Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-09T22:37:40.712Z Has data issue: false hasContentIssue false

8 - Storm tracks, blocking, and climate change: a review

from Part II - High-impact weather in mid latitudes

Published online by Cambridge University Press:  05 March 2016

Jianping Li
Affiliation:
Beijing Normal University
Richard Swinbank
Affiliation:
Met Office, Exeter
Richard Grotjahn
Affiliation:
University of California, Davis
Hans Volkert
Affiliation:
Deutsche Zentrum für Luft- und Raumfahrt eV (DLR)
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altenhoff, A. M., Martius, O., Croci‐Maspoli, M., Schwierz, C., and Davies, H. C. (2008). Linkage of atmospheric blocks and synoptic‐scale Rossby waves: a climatological analysis. Tellus A, 60(5), 10531063.CrossRefGoogle Scholar
Anstey, J. A., Davini, P., Gray, L. J., et al. (2013). Multi-model analysis of Northern Hemisphere winter blocking: Model biases and the role of resolution. J. Geophys. Res. Atmos., 118, 39563971.CrossRefGoogle Scholar
Arblaster, J. M., Meehl, G. A., and Karoly, D. J. (2011). Future climate change in the Southern Hemisphere: Competing effects of ozone and greenhouse gases. Geophys. Res. Lett., 38, L02701,CrossRefGoogle Scholar
Bader, J., Mesquita, M. D., Hodges, K. I., et al. (2011). A review on Northern Hemisphere sea-ice, storminess and the North Atlantic Oscillation: Observations and projected changes. Atmospheric Research, 101(4), 809834.CrossRefGoogle Scholar
Barnes, E. A. (2013). Revisiting the evidence linking Arctic amplification to extreme weather in midlatitudes, Geophys. Res. Lett., 40, 47284733.CrossRefGoogle Scholar
Barnes, E. A., Slingo, J., and Woollings, T. (2012). A methodology for the comparison of blocking climatologies across indices, models and climate scenarios. Climate Dynamics, 38(11–12), 24672481.CrossRefGoogle Scholar
Barnes, E. A. and Polvani, L. M. (2013). Response of the midlatitude jets and of their variability to increased greenhouse gases in the CMIP5 models. Journal of Climate, 26, doi:10.1175/JCLI-D-12-00536.1.CrossRefGoogle Scholar
Bengtsson, L., Hodges, K. I., and Keenlyside, N. (2009). Will extratropical storms intensify in a warmer climate? Journal of Climate, 22, 22762301.CrossRefGoogle Scholar
Berckmans, J., Woollings, T., Demory, M. E., Vidale, P. L., and Roberts, M. (2013). Atmospheric blocking in a high resolution climate model: influences of mean state, orography and eddy forcing. Atmospheric Science Letters, 14, 3440.CrossRefGoogle Scholar
Blackmon, M. L., Wallace, J. M., Lau, N. C., and Mullen, S. L. (1977). An observational study of the Northern Hemisphere wintertime circulation. Journal of the Atmospheric Sciences, 34, 10401053.2.0.CO;2>CrossRefGoogle Scholar
Boer, G. J., (1996). Some dynamical consequences of greenhouse gas warming. Atmosphere-Ocean, 33, 731751.CrossRefGoogle Scholar
Booth, J. F., Wang, S., and Polvani, L. (2013). Midlatitude storms in a moister world: lessons from idealized baroclinic life cycle experiments. Climate Dynamics, 41, 787802.CrossRefGoogle Scholar
Branscome, L. E. and Gutowski, W. J. Jr (1992). The impact of doubled CO2 on the energetics and hydrologic processes of mid-latitude transient eddies. Climate Dynamics, 8, 2937.CrossRefGoogle Scholar
Buehler, T., Raible, C. C., and Stocker, T. F. (2011). The relationship of winter season North Atlantic blocking frequencies to extreme cold or dry spells in the ERA‐40. Tellus A, 63, 212222.CrossRefGoogle Scholar
Butler, A. H., Thompson, D. W., and Heikes, R. (2010). The steady-state atmospheric circulation response to climate change-like thermal forcings in a simple general circulation model. Journal of Climate, 23, 34743496.CrossRefGoogle Scholar
Butler, A. H., Thompson, D. W., and Birner, T. (2011). Isentropic slopes, downgradient eddy fluxes, and the extratropical atmospheric circulation response to tropical tropospheric heating. Journal of the Atmospheric Sciences, 68, 22922305.CrossRefGoogle Scholar
Cattiaux, J., Vautard, R., Cassou, C., et al. (2010), Winter 2010 in Europe: A cold extreme in a warming climate, Geophys. Res. Lett., 37, L20704, doi:10.1029/2010GL044613.CrossRefGoogle Scholar
Cattiaux, J. and Cassou, C. (2013). Opposite CMIP3/CMIP5 trends in the wintertime Northern Annular Mode explained by combined local sea ice and remote tropical influences, Geophys. Res. Lett., 40, 36823687, doi:10.1002/grl.50643.CrossRefGoogle Scholar
Catto, J. L., Shaffrey, L. C., and Hodges, K. I. (2011). Northern Hemisphere extratropical cyclones in a warming climate in the HiGEM high-resolution climate model. J. Climate, 24, 53365352.CrossRefGoogle Scholar
Chang, E. K. (2009). Are band-pass variance statistics useful measures of storm track activity? Re-examining storm track variability associated with the NAO using multiple storm track measures. Climate dynamics, 33, 277296.CrossRefGoogle Scholar
Chang, E. K., Guo, Y., and Xia, X. (2012). CMIP5 multimodel ensemble projection of storm track change under global warming. Journal of Geophysical Research: Atmospheres, 117(D23).CrossRefGoogle Scholar
Chen, G., Lu, J., and Frierson, D. M. W. (2008). Phase speed spectra and the latitude of surface westerlies: interannual variability and global warming trend. Journal of Climate, 21, 59425959.CrossRefGoogle Scholar
Colle, B. A., Zhang, Z., Lombardo, K. A., et al. (2013). Historical evaluation and future prediction of eastern North American and western Atlantic extratropical cyclones in the CMIP5 models during the cool season. J. Climate, 26, 68826903.CrossRefGoogle Scholar
Croci-Maspoli, M. and Davies, H. C. (2009). Key dynamical features of the 2005/06 European winter. Monthly Weather Review, 137, 664678.CrossRefGoogle Scholar
Dacre, H. F. and Gray, S. L. (2013). Quantifying the climatological relationship between extratropical cyclone intensity and atmospheric precursors, Geophys. Res. Lett., 40, 23222327.CrossRefGoogle Scholar
Delcambre, S. C., Lorenz, D. J., Vimont, D. J., and Martin, J. E. (2013). Diagnosing Northern Hemisphere jet portrayal in 17 CMIP3 global climate models: twenty-first-century projections. J. Climate, 26, 49304946.CrossRefGoogle Scholar
de Vries, H., Woollings, T., Anstey, J., Haarsma, R. J., and Hazeleger, W. (2013). Atmospheric blocking and its relation to jet changes in a future climate. Climate Dynamics, 41, 26432654.CrossRefGoogle Scholar
Dunn-Sigouin, E. and Son, S.-W. (2013). Northern Hemisphere blocking frequency and duration in the CMIP5 models, J. Geophys. Res. Atmos., 118, 11791188.CrossRefGoogle Scholar
Feldstein, S. B. (2000). The timescale, power spectra, and climate noise properties of teleconnection patterns. Journal of Climate, 13, 44304440.2.0.CO;2>CrossRefGoogle Scholar
Fink, A. H., Bruecher, T., Ermert, V., Krueger, A., and Pinto, J. G. (2009). The European storm Kyrill in January 2007: synoptic evolution, meteorological impacts and some considerations with respect to climate change. Natural Hazards and Earth System Sciences, 9, 405423.CrossRefGoogle Scholar
Fink, A., Pohle, S., Pinto, J., and Knippertz, P. (2012). Diagnosing the influence of diabatic processes on the explosive deepening of extratropical cyclones. Geophysical Research Letters, 39.CrossRefGoogle Scholar
Francis, J. A. and Vavrus, S. J. (2012). Evidence linking arctic amplification to extreme weather in mid-latitudes, Geophys. Res. Lett. 39, L06801.CrossRefGoogle Scholar
Franzke, C. and Woollings, T. (2011). On the persistence and predictability properties of North Atlantic climate variability. Journal of Climate, 24, 466472.CrossRefGoogle Scholar
Frierson, D. M. W., Held, I. M., and Zurita-Gotor, P. (2007). A gray-radiation aquaplanet moist GCM. Part II: energy transports in altered climates. J. Atmos. Sci., 64, 16801693.CrossRefGoogle Scholar
Froude, L. S. (2010). TIGGE: Comparison of the prediction of Northern Hemisphere extratropical cyclones by different ensemble prediction systems. Weather and Forecasting, 25, 819836.CrossRefGoogle Scholar
Gillett, N. P. and Thompson, D. W. (2003). Simulation of recent Southern Hemisphere climate change. Science, 302, 273275.CrossRefGoogle ScholarPubMed
Held, I. M. (1993). Large-scale dynamics and global warming. Bulletin of the American Meteorological Society, 74, 228241.2.0.CO;2>CrossRefGoogle Scholar
Graff, L. and LaCasce, J. (2012). Changes in the extratropical storm tracks in response to changes in SST in an AGCM. Journal of Climate, 25, 18541870.CrossRefGoogle Scholar
Haarsma, R. J., Selten, F., and van Oldenborgh, G. J. (2013a). Anthropogenic changes of the thermal and zonal flow structure over Western Europe and Eastern North Atlantic in CMIP3 and CMIP5 models. Climate Dynamics, 41, 25772588.CrossRefGoogle Scholar
Haarsma, R. J., Hazeleger, W., Severijns, C., et al. (2013b). More hurricanes to hit western Europe due to global warming, Geophys. Res. Lett., 40, 17831788.CrossRefGoogle Scholar
Hartmann, D. L. (2000). The key role of lower-level meridional shear in baroclinic wave life cycles. Journal of the Atmospheric Sciences, 57, 389401.2.0.CO;2>CrossRefGoogle Scholar
Harvey, B. J., Shaffrey, L. C., Woollings, T. J., Zappa, G., and Hodges, K. I. (2012). How large are projected 21st century storm track changes? Geophys. Res. Lett., 39, L18707.CrossRefGoogle Scholar
Harvey, B., Shaffrey, L., and Woollings, T. (2013). Equator-to-pole temperature differences and the extra-tropical storm track responses of the cmip5 climate models. Climate Dynam. doi: 10.1007/s00382-013-1883–9.CrossRefGoogle Scholar
Hernández-Deckers, D. and von Storch, J. S. (2010). Energetics responses to increases in greenhouse gas concentration. Journal of Climate, 23, 38743887.CrossRefGoogle Scholar
Hoskins, B. J. and Hodges, K. I. (2002). New perspectives on the Northern Hemisphere winter storm tracks. Journal of the Atmospheric Sciences, 59, 10411061.2.0.CO;2>CrossRefGoogle Scholar
Hwang, Y.-T. and Frierson, D. M. W. (2010). Increasing atmospheric poleward energy transport with global warming. Geophysical Research Letters, 37, L24807.CrossRefGoogle Scholar
Hwang, Y. T., Frierson, D. M., and Kay, J. E. (2011). Coupling between Arctic feedbacks and changes in poleward energy transport. Geophysical Research Letters, 38, L17704.CrossRefGoogle Scholar
Jung, T., Balsamo, G., Bechtold, P., et al. (2010). The ECMWF model climate: Recent progress through improved physical parametrizations, Q. J. Roy. Meteorol. Soc., 136, 11451160.CrossRefGoogle Scholar
Jung, T. and Coauthors (2012). High‐resolution global climate simulations with the ECMWF model in Project Athena: experimental design, model climate, and seasonal forecast skill. J. Climate, 25, 31553172.CrossRefGoogle Scholar
Karpechko, A. Y. and Manzini, E. (2012). Stratospheric influence on tropospheric climate change in the Northern Hemisphere, J. Geophys. Res., 117, D05133.CrossRefGoogle Scholar
Kidston, J., Vallis, G. K., Dean, S. M., and Renwick, J. A. (2011). Can the increase in the eddy length scale under global warming cause the poleward shift of the jet streams? Journal of Climate, 24, 37643780.CrossRefGoogle Scholar
Kodama, C., and Iwasaki, T. (2009). Influence of the SST Rise on Baroclinic Instability Wave Activity under an Aquaplanet Condition. Journal of the Atmospheric Sciences, 66, 22722287.CrossRefGoogle Scholar
Lambert, S. J. and Fyfe, J. C. (2006). Changes in winter cyclone frequencies and strengths simulated in enhanced greenhouse warming experiments: results from the models participating in the IPCC diagnostic exercise. Climate Dynam., 26, 713728.CrossRefGoogle Scholar
Lang, C. and Waugh, D. W. (2011). Impact of climate change on the frequency of Northern Hemisphere summer cyclones, J. Geophys. Res., 116, D04103.CrossRefGoogle Scholar
Li, C. and Wettstein, J. J. (2012). Thermally driven and eddy-driven jet variability in reanalysis. Journal of Climate, 25, 15871596.CrossRefGoogle Scholar
Lim, E. P. and Simmonds, I. (2009). Effect of tropospheric temperature change on the zonal mean circulation and SH winter extratropical cyclones. Climate Dynamics, 33, 1932.CrossRefGoogle Scholar
Liu, J., Curry, J. A., Wang, H., Song, M., and Horton, R. M. (2012). Impact of declining arctic sea ice on winter snowfall. P. Natl. Acad. Sci. USA, 109, 40744079.CrossRefGoogle ScholarPubMed
Long, Z., Perrie, W., Gyakum, J., Laprise, R., and Caya, D. (2009). Scenario changes in the climatology of winter midlatitude cyclone activity over eastern North America and the Northwest Atlantic. Journal of Geophysical Research-Atmospheres, 114.CrossRefGoogle Scholar
Lorenz, D. J. and Hartmann, D. L. (2003). Eddy-zonal flow feedback in the Northern Hemisphere winter. Journal of Climate, 16, 12121227.2.0.CO;2>CrossRefGoogle Scholar
Lorenz, D. J. and DeWeaver, E. T. (2007). Tropopause height and zonal wind response to global warming in the IPCC scenario integrations. Journal of Geophysical Research: Atmospheres, 112, D10.CrossRefGoogle Scholar
Lu, J., Chen, G., and Frierson, D. M. W. (2008). Response of the zonal mean atmospheric circulation to El Nino versus global warming. Journal of Climate, 21, 58355851.CrossRefGoogle Scholar
Lucarini, V. and Ragone, F. (2011). Energetics of climate models: net energy balance and meridional enthalpy transport. Reviews of Geophysics, 49.CrossRefGoogle Scholar
Ludwig, P., Pinto, J. G., Reyers, M., and Gray, S. L. (2014). The role of anomalous SST and surface fluxes over the southeastern North Atlantic in the explosive development of windstorm Xynthia. Q.J.R. Meteorol. Soc., 140, 17291741.CrossRefGoogle Scholar
Lunkeit, F., Fraedrich, K., and Bauer, S. E. (1998). Storm tracks in a warmer climate: sensitivity studies with a simplified global circulation model. Climate Dynamics, 14, 813826.CrossRefGoogle Scholar
Masato, G., Hoskins, B. J., and Woollings, T. (2013). Winter and summer Northern Hemisphere blocking in CMIP5 models. J. Climate, 26, 70447059.CrossRefGoogle Scholar
Masato, G., Woollings, T., and Hoskins, B. J. (2014). Structure and impact of atmospheric blocking over the Euro-Atlantic region in present day and future simulations. Geophys. Res. Lett., 41, 10511058.CrossRefGoogle Scholar
Matsueda, M. (2011). Predictability of Euro-Russian blocking in summer of 2010, Geophys. Res. Lett., 38, L06801.CrossRefGoogle Scholar
Matsueda, M., Mizuta, R., and Kusunoki, S. (2009). Future change in wintertime atmospheric blocking simulated using a 20‐km‐mesh atmospheric global circulation model. Journal of Geophysical Research: Atmospheres, 114, D12.CrossRefGoogle Scholar
McDonald, R. E. (2011). Understanding the impact of climate change on Northern Hemisphere extra-tropical cyclones. Climate Dynamics, 37, 13991425.CrossRefGoogle Scholar
Mizuta, R., Matsueda, M., Endo, H., and Yukimoto, S. (2011). Future change in extratropical cyclones associated with change in the upper troposphere. Journal of Climate, 24, 64566470.CrossRefGoogle Scholar
Morgenstern, O. and Coauthors (2010). Anthropogenic forcing of the Northern Annular Mode in CCMVal-2 models. Journal of Geophysical Research-Atmospheres, 115.CrossRefGoogle Scholar
Neu, U. et al. (2013). IMILAST – a community effort to intercompare extratropical cyclone detection and tracking algorithms. Bull. Amer. Meteor. Soc., 94, 529547.CrossRefGoogle Scholar
O’Gorman, P. A. (2010). Understanding the varied response of the extratropical storm tracks to climate change. Proceedings of the National Academy of Sciences, 107, 1917619180.CrossRefGoogle ScholarPubMed
Palmer, T. N., Shutts, G. J., and Swinbank, R. (1986). Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parametrization. Quarterly Journal of the Royal Meteorological Society, 112(474), 10011039.CrossRefGoogle Scholar
Pelly, J. L. and Hoskins, B. J. (2003). A new perspective on blocking. Journal of the Atmospheric Sciences, 60, 743755.2.0.CO;2>CrossRefGoogle Scholar
Petoukhov, V. and Semenov, V. A. (2010). A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents. J. Geophys. Res. 115, D21.CrossRefGoogle Scholar
Pfahl, S. and Wernli, H. (2012). Quantifying the relevance of atmospheric blocking for co‐located temperature extremes in the Northern Hemisphere on (sub‐) daily time scales. Geophysical Research Letters, 39.CrossRefGoogle Scholar
Pinto, J. G., Ulbrich, U., Leckebusch, G. C., et al. (2007). Changes in storm track and cyclone activity in three SRES ensemble experiments with the ECHAM5/MPI-OM1 GCM. Climate Dynamics, 29, 195210.CrossRefGoogle Scholar
Raible, C. C., Ziv, B., Saaroni, H., and Wild, M. (2010). Winter synoptic-scale variability over the Mediterranean Basin under future climate conditions as simulated by the ECHAM5. Climate Dynamics, 35, 473488.CrossRefGoogle Scholar
Rind, D. (2008). The consequences of not knowing low- and high-latitude climate sensitivity. Bulletin of the American Meteorological Society, 89, 855864.CrossRefGoogle Scholar
Riviere, G. (2011). A dynamical interpretation of the poleward shift of the jet streams in global warming scenarios. Journal of the Atmospheric Sciences, 68, 12531272.CrossRefGoogle Scholar
Scaife, A. A., Woollings, T., Knight, J., Martin, G., and Hinton, T. (2010). Atmospheric blocking and mean biases in climate models. Journal of Climate, 23, 61436152.CrossRefGoogle Scholar
Scaife, A. A., Copsey, D., Gordon, C., et al. (2011). Improved Atlantic winter blocking in a climate model. Geophysical Research Letters, 38(23).CrossRefGoogle Scholar
Scaife, A. A., Spangehl, T., Fereday, D. R., et al. (2012). Climate change projections and stratosphere–troposphere interaction. Climate Dynamics, 38, 20892097.CrossRefGoogle Scholar
Schneider, T., OGorman, P. A., and Levine, X. J. (2010). Water vapor and the dynamics of climate changes. Reviews of Geophysics, 48.CrossRefGoogle Scholar
Screen, J. A., and Simmonds, I. (2013). Exploring links between Arctic amplification and mid-latitude weather, Geophys. Res. Lett., 40, 959964.CrossRefGoogle Scholar
Shaffrey, L. C., Stevens, I., Norton, W. A., et al. (2009). UK HiGEM: The new UK high-resolution global environment model-model description and basic evaluation. Journal of Climate, 22, 18611896.CrossRefGoogle Scholar
Shutts, G. J. (1983). The propagation of eddies in diffluent jetstreams: Eddy vorticity forcing of ‘blocking’ flow fields. Quarterly Journal of the Royal Meteorological Society, 109, 737761.Google Scholar
Simmons, A. J. and Hoskins, B. J. (1978). The life cycles of some nonlinear baroclinic waves. Journal of the Atmospheric Sciences, 35, 414432.2.0.CO;2>CrossRefGoogle Scholar
Simpson, I. R., Blackburn, M., and Haigh, J. D. (2009). The role of eddies in driving the tropospheric response to stratospheric heating perturbations. Journal of the Atmospheric Sciences, 66, 13471365.CrossRefGoogle Scholar
Simpson, I. R., Blackburn, M., Haigh, J. D., and Sparrow, S. N. (2010). The impact of the state of the troposphere on the response to stratospheric heating in a simplified GCM. Journal of Climate, 23, 61666185.CrossRefGoogle Scholar
Son, S. W. and Lee, S. (2005). The response of westerly jets to thermal driving in a primitive equation model. Journal of the Atmospheric Sciences, 62(10), 37413757.CrossRefGoogle Scholar
Son, S. W., Polvani, L. M., Waugh, D. W., et al. (2008). The impact of stratospheric ozone recovery on the Southern Hemisphere westerly jet. Science, 320, 14861489.CrossRefGoogle ScholarPubMed
Thompson, D. W., Lee, S., and Baldwin, M. P. (2003). Atmospheric processes governing the northern hemisphere annular mode/North Atlantic oscillation. Geophysical Monograph-American Geophysical Union, 134, 81112.Google Scholar
Ulbrich, U., Leckebusch, G. C., and Pinto, J. G. (2009). Extra-tropical cyclones in the present and future climate: a review. Theoretical and Applied Climatology, 96, 117131.CrossRefGoogle Scholar
Ulbrich, U. et al. (2013). Are greenhouse gas signals of Northern Hemisphere winter extra-tropical cyclone activity dependent on the identification and tracking methodology? Meteorol Z. 22, 6168 doi:10.1127/0941–2948/2013/0420.CrossRefGoogle Scholar
Vallis, G. K. and Gerber, E. P. (2008). Local and hemispheric dynamics of the North Atlantic Oscillation, annular patterns and the zonal index. Dynamics of Atmospheres and Oceans, 44, 184212.CrossRefGoogle Scholar
Woollings, T. (2010). Dynamical influences on European climate: an uncertain future. Philosophical Transactions of the Royal Society A, 368, 37333756.CrossRefGoogle ScholarPubMed
Woollings, T. and Blackburn, M. (2012). The North Atlantic jet stream under climate change and its relation to the NAO and EA patterns. Journal of Climate, 25, 886902.CrossRefGoogle Scholar
Woollings, T., Hoskins, B., Blackburn, M., and Berrisford, P. (2008). A new Rossby wave-breaking interpretation of the North Atlantic Oscillation. Journal of the Atmospheric Sciences, 65, 609626.CrossRefGoogle Scholar
Woollings, T., Gregory, J., Pinto, J., Reyers, M., and Brayshaw, D. (2012a). Response of the North Atlantic storm track to climate change shaped by ocean-atmosphere coupling. Nature Geoscience, 5, 313317.CrossRefGoogle Scholar
Woollings, T., Harvey, B., Zahn, M., and Shaffrey, L. (2012b). On the role of the ocean in projected atmospheric stability changes in the Atlantic polar low region, Geophys. Res. Lett., 39, L24802.CrossRefGoogle Scholar
Woollings, T., Harvey, B., and Masato, G. (2014). Arctic warming, atmospheric blocking and cold European winters in CMIP5 models. Env. Res. Lett., 9, 014002.CrossRefGoogle Scholar
Wu, Y., Ting, M., Seager, R., Huang, H. P., and Cane, M. A. (2011). Changes in storm tracks and energy transports in a warmer climate simulated by the GFDL CM2. 1 model. Climate Dynamics, 37, 5372.CrossRefGoogle Scholar
Yang, S. and Christensen, J. H. (2012). Arctic sea ice reduction and European cold winters in cmip5 climate change experiments. Geophys. Res. Lett. 39(20).CrossRefGoogle Scholar
Yin, J. H. (2005). A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett., 32, L18701. doi:10.1029/2005GL023684.CrossRefGoogle Scholar
Zahn, M. and von Storch, H. (2010). Decreased frequency of North Atlantic polar lows associated with future climate warming. Nature, 467, 309312.CrossRefGoogle ScholarPubMed
Zappa, G., Shaffrey, L. C., and Hodges, K. I. (2013a). The ability of CMIP5 models to simulate North Atlantic extratropical cyclones. Journal of Climate, 26, 53795396.CrossRefGoogle Scholar
Zappa, G., Shaffrey, L. C., Hodges, K. I., Sansom, P. G., and Stephenson, D. B. (2013b). A multi-model assessment of future projections of North Atlantic and European extratropical cyclones in the CMIP5 climate models. Journal of Climate, 26, 58465862.CrossRefGoogle Scholar
Zappa, G., Masato, G., Shaffrey, L., Woollings, T., and Hodges, K. (2014). Linking Northern Hemisphere blocking and storm track biases in the CMIP5 climate models. Geophysical Research Letters. 41, 135139.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×