eur Thyroid J. 2012;1(3):159–67.CrossRefGoogle ScholarPubMed
Biondi, B., Wartofsky, L.. Treatment with thyroid hormone. Endocr Rev. 2014;35(3):433512.CrossRefGoogle ScholarPubMed
Vissenberg, R., Manders, V. D., Mastenbroek, S., Fliers, E., Afink, G. B., Ris-Stalpers, C., et al. Pathophysiological aspects of thyroid hormone disorders/thyroid peroxidase autoantibodies and reproduction. Hum Reprod Update. 2015;21(3):378–87.CrossRefGoogle ScholarPubMed
De Leo, S., Pearce, E. N.. Autoimmune thyroid disease during pregnancy. Lancet Diabetes Endocrinol. 2018;6(7):575–86.CrossRefGoogle ScholarPubMed
Wiersinga, W. M.. Smoking and thyroid. Clin Endocrinol (Oxf). 2013;79(2):145–51.CrossRefGoogle ScholarPubMed
Haugen, B. R.. Drugs that suppress TSH or cause central hypothyroidism. Best Pract Res Clin Endocrinol Metab. 2009;23(6):793800.CrossRefGoogle ScholarPubMed
Guarnotta, V., Amodei, R., Frasca, F., Aversa, A., Giordano, C.. Impact of chemical endocrine disruptors and hormone modulators on the endocrine system. Int J Mol Sci. 2022;23(10):5710.CrossRefGoogle ScholarPubMed
Panagopoulos, P., Mavrogianni, D., Christodoulaki, C., Drakaki, E., Chrelias, G., Panagiotopoulos, D., et al. Effects of endocrine disrupting compounds on female fertility. Best Pract Res Clin Obstet Gynaecol. 2023;88:102347.CrossRefGoogle ScholarPubMed
Boas, M., Feldt-Rasmussen, U., Main, K. M.. Thyroid effects of endocrine disrupting chemicals. Mol Cell Endocrinol. 2012;355(2):240–48.CrossRefGoogle ScholarPubMed
Babić Leko, M., Gunjača, I., Pleic, N., Zemunik, T.. Environmental factors affecting thyroid-stimulating hormone and thyroid hormone levels. Int J Mol Sci. 2021;22(12):6521.CrossRefGoogle ScholarPubMed
Poppe, K., Bisschop, P., Fugazzola, L., Minziori, G., Unuane, D., Weghofer, A.. 2021 European Thyroid Association guideline on thyroid disorders prior to and during assisted reproduction. Eur Thyroid J. 2021;9(6):281–95.Google ScholarPubMed
Krassas, G. E.. Thyroid disease and female reproduction. Fertil. Steril. 2000;74(6)1063–70.CrossRefGoogle ScholarPubMed
Peddemul, A., Tejovath, S., Hassan, D., Patel, K. K, Sikandar, R., Kahlon, S. S., et al. Influence of subclinical hypothyroidism on women with polycystic ovary syndrome: a literature review. Cureus. 2022;14(8):e28468.Google ScholarPubMed
Trokoudes, K. M., Skordis, N., Picolos, M. K.. Infertility and thyroid disorders. Curr Opin Obstet Gynecol. 2006;18(4):446–51.CrossRefGoogle ScholarPubMed
Aghajanova, L., Lindeberg, M., Carlsson, I. B., Stavreus-Evers, A., Zhang, P., Scott, J. E., et al. Receptors for thyroid-stimulating hormone and thyroid hormones in human ovarian tissue. Reprod Biomed Online. 2009;18(3):337–47.CrossRefGoogle ScholarPubMed
Repelaer van Driel-Delprat, C. C., van Dam, E. W. C. M., van de Ven, P. M., Aissa, K., ter Haar, M. K., Feenstra, Y., et al. Thyroid function and IVF outcome for different indications of subfertility. Reprod Fertil. 2021;2(4):280–91.CrossRefGoogle ScholarPubMed
Repelaer van Driel-Delprat, C. C.. More live births in primary subfertile intracytoplasmic sperm injection-treated women with high normal TSH levels. Gynecological and Obstetric Investigation. 2021;86(4):398407.CrossRefGoogle ScholarPubMed
Costa, N. N., Cordeiro, M. S., Silva, T. V., Sastre, D., Santana, P. P., Sa, A. L., et al. Effect of triiodothyronine on developmental competence of bovine oocytes. Theriogenology. 2013;80(4):295301.CrossRefGoogle ScholarPubMed
Ashkar, F. A., Semple, E., Schmidt, C. H., St John, E., Bartlewski, P. M., King, W. A.. Thyroid hormone supplementation improves bovine embryo development in vitro. Hum Reprod. 2010;25(2):334–44.CrossRefGoogle ScholarPubMed
Grossklaus, R., Liesenkötter, K. P., Doubek, K., Völzke, H., Gaertner, R.. Iodine deficiency, maternal hypothyroxinemia and endocrine disrupters affecting fetal brain development: a scoping review. Nutrients. 2023;15(10):2249.CrossRefGoogle ScholarPubMed
Pop, V. J., Brouwers, E. P., Vader, H. L., Vulsma, T., van Baar, A. L., de Vijlder, J. J.. Maternal hypothyroxinaemia during early pregnancy and subsequent child development: a 3-year follow-up study. Clin Endocrinol (Oxf). 2003;59(3):282–88.CrossRefGoogle ScholarPubMed
Henrichs, J., Ghassabian, A., Peeters, R. P., Tiemeier, H.. Maternal hypothyroxinemia and effects on cognitive functioning in childhood: how and why? Clin. Endocrinol (Oxf). 2013;79(2):152–62.CrossRefGoogle ScholarPubMed
Lazarus, J. H., Bestwick, J. P., Channon, S., Paradice, R., Maina, A., Rees, R., et al. Antenatal thyroid screening and childhood cognitive function. N Engl J Med. 2012;366(6):493501.CrossRefGoogle ScholarPubMed
Korevaar, T. I. M., Schalekamp-Timmermans, S., de Rijke, Y. B., Visser, W. E., Visser, W., de Muinck Keizer-Schrama, S. M., et al. Hypothyroxinemia and TPO-antibody positivity are risk factors for premature delivery: the generation R study. J Clin Endocrinol Metab. 2013;98(11):4382–90.CrossRefGoogle ScholarPubMed
Leung, A. M.. Thyroid function in pregnancy. J Trace Elem Med Biol. 2012;26(2–3):137–40.CrossRefGoogle ScholarPubMed
Dhillon-Smith, R. K., Tobias, A., Smith, P. P., Middleton, L. J., Sunner, K. K., Baker, K., et al. The prevalence of thyroid dysfunction and autoimmunity in women with history of miscarriage or subfertility. J Clin Endocrinol Metab. 2020;105(8):2667–77.CrossRefGoogle ScholarPubMed
Lazarus, J., Brown, R. S., Daumerie, C., Hubalewska-Dydejczyk, A., Negro, R., Vaidya, B. 2014 European Thyroid Association guidelines for the management of subclinical hypothyroidism in pregnancy and in children. Eur Thyroid J. 2014;3(2):7694.CrossRefGoogle ScholarPubMed
Patton, P. E., Samuels, M. H., Trinidad, R., Caughey, A. B.. Controversies in the management of hypothyroidism during pregnancy. Obstet Gynecol Surv. 2014;69(6):346–58.CrossRefGoogle ScholarPubMed
Casey, B. M., Leveno, K. J.. Thyroid disease in pregnancy. Obstet Gynecol. 2006;108(5):1283–92.CrossRefGoogle ScholarPubMed
Andersen, S. L., Olsen, J., Wu, C. S., Laurberg, P.. Low birth weight in children born to mothers with hyperthyroidism and high birth weight in hypothyroidism, whereas preterm birth is common in both conditions: a Danish National Hospital Register study. Eur Thyroid J. 2013;2(2):135–44.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×