Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-22T17:01:21.088Z Has data issue: false hasContentIssue false

4 - Neuropsychological and Biological Influences on Drinking Behavior Change

from Part I - Micro Level

Published online by Cambridge University Press:  23 December 2021

Jalie A. Tucker
Affiliation:
University of Florida
Katie Witkiewitz
Affiliation:
University of New Mexico
Get access

Summary

An individual’s recovery from alcohol use disorder (AUD) occurs within the context of changes in drinking behavior as well as changes in physical and mental health. This chapter considers how drinking behavior change can arise from, and be supported by, functional improvements in the brain and in peripheral organ systems. The chapter proposes that arousal serves as a common process that can either support or hinder recovery through its link to executive control, negative emotionality, and cue salience; arousal is measurable through overt human behavior, physiological reactivity, and neural activation; and arousal modulation may serve as a holistic intervention target to help sustain recovery. The chapter considers how the arousal construct may be used to identify more homogeneous subgroups of persons in recovery, such as those who may benefit from arousal-modulation adjuvants to bolster executive cognitive control, affect regulation, and flexible responses to contextual cues.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abernathy, K., Chandler, L. J., & Woodward, J. J. (2010). Alcohol and the prefrontal cortex. International Review of Neurobiology, 91, 289320. https://doi.org/10.1016/s0074–7742(10)91009-xGoogle Scholar
Alayan, N., Eddie, D., Eller, L., Bates, M. E., & Carmody, D. (2019). Substance craving changes in university students receiving heart rate variability biofeedback: A longitudinal multilevel modeling approach. Addictive Behaviors, 97, 3541. https://doi.org/10.1016/j.addbeh.2019.05.005Google Scholar
Alayan, N., Eller, L., Bates, M. E., & Carmody, D. P. (2018). Current evidence on heart rate variability biofeedback as a complementary anticraving intervention. Journal of Alternative and Complementary Medicine, 24(11), 10391050. https://doi.org/10.1089/acm.2018.0019CrossRefGoogle ScholarPubMed
Baker, T. B., Piper, M. E., McCarthy, D. E., Majeskie, M. R., & Fiore, M. C. (2004). Addiction motivation reformulated: An affective processing model of negative reinforcement. Psychology Review, 111(1), 3351. https://doi.org/10.1037/0033-295x.111.1.33Google Scholar
Bar, K. J., Boettger, M. K., Boettger, S., Groteluschen, M., Neubauer, R., Jochum, T., Baier, V., Sauer, H., & Voss, A. (2006). Reduced baroreflex sensitivity in acute alcohol withdrawal syndrome and in abstained alcoholics. Drug and Alcohol Dependence, 85(1), 6674. https://doi.org/10.1016/j.drugalcdep.2006.03.014Google Scholar
Bates, M. E., Bowden, S. C., & Barry, D. (2002). Neurocognitive impairment associated with alcohol use disorders: Implications for treatment. Experimental and Clinical Psychopharmacology, 10(3), 193212. https://doi.org/10.1037//1064-1297.10.3.193CrossRefGoogle ScholarPubMed
Bates, M. E., & Buckman, J. F. (2013). Integrating body and brain systems in addiction neuroscience. In Miller, P. (Ed.), Biological research on addiction: Comprehensive addictive behaviors and disorders (Vol. 2, pp. 187198). Elsevier.CrossRefGoogle Scholar
Bates, M. E., Buckman, J. F., Vaschillo, E. G., Fonoberov, V. A., Fonoberova, M., Vaschillo, B., Mun, E. Y., Mezic, A., & Mezic, I. (2011). The redistribution of power: Neurocardiac signaling, alcohol and gender. PLoS One, 6(12), e28281. https://doi.org/10.1371/journal.pone.0028281Google Scholar
Bates, M. E., Buckman, J. F., Voelbel, G. T., Eddie, D., & Freeman, J. (2013). The mean and the individual: Integrating variable-centered and person-centered analyses of cognitive recovery in patients with substance use disorders. Frontiers in Psychiatry, 4, 177. https://doi.org/10.3389/fpsyt.2013.00177CrossRefGoogle ScholarPubMed
Bates, M. E., Lesnewich, L. M., Uhouse, S. G., Gohel, S., & Buckman, J. F. (2019). Resonance-paced breathing alters neural response to visual cues: Proof-of-concept for a neuroscience-informed adjunct to addiction treatments. Frontiers in Psychiatry, 10, 624. https://doi.org/10.3389/fpsyt.2019.00624Google Scholar
Bechara, A. (2005). Decision making, impulse control, and loss of willpower to resist drugs: A neurocognitive perspective. Nature Neuroscience, 8(11), 14581463. https://doi.org/10.1038/nn1584CrossRefGoogle ScholarPubMed
Berntson, G. G., & Cacioppo, J. T. (2007). Integrative physiology: Homeostasis, allostasis, and the orchestration of systemic physiology. In Cacioppo, J. T., Tassinary, L. G., & Berntson, G. G. (Eds.), Handbook of psychophysiology (pp. 433452). Cambridge University Press. https://doi.org/10.1017/CBO9780511546396.019.Google Scholar
Bickel, W. K., Crabbe, J. C., & Sher, K. J. (2019). What is addiction? How can animal and human research be used to advance research, diagnosis, and treatment of alcohol and other substance use disorders? Alcoholism: Clinical and Experimental Research, 43(1), 621. https://doi.org/10.1111/acer.13912Google Scholar
Bickel, W. K., Mellis, A. M., Snider, S. E., Athamneh, L. N., Stein, J. S., & Pope, D. A. (2018). 21st century neurobehavioral theories of decision making in addiction: Review and evaluation. Pharmacology, Biochemistry, and Behavior, 164, 421. https://doi.org/10.1016/j.pbb.2017.09.009Google Scholar
Boker, S. M. (2001). Differential structural equation modeling of intraindividual variability. In Collins, L. M. & Sayer, A. G. (Eds.), New methods for the analysis of behavior change (pp. 527). American Psychological Association.CrossRefGoogle Scholar
Buckman, J. F., Bates, M. E., & Cisler, R. A. (2007). Social networks and their influence on drinking behaviors: Differences related to cognitive impairment in clients receiving alcoholism treatment. Journal of Studies on Alcohol and Drugs, 68(5), 738747. https://doi.org/10.15288/jsad.2007.68.738CrossRefGoogle ScholarPubMed
Buckman, J. F., Bates, M. E., & Morgenstern, J. (2008). Social support and cognitive impairment in clients receiving treatment for alcohol- and drug-use disorders: A replication study. Journal of Studies on Alcohol and Drugs, 69(5), 738746. https://doi.org/10.15288/jsad.2008.69.738Google Scholar
Buckman, J. F., Eddie, D., Vaschillo, E. G., Vaschillo, B., Garcia, A., & Bates, M. E. (2015). Immediate and complex cardiovascular adaptation to an acute alcohol dose. Alcoholism: Clinical and Experimental Research, 39(12), 23342344. https://doi.org/10.1111/acer.12912Google Scholar
Buckman, J. F., Vaschillo, B., Vaschillo, E. G., Epstein, E. E., Nguyen-Louie, T. T., Lesnewich, L. M., Eddie, D., & Bates, M. E. (2019). Improvement in women’s cardiovascular functioning during cognitive behavioral therapy for alcohol use disorder. Psychology of Addictive Behaviors, 33(8), 659668. https://doi.org/10.1037/adb0000524Google Scholar
Buckman, J. F., Vaschillo, E. G., Fonoberova, M., Mezic, I., & Bates, M. E. (2018). The translational value of psychophysiology methods and mechanisms: Multilevel, dynamic, personalized. Journal of Studies on Alcohol and Drugs, 79(2), 229238. https://doi.org/10.15288/jsad.2018.79.229Google Scholar
Collins, F. S., & Varmus, H. (2015). A new initiative on precision medicine. New England Journal of Medicine, 372(9), 793795. https://doi.org/10.1056/NEJMp1500523Google Scholar
Critchley, H. D. (2005). Neural mechanisms of autonomic, affective, and cognitive integration. Journal of Comparative Neurology, 493, 154166. https://doi.org/10.1002/cne.20749CrossRefGoogle ScholarPubMed
Critchley, H. D., & Harrison, N. A. (2013). Visceral influences on brain and behavior. Neuron, 77(4), 624638. https://doi.org/10.1016/j.neuron.2013.02.008Google Scholar
Domínguez-Salas, S., Díaz-Batanero, C., Lozano-Rojas, O. M., & Verdejo-García, A. (2016). Impact of general cognition and executive function deficits on addiction treatment outcomes: Systematic review and discussion of neurocognitive pathways. Neuroscience & Biobehavioral Reviews, 71, 772801. https://doi.org/10.1016/j.neubiorev.2016.09.030Google Scholar
Eddie, D., Bates, M. E., & Buckman, J. F. (2020). Closing the loop between heart and brain: Towards more holistic models of addiction and addiction recovery. Addiction Biology e12958. https://doi.org/10.1111/adb.12958CrossRefGoogle Scholar
Eddie, D., Conway, F. N., Alayan, N., Buckman, J., & Bates, M. E. (2018). Assessing heart rate variability biofeedback as an adjunct to college recovery housing programs. Journal of Substance Abuse Treatment, 92, 7076. https://doi.org/10.1016/j.jsat.2018.06.014CrossRefGoogle ScholarPubMed
Ekhtiari, H., Rezapour, T., Aupperle, R. L., & Paulus, M. P. (2017). Neuroscience-informed psychoeducation for addiction medicine: A neurocognitive perspective. Progress in Brain Research, 235, 239264. https://doi.org/10.1016/bs.pbr.2017.08.013Google Scholar
Fazio, M., Bardelli, M., Macaluso, L., Fiammengo, F., Mattei, P. L., Bossi, M., Fabris, B., Fischetti, F., Pascazio, L., Candido, R., & Carretta, R. (2001). Mechanics of the carotid artery wall and baroreflex sensitivity after acute ethanol administration in young healthy volunteers. Clinical Science, 101(3), 253260.CrossRefGoogle Scholar
Forsberg, L. K., & Goldman, M. S. (1987). Experience-dependent recovery of cognitive deficits in alcoholics: Extended transfer of training. Journal of Abnormal Psychology, 96(4), 345353. https://doi.org/10.1037//0021-843x.96.4.345Google Scholar
Gianaros, P. J., & Jennings, J. R. (2018). Host in the machine: A neurobiological perspective on psychological stress and cardiovascular disease. American Psychologist, 73(8), 10311044. https://doi.org/10.1037/amp0000232Google Scholar
Goessl, V. C., Curtiss, J. E., & Hofmann, S. G. (2017). The effect of heart rate variability biofeedback training on stress and anxiety: A meta-analysis. Psychological Medicine, 47(15), 25782586. https://doi.org/10.1017/s0033291717001003CrossRefGoogle ScholarPubMed
Goldman, M. S. (1995). Recovery of cognitive functioning in alcoholics – The relationship to treatment. Alcohol Health and Research World, 19(2), 148154.Google ScholarPubMed
Gray, M. A., Beacher, F. D., Minati, L., Nagai, Y., Kemp, A. H., Harrison, N. A., & Critchley, H. D. (2012). Emotional appraisal is influenced by cardiac afferent information. Emotion, 12(1), 180191. https://doi.org/10.1037/a0025083Google Scholar
Hennessy, E. A. (2017). Recovery capital: A systematic review of the literature. Addiction Research & Theory, 25(5), 349360. https://doi.org/10.1080/16066359.2017.1297990Google Scholar
Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D. S., Quinn, K., Sanislow, C., & Wang, P. (2010). Research domain criteria (RDoC): Toward a new classification framework for research on mental disorders. American Journal of Psychiatry, 167(7), 748751. https://doi.org/10.1176/appi.ajp.2010.09091379CrossRefGoogle Scholar
Iversen, S., Kupfermann, I., & Kandel, E. R. (2000). Emotional states and feelings. In Kandel, E. R., Schwartz, J. H., & Jessell, T. M. (Eds.), Principles of neural science (4th ed., pp. 982996). McGraw-Hill.Google Scholar
Jirout, J., LoCasale-Crouch, J., Turnbull, K., Gu, Y., Cubides, M., Garzione, S., Evans, T. M., Weltman, A. L., & Kranz, S. (2019). How lifestyle factors affect cognitive and executive function and the ability to learn in children. Nutrients, 11(8), 1953. https://doi.org/10.3390/nu11081953CrossRefGoogle ScholarPubMed
Koob, G. F., & Volkow, N. D. (2010). Neurocircuitry of addiction. Neuropsychopharmacology, 35(1), 217238. https://doi.org/10.1038/npp.2009.110Google Scholar
Kozak, M. J., & Cuthbert, B. N. (2016). The NIMH research domain criteria initiative: Background, issues, and pragmatics. Psychophysiology, 53(3), 286297. https://doi.org/10.1111/psyp.12518Google Scholar
Kwako, L. E., Schwandt, M. L., Ramchandani, V. A., Diazgranados, N., Koob, G. F., Volkow, N. D., Blanco, C., & Goldman, D. (2019). Neurofunctional domains derived from deep behavioral phenotyping in alcohol use disorder. American Journal of Psychiatry, 176(9), 744753. https://doi.org/10.1176/appi.ajp.2018.18030357Google Scholar
Kwasnicka, D., Dombrowski, S. U., White, M., & Sniehotta, F. (2016). Theoretical explanations for maintenance of behaviour change: A systematic review of behaviour theories. Health Psychology Review, 10(3), 277296. https://doi.org/10.1080/17437199.2016.1151372.CrossRefGoogle ScholarPubMed
Lewis, M. (2018). Brain change in addiction as learning, not disease. New England Journal of Medicine, 379(16), 15511560. https://doi.org/10.1056/NEJMra1602872Google Scholar
Leyro, T. M., Buckman, J. F., & Bates, M. E. (2019). Theoretical implications and clinical support for heart rate variability biofeedback for substance use disorders. Current Opinion in Psychology, 30, 9297. https://doi.org/10.1016/j.copsyc.2019.03.008Google Scholar
Litten, R. Z., Ryan, M. L., Falk, D. E., Reilly, M., Fertig, J. B., & Koob, G. F. (2015). Heterogeneity of alcohol use disorder: Understanding mechanisms to advance personalized treatment. Alcoholism: Clinical and Experimental Research, 39(4), 579584. https://doi.org/10.1111/acer.12669Google Scholar
Marlatt, G. A. (1996). Taxonomy of high-risk situations for alcohol relapse: evolution and development of a cognitive-behavioral model. Addiction, 91(Suppl.), S37S49. PMID 8997780CrossRefGoogle ScholarPubMed
McCrady, B. S., & Epstein, E. (1999). Addictions: A comprehensive guidebook. Oxford University Press.Google Scholar
McEwen, B. S. (1998). Stress, adaptation, and disease. Allostasis and allostatic load. Annals of the New York Academy of Sciences, 840, 3344. https://doi.org/10.1111/j.1749-6632.1998.tb09546.xGoogle Scholar
Muraven, M., & Baumeister, R. F. (2000). Self-regulation and depletion of limited resources: Does self-control resemble a muscle? Psychological Bulletin, 126(2), 247259. https://doi.org/10.1037/0033-2909.126.2.247Google Scholar
National Academies of Sciences Engineering and Medicine (2016). Measuring recovery from substance use or mental disorders: Workshop summary. The National Academies Press. https://doi.org/10.17226/23589Google Scholar
Nixon, S. J., & Lewis, B. (2019). Cognitive training as a component of treatment of alcohol use disorder: A review. Neuropsychology, 33(6), 822841. https://doi.org/10.1037/neu0000575CrossRefGoogle ScholarPubMed
Paulus, M. P., Schuckit, M. A., Tapert, S. F., Tolentino, N. J., Matthews, S. C., Smith, T. L., Trim, R. S., Hall, S. A., & Simmons, A. N. (2012). High versus low level of response to alcohol: Evidence of differential reactivity to emotional stimuli. Biological Psychiatry, 72(10), 848855. https://doi.org/10.1016/j.biopsych.2012.04.016Google Scholar
Rolland, B., D’Hondt, F., Montègue, S., Brion, M., Peyron, E., D’Aviau de Ternay, J., de Timary, P., Nourredine, M., & Maurage, P. (2019). A patient-tailored evidence-based approach for developing early neuropsychological training programs in addiction settings. Neuropsychology Review, 29(1), 103115. https://doi.org/10.1007/s11065–018-9395-3Google Scholar
Seo, D., & Sinha, R. (2015). Neuroplasticity and predictors of alcohol recovery. Alcohol Research, 37(1), 143152.Google ScholarPubMed
Shields, G. S., Spahr, C. M., & Slavich, G. M. (2020). Psychosocial interventions and immune system function: A systematic review and meta-analysis of randomized clinical trials. JAMA Psychiatry, 77(10), 113. https://doi.org/10.1001/jamapsychiatry.2020.0431Google Scholar
Squeglia, L. M., Tapert, S. F., Sullivan, E. V., Jacobus, J., Meloy, M. J., Rohlfing, T., & Pfefferbaum, A. (2015). Brain development in heavy-drinking adolescents. American Journal of Psychiatry, 172(6), 531542. https://doi.org/10.1176/appi.ajp.2015.14101249CrossRefGoogle ScholarPubMed
Tiffany, S. T. (1990). A cognitive model of drug urges and drug-use behavior: Role of automatic and nonautomatic processes. Psychological Review, 97(2), 147168. https://doi.org/10.1037/0033-295x.97.2.147Google Scholar
Uhl, G. R., Koob, G. F., & Cable, J. (2019). The neurobiology of addiction. Annals of the New York Academy of Science, 1451(1), 528. https://doi.org/10.1111/nyas.13989Google Scholar
Verdejo-Garcia, A., Lorenzetti, V., Manning, V., Piercy, H., Bruno, R., Hester, R., Pennington, D., Tolomeo, S., Arunogiri, S., Bates, M. E., Bowden-Jones, H., Campanella, S., Daughters, S. B., Kouimtsidis, C., Lubman, D. I., Meyerhoff, D. J., Ralph, A., Rezapour, T., Tavakoli, H., Zare-Bidoky, M., Zilverstand, A., Steele, D., Moeller, S. J., Paulus, M., Baldacchino, A., & Ekhtiari, H. (2019). A roadmap for integrating neuroscience into addiction treatment: A consensus of the neuroscience interest group of the international society of addiction medicine. Frontiers in Psychiatry, 10, 877. https://doi.org/10.3389/fpsyt.2019.00877Google Scholar
Votaw, V. R., Pearson, M. R., Stein, E., & Witkiewitz, K. (2020). The Addictions Neuroclinical Assessment negative emotionality domain among treatment-seekers with alcohol use disorder: Construct validity and measurement invariance. Alcoholism: Clinical and Experimental Research, 44(3), 679688. https://doi.org/10.1111/acer.14283CrossRefGoogle ScholarPubMed
Wilson, A. D., Bravo, A. J., Pearson, M. R., & Witkiewitz, K. (2016). Finding success in failure: Using latent profile analysis to examine heterogeneity in psychosocial functioning among heavy drinkers following treatment. Addiction, 111(12), 21452154. https://doi.org/10.1111/add.13518CrossRefGoogle ScholarPubMed
Witkiewitz, K., & Tucker, J. A. (2020). Abstinence not required: Expanding the definition of recovery from alcohol use disorder. Alcoholism: Clinical and Experimental Research, 44(1), 3640. https://doi.org/10.1111/acer.14235Google Scholar
Zahr, N. M., & Pfefferbaum, A. (2017). Alcohol’s effects on the brain: Neuroimaging results in humans and animal models. Alcohol Research, 38(2), 183206.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×