Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-05T09:02:13.054Z Has data issue: false hasContentIssue false

Accretion discs around young stellar objects and the proto-Sun

Published online by Cambridge University Press:  06 July 2010

J. A. Sellwood
Affiliation:
University of Manchester
Get access

Summary

Abstract Observed infrared and ultraviolet excesses have widely been interpreted as signatures for accretion discs around young stellar objects. Analyses of the observed properties of these discs are important for the investigation of star formation as well as the dynamics of the protoplanetary disc out of which the solar system was formed. Accretion disc theories suggest that evolution of protoplanetary discs is determined by the efficiency of angular momentum transport. During the formation stages, the disc dynamics are regulated by mixing of infalling material and disc gas. In the outermost regions of the disc, self-gravity may promote the growth of non-axisymmetric perturbations which can transfer angular momentum outwards. After infall has ceased, convectively driven turbulence can redistribute angular momentum with an evolutionary time-scale of the order 105−6 yr. Convection in protoplanetary discs may eventually be stabilized by surface heating as the disc material is depleted. Once the grains in the disc have settled to the midplane region, the disc can neither generate its own energy through viscous dissipation nor reflect radiation from the central star. Consequently, the infrared excess vanishes and the young stellar objects become “naked T Tauri stars.” Protoplanetary formation modifies the structure and evolution of the disc when giant protoplanets acquire sufficient mass to truncate the disc. In this case, a protoplanet's tidal torque opens up a gap in disc. Gap formation also leads to the termination of protoplanetary growth by accretion. The condition for a proto-Jupiter to acquire its present mass implies that the viscous evolution time-scale for the disc is of the order 105−6 yr which is comparable to the age of typical T Tauri stars with circumstellar protoplanetary discs.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×