Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-17T13:18:06.228Z Has data issue: false hasContentIssue false

22 - The stereographic system with a generalized vertical coordinate

Published online by Cambridge University Press:  05 June 2012

Wilford Zdunkowski
Affiliation:
Johannes Gutenberg Universität Mainz, Germany
Andreas Bott
Affiliation:
Rheinische Friedrich-Wilhelms-Universität Bonn
Get access

Summary

In the previous chapter we introduced the vertical coordinate η to handle orographic effects in mesoscale models. In the synoptic-scale models we are going to replace the height coordinate z which extends to infinity by a generalized vertical coordinate ξ. The introduction of ξ is motivated by the fact that we cannot integrate the predictive equations using z as a vertical coordinate to infinitely large heights. Replacing z by the atmospheric pressure p, for example, results in a finite range of the vertical coordinate. We will see that another advantage of the (x, y, p)-coordinate system is that the continuity equation is time-independent. There are other specific coordinate systems that we are going to discuss. Therefore, it seems of advantage to first set up the atmospheric equations in terms of the unspecified generalized vertical coordinate ξ. Later we will specify ξ as desired. We wish to point out that the introduction of the generalized coordinate is of advantage only if the hydrostatic equation is a part of the atmospheric system.

We will briefly state the consequences of the transformation from the stereographic (x, y, z)-coordinate system to the stereographic (x, y, ξ)-coordinate system, which henceforth will be called the ξ system.

Type
Chapter
Information
Dynamics of the Atmosphere
A Course in Theoretical Meteorology
, pp. 572 - 590
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×